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Summary. Simulations of saturated-unsaturated groundwater flow in heteroge-
neous soil can be carried out by considering non-overlapping domain decomposition
problems for the Richards equation in subdomains with homogeneous soil. By the
application of different Kirchhoff transformations in the different subdomains local
convex minimization problems can be obtained which are coupled via superposi-
tion operators on the interface between the subdomains. The purpose of this article
is to provide a rigorous mathematical foundation for this reformulation in a weak
sense. In particular, this involves an analysis of the Kirchhoff transformation as a
superposition operator on Sobolev and trace spaces.

1 Introduction

The Richards equation, which describes saturated-unsaturated fluid flow in a
homogeneous porous medium, reads

nθ(p)t − div(Khkr(θ(p))(∇p − z)) = 0 . (1)

The unknown water or capillary pressure p, given as the height of a cor-
reponding water column, is a function on Ω × (0, T ) for a time T > 0 and a
domain Ω ⊂ R

d (d = 1, 2, 3) inhibited by the porous medium. n : Ω → (0, 1)
is the porosity of the soil, Kh : Ω → R

+ is the hydraulic conductivity and z

is the coordinate in the direction of gravity.
The saturation θ : R → [θm, θM ] with θm, θM ∈ [0, 1] is an increasing

function of p with θ(p) = θM (the case of full saturation and ellipticity of (1))
if p is large enough. The relative permeability kr : [θm, θM ] → [0, 1] is an
increasing function of θ with kr(θM ) = 1 which leads to a degeneracy in
the elliptic-parabolic equation (1) by kr(θm) = 0. In this way the Richards
equation contains the generalized law of Darcy

v = −Khkr(θ(p))(∇p − z)
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Fig. 1. p 7→ θ(p)
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Fig. 2. θ 7→ kr(θ)

for the water flux v. Typical shapes of the nonlinearities θ and kr are de-
picted in Figures 1 and 2. However, these functions depend on the soil type
so that we have different nonlinearities θi, kri on different subdomains Ωi,
i = 1, . . . , k ∈ N, constituting a decomposition of Ω.

In the following we assume n = Kh = 1 and k = 2 for simplicity. See
Figure 3 for a decomposition of Ω into Ω1 and Ω2 where n denotes the outer
normal of Ω1. Moreover, we assume that (1) is discretized implicitly in time

n

Γ

Ω1

Ω2

Fig. 3. 2D-domain Ω decomposed into two subdomains

but with an explicit treatment of the gravitational (convective) term so that
with a suitable function f on Ω we arrive at spatial problems of the form

θi(pi) − div(kri(θi(pi))∇pi) = f on Ωi , i = 1, 2 . (2)

Appropriate interface conditions on Γ := Ω1 ∩ Ω2, which are motivated hy-
drologically, are the continuity of the pressure and the normal water flux v ·n
across Γ . After our implicit–explicit time discretization this leads to

p1 = p2 on Γ (3)

kr1(θ1(p1))∇p1 · n = kr2(θ2(p2))∇p2 · n on Γ . (4)
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In case of θ1 = θ2 and kr1 = kr2 these interface conditions can be mathemati-
cally derived in a weak sense (and in a very general setting) as a multi-domain
formulation for the corresponding global problem, see [3, pp. 131–139] and [11,
pp. 5–8].

A powerful tool for the treatment of the Richards equation is the Kirchhoff
transformation (compare [1] and [4]). Its application eliminates the nonlinear-
ity in front of the spatial derivative in the quasilinear equation (1) so that
the transformed equation is semilinear. Here, we need to apply two different
Kirchhoff transformations in the two subdomains. More concretely, we define

ui(x) := κi(pi(x)) =

∫ pi(x)

0

kri(θi(q)) dq a.e. in Ωi , i = 1, 2 . (5)

Consequently, we obtain

kri(θi(pi))∇pi = ∇ui , i = 1, 2 , (6)

by the chain rule so that with the saturation

Mi(ui) = θi(κ
−1
i ui) , i = 1, 2 , (7)

with respect to the new variables the equations (2) are transformed into

Mi(ui) − ∆ui = f on Ωi , i = 1, 2 . (8)

Moreover, the interface conditions read

κ−1
1 (u1) = κ−1

2 (u2) on Γ (9)

∇u1 · n = ∇u2 · n on Γ (10)

in the new variables. Accordingly, boundary conditions on ∂Ω for (1) and (2)
are transformed.

The purpose of the transformation is the following. First, the quasilinear
equations (2) are reduced to semilinear equations (8) each containing one non-
linearity Mi only. In fact, Mi, i = 1, 2, is monotonically increasing such that
(with suitable boundary conditions and in a weak formulation) each of the
equations (8) is equivalent to a convex minimization problem in a Sobolev
space [3, Sec. 2.3]. For appropriate spatial discretizations of such problems
monotone multigrid methods provide fast and robust solvers (compare [6]
and [3, Sec. 2.6–2.8]). Furthermore, the transformation leads to a continuity
condition (10) for the normal fluxes of the transformed variables on the inter-
face Γ and infers a nonlinear relationship (9) between these variables induced
by superposition operators on Γ . This enables a convergence analysis for the
transmission problem (8)–(10) (with homogeneous Dirichlet boundary condi-
tions on Ω) generalizing existing linear theory (see [4] and [3, Sec. 3.3, 3.4]).
Note that the Kirchhoff transformation does not necessarily reduce a quasi-
linear equation as in (2) to a semilinear one if the relative permeability kri is



4 Heiko Berninger

still dependent on x ∈ Ωi. In this sense homogeneous subproblems referring
to the relative permeability kr (not to the hydraulic conductivity Kh(x) as in
(1)) are required.

In the strong formulations above, the application of Kirchhoff’s transfor-
mation to the (time-discretized) Richards equation is straightforward. How-
ever, with regard to the weak formulations (compare [4, Sec. 3]) some more
detailed considerations are necessary in order to prove equivalence of the phys-
ical and the Kirchhoff–transformed versions. For example, the chain rule (6)
has to be satisfied in a weak sense in H1(Ωi). Furthermore, κ−1

i (ui), i = 1, 2,
in (9) has to be understood as an element of some trace space. In order to
clarify these issues, which already occur in the homogeneous case of a single
soil in one domain, one has to investigate the Kirchhoff transformations as
superposition operators in Sobolev and trace spaces. This is the purpose of
this paper.

More concretely, we present weak formulations of the domain decomposi-
tion problems for the time-discretized Richards equation as given above, both
for the physical and for the Kirchhoff–transformed version in Section 2. Here
we also make clear what has to be proved in order to see the equivalence of
both weak formulations. Then we carry out some analysis for the Kirchhoff
transformation as a superposition operator in Section 3. This leads to pos-
itive answers to the open questions raised before and thus to the required
equivalence.

2 Weak forms of the domain decomposition problems

and the question of their equivalence

In this section we give weak formulations of the domain decomposition prob-
lems (2)–(4) and (8)–(10) with homogeneous Dirichlet boundary conditions
and address the problems we face to prove their equivalence. We start with
some necessary notation (compare [4]).

First we abbreviate ki := kri ◦ θi and require ki ∈ L∞(R) with ki ≥ α for
some α > 0 and i = 1, 2. (For the general case α = 0 as in Figures 1 and 2 the
results are weaker, see [3, Sec. 1.5.4]). Furthermore, let θi, i = 1, 2, be bounded
Borel–measurable functions on R and f ∈ L2(Ω), Ω and Ωi, i = 1, 2, being
bounded Lipschitz domains in R

d. Now we introduce the spaces

Vi := {vi ∈ H1(Ωi)| vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := {v|Γ : v ∈ H1(Ω)}

and for wi, vi ∈ Vi the forms

ai(wi, vi) := (∇wi,∇vi)Ωi , bi(wi, vi) := (ki(wi)∇wi,∇vi)Ωi ,

where (·, ·)Ωi stands for the L2–inner product on Ωi. The norm in H1(Ω) will

be denoted by ‖ · ‖1. Recall that the trace space Λ is either H
1/2
00 (Γ ) in case of
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Γ ∩ ∂Ω 6= ∅ (as in Figure 3) or H1/2(Γ ) otherwise [11, p. 7]. The restriction
wi|Γ of a function wi ∈ Vi on the interface Γ has to be understood as the
application of the corresponding trace operator on wi. Finally, let Ri, i = 1, 2,
be any continuous extension operator from Λ to Vi. Then the variational for-
mulation of problem (2)–(4) with homogeneous Dirichlet boundary conditions
reads as follows:

Find pi ∈ Vi, i = 1, 2, such that

(θi(pi), vi)Ωi + bi(pi, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (11)

p1|Γ = p2|Γ in Λ (12)

(θ1(p1), R1µ)Ω1
+ b1(p1, R1µ) − (f, R1µ)Ω1

=

− (θ2(p2), R2µ)Ω2
− b2(p2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (13)

Analogously, the weak formulation of the transformed problem (8)–(10)
with homogeneous Dirichlet boundary conditions reads:

Find ui ∈ Vi, i = 1, 2, such that

(Mi(ui), vi)Ωi + ai(ui, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (14)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ (15)

(M1(u1), R1µ)Ω1
+ a1(u1, R1µ) − (f, R1µ)Ω1

=

− (M2(u2), R2µ)Ω2
− a2(u2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (16)

Now we can state our main result.

Theorem 1. With the assumptions on θi and ki, i = 1, 2, the domain decom-
position problem (11)–(13) is equivalent to its Kirchhoff–transformed version
(14)–(16).

In the following we point out what is needed to prove Theorem 1. The
arising open questions will be answered positively in Section 3.

First, since θi are bounded Borel–measurable functions on R we have

θi(pi(x)) = Mi(ui(x)) a.e. on Ωi , i = 1, 2 , (17)

due to (7) for all pi ∈ Vi with ui = κ(pi) and the functions given in (17) are
Lebesgue–measurable L∞–functions on Ωi.

The two major difficulties in proving Theorem 1 are the following. First,
for the equivalence (11)⇔ (14) and (13)⇔ (16) we need the identity

ki(pi)∇pi = κ′
i(pi)∇pi = ∇ui a.e. on Ωi , i = 1, 2 , (18)

understood as functions in (L2(Ωi))
d. This question whether a weak chain rule

holds in H1(Ωi) can be answered by a very general result (see Theorem 2)
which also guarantees
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pi ∈ H1(Ωi) ⇐⇒ ui ∈ H1(Ωi) . (19)

Secondly, the equivalence (12)⇔ (15) requires the commutativity

κ−1
i (ui)|Γ = κ−1

i (ui|Γ ) in Λ , i = 1, 2 , (20)

which turns out to be surprisingly nontrivial, too. Note that this commu-
tativity is also needed to derive the stability of the homogeneous Dirichlet
boundary condition

ui|∂Ω∩∂Ωi
= κi(pi)|∂Ω∩∂Ωi

= κi(pi|∂Ω∩∂Ωi
) = κi(0) = 0 , i = 1, 2 , (21)

in a weak sense using (5).
It is clear that the properties (18)–(21) lead to the equivalence in The-

orem 1. The purpose of the following section is to make clear that these
properties are indeed true.

3 Kirchhoff transformation as a superposition operator

It is obvious and has been noted earlier that the equivalence result in Theo-
rem 1 already follows by proving (18)–(21) for a single domain. This shall be
done in this section. Therefore, we omit the indices i ∈ {1, 2} from now on. In
the following we explicitly distinguish the Kirchhoff transformation κ : R → R

acting as a function on real numbers p(x) from the transformation which it
provides by pointwise (almost everywhere) application on a function p defined
(almost everywhere) on Ω.

Definition 1. Let p be a real-valued function defined on a subset S ⊂ R
d, pos-

sibly almost everywhere with respect to an appropriate measure. Furthermore,
let κ : R → R be a real function. By pointwise application

(κS(p))(x) := κ(p(x))

of κ to p (for x almost everywhere) on S the superposition operator

κS : p 7→ κ(p)

is defined. Let X be a normed space consisting of a subset of all measurable
functions on S. If the superposition operator satisfies κS(p) ∈ X for all p ∈ X,
we say that it acts on the space X. In this case we write

κX : X → X

for the restriction of κS on the space X and call κX superposition operator
on X (induced by κ).
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For an introduction into the theory of superposition operators (also known
as Nemytskij operators) we refer to [2], see also [12]. Here, S will be either Ω or
a submanifold Σ of ∂Ω. If not otherwise stated we assume the conditions listed
at the beginning of Section 2 and the Kirchhoff transformation κ : R → R

given as in (5) with κ(0) = 0 and κ′ = k for the following results. We begin by
stating the weak chain rule which goes back to J. Serrin (see [7], [8] and [13]).

Theorem 2. If κ : R → R is Lipschitz continuous the weak chain rule (18)
holds for any p ∈ W

1,1
loc (Ω) provided κ′(p(x))∇p(x) is interpreted as 0 when-

ever ∇p(x) = 0.

We remark that the last condition is an essential part of the theorem since
κ′(p(x)) does not have to be defined for any x ∈ Ω. Indeed, for k ∈ L∞(R) the
composition k ◦ p alone does not make sense for p ∈ W

1,1
loc (Ω) since it depends

on the choice of the representative in the equivalence class k.
The next lemma is not hard to prove (see [3, Sec. 1.5.4]), but of course we

must apply the weak chain rule twice in order to obtain (iii).

Lemma 1. The Kirchhoff transformation κ has the following properties.

(i) κ : R → R is Lipschitz continuous and has a Lipschitz continuous inverse.
(ii) κ : R → R and κ−1 : R → R induce Lipschitz continuous superposition

operators acting on L2(Ω) and on L2(Σ) for any submanifold Σ ⊂ ∂Ω.
(iii) κ : R → R induces an invertible superposition operator on H1(Ω) with

α−1‖p‖1 ≤ ‖κ(p)‖1 ≤ ‖k‖∞‖p‖1 ∀p ∈ H1(Ω) .

Assertion (iii) now proves (19). Strangely enough, in order to derive the
commutativity (20) and (21), respectively, it seems to be necessary to assume
the continuity of the superposition operator κH1(Ω). However, this is a very
difficult issue. We just note that by imposing further conditions on the func-
tion k, e.g. its boundedness and uniform continuity, the continuity of κH1(Ω)

can be proved by elementary means (compare [3, Prop. 1.5.14]) — if one as-
sumes k to be Lipschitz continuous, one even obtains local Lipschitz continuity
of κH1(Ω) in one space dimension (due to Sobolev’s embedding theorem).

The following amazing characterization of superposition operators acting
on H1(Ω), however, is a highly nontrivial result from abstract functional anal-
ysis. It is due to Marcus and Mizel [9] and [10, pp. 218–220] and essentially
states the nonexistence of discontinuous κH1(Ω).

Theorem 3. Let Ω ⊂ R
d be a bounded open set and κ : R → R a Borel

function. The superposition operator κΩ acts on H1(Ω) if and only if it is
continuous on H1(Ω) or, equivalently, if and only if κ is Lipschitz continuous
for d > 1 or locally Lipschitz in the case d = 1, respectively.

Applying the continuity of the superposition operator κH1(Ω) we can
now prove the commutativity result. In the proof we apply the well-known
trace theorem for trace operators trΣ : H1(Ω) → H1/2(Σ) (compare e.g.
[5, pp. 1.61, 1.65]).
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Proposition 1. For a submanifold Σ ⊂ ∂Ω and κ as in Theorem 3 we have
the commutativity

κΣ(trΣv) = trΣ(κΩv) ∀v ∈ H1(Ω) . (22)

Proof. We prove that for any v ∈ H1(Ω)

‖trΣ(κΩv) − κΣ(trΣv)‖L2(Ω) (23)

is arbitrarily small by considering a sequence (vn)n∈N ⊂ C∞(Ω) converging
to v in H1(Ω). In fact, since Theorem 3 provides the continuity of κ and the
trace of a continuous function on Σ coincides with its restriction to Σ, the
norm in (23) can be estimated by

‖trΣ(κΩv) − (κΩvn)|Σ‖L2(Ω) + ‖κΣ(vn|Σ) − κΣ(trΣv)‖L2(Ω) . (24)

The first term in (24) is at most

‖trΣ‖ ‖κΩv − κΩvn‖1

due to the trace theorem, and this estimate goes to 0 for n → ∞ by the
continuity of κH1(Ω). For d > 1 where κ : R → R is Lipschitz continuous the
second term in (24) can be estimated by

L(κL2(Σ)) ‖vn|Σ − trΣv‖L2(Σ) ≤ L(κL2(Σ)) ‖trΣ‖ ‖vn − v‖1

with Lemma 1 (ii) (L(κL2(Σ)) denotes the Lipschitz constant of κL2(Σ)) and
the trace theorem and, therefore, tends to 0 for n → ∞, too. In one space
dimension (22) is clear due to Sobolev’s embedding theorem (v is continuous)
and the trace theorem.

Note that although Proposition 1 guarantees the commutativity in (20),
we do not yet know whether this indeed takes place in the trace space Λ,
i.e. if we have κ−1

i (ui|Γ ) ∈ Λ. In the following we do not only prove this
acting condition but also the continuity of the Kirchhoff transformation and
its inverse as superposition operators on trace spaces.

Proposition 2. For a submanifold Σ ⊂ ∂Ω the function κ as in Theorem 3
induces a continuous superposition operator on H1/2(Σ) and, if κ(0) = (0),

on H
1/2
00 (Σ), too.

Proof. With the continuous extension operator RΣ : H1/2(Σ) → H1(Ω) given
by the trace theorem and using Proposition 1 we can write

κΣ = κΣ ◦ trΣ ◦ RΣ = trΣ ◦ κH1(Ω) ◦ RΣ

and the operator on the right hand side is a composition of continuous oper-
ators which obviously acts on H1/2(Σ).
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Regarding the second case we recall (see [5, p. 1.60]) that H
1/2
00 (Σ) is the

space of all functions v ∈ H1/2(Σ) allowing trivial extensions ṽ ∈ H1/2(∂Ω)
with the norm

‖v‖
H

1/2

00
(Σ)

= ‖ṽ‖H1/2(∂Ω) . (25)

Now, let η ∈ H
1/2
00 (Σ) and η̃ be a trivial extension of η in H1/2(∂Ω). Then,

since κ(0) = 0 and κ∂Ω acts on the space H1/2(∂Ω), we can conclude
κ∂Ω(η̃) ∈ H1/2(∂Ω) and κ∂Ω(η̃)|Σ is a trivial extension of κΣ(η) ∈ H1/2(Σ),

i.e. by definition κΣ(η) ∈ H
1/2
00 (Σ). Moreover, if µ ∈ H

1/2
00 (Σ) is treated as η,

then κ∂Ω(η̃) − κ∂Ω(µ̃) ∈ H1/2(∂Ω) is a trivial extension of κΣ(η) − κΣ(µ) ∈

H
1/2
00 (Σ). Now, (25) and the continuity of κ∂Ω provide that for any ε > 0 we

have

‖κΣ(η) − κΣ(µ)‖
H

1/2

00
(Σ)

= ‖κ∂Ω(η̃) − κ∂Ω(µ̃)‖H1/2(∂Ω) ≤ ε

if ‖η̃ − µ̃‖H1/2(∂Ω) = ‖η − µ‖
H

1/2

00
(Σ)

≤ δ holds with a suitable δ > 0.

For completeness we remark that Proposition 2 also holds for the trace

space H
1/2
0 (Σ), see [3, Prop. 1.5.17].

We close this investigation by noting that, in addition to Dirichlet and
Neumann boundary conditions, which have been considered above, boundary
conditions of “Signorini-type” can also be suitably Kirchhoff–transformed in
a weak sense. However, as in the degenerate case of α = 0 one can no longer
establish the full equivalence result, compare [3, Thm. 1.5.18].
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