Sfb 1946

A1

Coupled Simulation of Heterogeneous Hydrological Systems: Numerical Modeling of Runoff Generation in Lowland Areas

R. Kornhuber (FU Berlin), E. Bänsch (FU/WIAS Berlin), A. Bronstert (U Potsdam)

Motivation

Lowland areas with high water tables are typical landscapes in NE-Germany.

They are **both** important for agriculture **and** ecologically high valued.

The quantification of water resources and the dominating hydrological processes in lowlands is required:

- for a sustainable agricultural use of these landscapes,
- for the preservation of their ecological value and
- for the environmental impact-analysis of management measures.

Protected birds habitat in the Lower Havel region

Hydrological systems of such environments are very complex:

- Various interactions of hydrological processes and compartments, e.g. unsaturated soil zone, ground water, and surface water
- Very strong space—time variations of the governing processes
- Understanding of these coupled systems by the use of mathematical models of the governing hydrological processes and their interactions

Goal

The overall goal of this project is to improve the understanding of the complex hydrological lowland system by means of refined numerical modeling methods.

Hydrological Modeling

Most state—of—the—art hydrological models reflect the fluxes between surface and sub—surface compartments in an *uncoupled mode*, i.e. without feedback mechanisms.

Therefore, they are hardly suitable for the simulation of runoff generation in *lowland areas*, where the interaction of unsaturated soil, ground water and surface water might dominate other hydrological processes.

Cooperations

WITHIN SFB:

A2, B2, C2 (adaptive multigrid), A3, C1 (domain decomposition techniques), B1, B3 (numerical analysis), C4 (ode solvers) BEYOND SFB:

P. Bastian (Heidelberg), R.H.W. Hoppe (Augsburg), V. Krysanova (Potsdam), B. Merz (Potsdam), R. Nochetto (Maryland), J. Schönfelder (Potsdam), P. Troch (Wageningen), G. Wittum (Heidelberg)

Research Strategy

Identification and monitoring of a selected lowland catchment

- measurements of spatial data
- time series of processes

Satellite image of our research catchment:

- surface—water observation station
- ground-water observation station
- soil-moisture observation station
- meteorological observation station
- □ research catchment

Simulation based on a decoupled model

Extension of an existing hydrological model:

- feedback ground water to the surface water
- feedback ground water to the unsaturated zone and vegetation
- surface inundation processes

Robust and efficient solvers for a coupled model

- adaptive time stepping and mesh refinement
- robust multigrid solvers by combination of monotone multigrid and Newton multigrid

Comparison of decoupled/coupled models

- Quantitative effects of coupling/decoupling versus data availability and computing time. Comparison with experimental data.
- Fast solvers allow for systematic quantitative studies: Influence of small scale data variability on relevant output data (water table).

Future Perspectives

- nonlinear vegetational effects, evaporation and rainfall infiltration
- dynamics of surface water
- upscaling to larger catchments

Relations to other projects

Bänsch: DFG-Research Center, Project C1 "Coupled systems of reaction-diffusion equations and application to the numerical simulation of direct methanol fuel cell problems."

DFG-Research Center, Project C2 "Efficient simulation of flows in semiconductor melts."

Bronstert: BMBF-Project "Options for Water Resources management in the Havel River Catchment."