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Abstract We prove a substructuring result for a vari-

ational inequality concerning — but not restricted to
— the Richards equation in homogeneous soil and in-

cluding boundary conditions of Signorini’s type. This

generalizes existing results for the linear case and leads

to interface conditions known from linear variational

equalities: continuity of Dirichlet and flux values in a
weak sense. In case of the Richards equation these are

the continuity of the physical pressure and of the water

flux, which is hydrologically reasonable. Therefore, we

also apply these interface conditions in the heteroge-
neous case of piecewise constant soil parameters, which

we address by the Robin method. We prove that, for a

certain time discretization, the homogeneous problems

in the subdomains including Robin and Signorini-type

boundary conditions can be solved by convex minimiza-
tion. As a consequence we are able to apply monotone

multigrid in the discrete setting as an efficient and ro-

bust solver for the local problems. Numerical results

demonstrate the applicability of our approach.
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1 Introduction

Substructuring of global problems into smaller prob-
lems, that are defined on subdomains and are coupled

properly, is a well-known domain decomposition tech-

nique particularly suited for heterogeneous problems

[26]. A basic result for the homogeneous case concerning

the situation of non-overlapping subdomains states that
a linear variational equality on a domain is equivalent to

corresponding linear variational equalities on the sub-

domains together with the continuity of Dirichlet and

flux conditions across the interfaces in a weak sense,
see [26, p. 7]. Now, these coupling conditions often turn

out to be physically reasonable in very general settings.

This justifies the use of the multi-domain formulation

in heterogeneous cases, too, thus giving a definition of

a global problem in these cases which might not have
been available otherwise. Finally, if the treatment of

the subproblems in the homogeneous case is clear, the

heterogeneous problem can then be addressed by non-

overlapping domain decomposition methods.

The purpose of this paper is, first, to generalize

the equivalence result from homogeneous linear vari-

ational equalities to homogeneous nonlinear variational
inequalities. Secondly, we choose the treatment of the

Richards equation in heterogeneous soil as an appli-

cation of this result in order to demonstrate that the

general strategy just mentioned can also be successfully

pursued in a heterogeneous case. In the presentation of
our theory, both tasks will be carried out together, i.e.

on the one hand, the theory is specified to the Richards

equation, and on the other hand, its more general ap-

plicability shall become obvious.

The Richards equation is a well-known model for

the description of saturated-unsaturated fluid flow in a
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porous medium [28]. It reads

nθ(p)t + div v(p) = 0 (1)

with the water flux

v(p) = −Khkr(θ(p))(∇p − z) (2)

in case of a homogeneous soil. The unknown water or

capillary pressure p is a function on Ω×(0, T ) for a time

T > 0 and a domain Ω ⊂ R
d (d = 2, 3) inhibited by the

porous medium. The porosity and the hydraulic con-
ductivity of the soil n : Ω → (0, 1) and Kh : Ω → R

+,

respectively, are space-dependent functions. The coor-

dinate in the direction of gravity is denoted by z.

The saturation θ : R → [θm, θM ] with θm, θM ∈ [0, 1]
is an increasing function of p which remains constant

θ(p) = θM if p is sufficiently large while the relative per-

meability kr : [θm, θM ] → [0, 1] is an increasing function

of θ with kr(θM ) = 1 and kr(θ) → 0 for θ → θm. The

homogeneous character of (1), (2) is given by the fact
that neither θ(·) nor kr(·) depends explicitly on x ∈ Ω,

i.e. these parameter functions are fixed on Ω and thus

describe the relationships in a single soil-type only. For

concrete forms of these functions consult Brooks and
Corey [12] or van Genuchten [30].

The reason why the Richards equation fits well into

the substructuring idea indicated above is the follow-

ing. With an otherwise implicit time discretization of

equation (1), by which the gravitational part from (2)
in z-direction is treated explicitly, and after a Kirch-

hoff transformation in homogeneous soil, one obtains

spatial minimization problems [10]. These can be dealt

with by convex analysis and their discrete versions can
be solved efficiently and robustly by monotone multi-

grid methods. As a by-product of this approach, seepage

faces around lakes, which lead to Signorini-type prob-

lems and variational inequalities, can be quite easlily

treated, too. They just lead to additional constraints in
the convex minimization problem.

Since Kirchhoff transformation fails to supply mini-

mization problems in heterogeneous soil, this approach

cannot be pursued for heterogeneous problems. How-
ever, one can think of heterogeneous global problems

that can be substructured into local problems on sub-

domains with homogeneous soil [7]. Hydrologically, this

is a quite reasonable situation.

As already mentioned above, the domain decompo-
sition problem motivated by the substructuring result

in the homogeneous case can be regarded as a natu-

ral definition for the heterogeneous problem. Further-

more, it enables us to set up iteration techniques like
Dirichlet–Neumann or Robin methods which are al-

ready known from the linear case. A nonlinear Dirichlet–

Neumann method for the stationary Richards equation

without gravity in heterogeneous soil has first been con-

sidered in [9]. In the numerical example contained in

this paper we demonstrate that Robin’s method can

be successfully applied to the time dependent Richards

equation in a heterogeneous setting. The Robin condi-
tion induces an additional convex contribution to the

local minimization problems which can be treated by

monotone multigrid, too. Since the Robin method con-

cerns the spatial problems only, we ignore the gravita-
tional part in this example, which we would treat explic-

itly otherwise (see [10] for details). We point out that

by our numerical solution procedure we solve the fully

nonlinear problem without any linearization (compare

e.g. [2, 15, 16]).
The paper is structured as follows. In Section 2 we

prove the equivalence of a global homogeneous varia-

tional inequality with local variational inequalities on

two subdomains together with suitable interface con-
ditions in a weak form. We also derive some basic re-

strictions to the result concerning the position of the

Signorini-type boundary. Furthermore, we define the

heterogeneous problem in terms of the multi-domain

formulation motivated by the equivalence result.
Starting with this domain decomposition problem in

Section 3, we formulate nonlinear Dirichlet–Neumann

and Robin algorithms for the Richards equation in het-

erogeneous soil. Furthermore, we demonstrate that the
local Robin problems can be treated by convex analy-

sis after a reformulation by Kirchhoff transformation.

Therefore, with a suitable finite element discretization,

monotone multigrid can be applied as a solver to the

discrete problems.
In Section 4 we present a numerical example in two

space dimensions in which we apply the Robin method

to the Richards equation with Signorini-type bound-

ary conditions in heterogeneous soil. We observe good
multigrid performance and reasonable convergence rates

of the Robin iteration.

2 Substructuring of a Signorini-type problem

for the Richards equation in heterogeneous soil

The purpose of this section is to obtain a weak for-

mulation of a Signorini-type problem for the Richards

equation in heterogeneous soil. This is achieved via sub-

structuring of a corresponding problem in homogeneous
soil, which leads to an equivalence between the global

problem and local problems that are coupled by suit-

able interface conditions. The latter set of problems is

then taken as a definition of a Signorini-type problem
for the Richards equation in heterogeneous soil.

We start with the global homogeneous problem and

some necessary notation in Subsection 2.1. Then, Sub-
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section 2.2 contains the theoretical results for the sub-

structuring of this problem (foremost in Theorem 1).

Finally, in Subsection 2.3 we interpret this domain de-

composition for the Richards equation and note Defi-

nition 1, which gives sense to a Signorini-type problem
for the Richards equation in a heterogeneous setting.

2.1 Global problem and notation

The setting that we want to consider is given by a de-
composition of a bounded open Lipschitz domain Ω ⊂
R

d into two non-overlapping open and nonempty sub-

domains Ω1 and Ω2 (i.e. Ω1∪Ω2 = Ω and Ω1∩Ω2 = ∅)
with the interface

Γ := Ω1 ∩Ω2.

As in [26, p. 6] we assume that Γ is a (d− 1)-dimension-

al Lipschitz manifold so that common results on trace

spaces (see [26, p. 339/340] and [11, pp. 1.56–1.65]) are
applicable. In addition, both Ω1 and Ω2 are assumed

to have Lipschitz boundaries. Figure 1 displays such

a situation for d = 2, which in case of the Richards

equation can be interpreted as two horizontal layers of

different soil types.

n

Γ
Ω1

Ω2

Fig. 1 2D-domain Ω decomposed into two subdomains

As already stated in the introduction, many of our
considerations here are motivated by and generaliza-

tions of the corresponding theory presented in Quar-

teroni and Valli [26] for the linear case. However, since

we consider weak formulations of Signorini-type prob-

lems, that involve nonlinearities and convex sets in Sob-
olev spaces rather than the full spaces, our notation

needs to be different. We use the notation in [26] wher-

ever it is appropriate, for example, we often abbreviate

the “restriction” of a p ∈ H1(Ω) to Σ ⊂ ∂Ω by p|Σ
where more precisely the trace trΣ p with the trace op-

erator trΣ : H1(Ω) → H1/2(Σ) is meant. Moreover, for

different domains and i ∈ N we denote H1-norms by

‖v‖1,Ω := ‖v‖H1(Ω) ∀v ∈ H1(Ω)

and

‖vi‖1,Ωi
:= ‖vi‖H1(Ωi) ∀vi ∈ H1(Ωi) .

Finally, for Lipschitz submanifolds γ ⊂ ∂Ω we also need

the space

H1
γ(Ω) := {v ∈ H1(Ω) : v|γ = 0}

incorporating homogeneous Dirichlet boundary condi-

tions (analogously for Ωi, i = 1, 2).

We start with the homogeneous case, i.e. we assume

constant soil parameters on the whole domain Ω which

lead to globally space-independent nonlinearities θ(·)
and kr(·). For simplicity, we set n = Kh = 1 from now
on. Moreover, we consider a time discretization of (1)

which is implicit except for the gravitational part of (2)

in z-direction which we treat explicitly. Concretely, with

a time step τ > 0, a known physical pressure p̃ ∈ H1(Ω)

from the previous time step and the definition ez := ∇z
we obtain

θ(p) − θ(p̃)

τ
+ div ṽ = 0 (3)

as the semi-discrete version of (1) in which the time-

discretized water flux ṽ is given by

ṽ(p) = −kr(θ(p))∇p + kr(θ(p̃))ez . (4)

Now, given a decomposition of ∂Ω into non-overlapping

Lipschitz manifolds γD, γN and γS and suitable pD ∈
H1/2(γD) as well as fN ∈ L2(γN ) we impose the bound-

ary conditions

p = pD on γD (5)

ṽ · n = fN on γN (6)

p ≤ 0 , ṽ · n ≥ 0 , p · (ṽ · n) = 0 on γS (7)

for the spatial problem (3), (4). Here, n is the outward

normal of Ω on its boundary. The conditions on ṽ are

completely analogous to the ones imposed on v in the
continuous case [10].

Condition (7) is an outflow condition which occurs

e.g. at seepage faces around lakes where water might

flow out of the soil (ṽ · n > 0, in which case we have

p = 0) but not into it, and where the water is at most at

atmospheric pressure p = 0. Mathematically, this con-
dition is the same as the Signorini boundary conditions

for obstacle problems (compare e.g. [19]). Therefore, we

call it a Signorini-type boundary condition here, and we

refer to problems containing them as problems of Sig-
norini’s type. Observe that if γD∪γS 6= ∅ this condition

restricts the admissible set of Dirichlet values pD.

Now, with the convex set

K0 := {v ∈ H1(Ω) : v|γD
= pD ∧ v|γS

≤ 0}
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we consider the variational inequality

p ∈ K0 :
∫

Ω

θ(p) (v − p) dx+ τ

∫

Ω

kr(θ(p))∇p∇(v − p) dx ≥

∫

Ω

θ(p̃) (v − p) dx+ τ

∫

Ω

kr(θ(p̃))ez∇(v − p) dx

∀v ∈ K0 . (8)

Setting fN(t) = 0 for simplicity it is not hard to see

that (8) is a weak formulation for the time-discretized

Richards equation (3), (4) with boundary conditions
(5)–(7). For further justification and discussion we refer

the reader to [7, Prop. 1.5.3].

For notational reasons and in order to make clear

that only the general form of this variational inequality

is of importance we introduce the following abbrevia-

tions. We begin by setting

ã(p, v − p) :=
∫

Ω

θ(p) (v − p) dx+ τ

∫

Ω

kr(θ(p))∇p∇(v − p) dx

and

ℓ(v − p) :=
∫

Ω

θ(p̃) (v − p) dx+ τ

∫

Ω

kr(θ(p̃))ez∇(v − p) dx

for all v ∈ K0 with the solution p ∈ K0 in (8) if it

exists. However, rather than this special definition, it

turns out that the following properties of ã(·, ·) and

ℓ(·) are essential. We assume that ã(·, ·) is a form on
(H1(Ω))2 which may be nonlinear in the first but has

to be linear in the second entry, while ℓ(·) is a linear

form on H1(Ω). Analogously, we introduce the convex

sets

Ki := {v ∈ H1(Ωi) : v|γDi
= pD|γDi

∧ v|γSi
≤ 0}

as well as the forms

ãi(pi, vi − pi) :=
∫

Ωi

θ(pi) (vi−pi) dx+ τ

∫

Ωi

kr(θ(pi))∇pi ∇(vi−pi) dx

and

ℓi(vi − pi) :=
∫

Ωi

θ(p̃i) (vi − pi) dx+ τ

∫

Ω

kr(θ(p̃i))ez∇(vi − pi) dx

for all vi ∈ Ki with pi ∈ Ki and given p̃i := p̃|Ωi
for

i = 1, 2, which correspond to the subdomains Ω1 and

Ω2. Here we have used the definitions γDi
:= ∂Ωi ∩ γD

and γSi
:= ∂Ωi ∩ γS .

We also need to introduce convex sets with pre-

scribed Dirichlet values on the interface which we define

as

K
pj

i := {v ∈ Ki : v|Γ = pj|Γ }

for pj ∈ Kj and i, j ∈ {1, 2}. In addition, we introduce

the convex set of traces

Λ0 := {η ∈ H1/2(Γ ) : η = v|Γ for a v ∈ K0}

and its translated copy

Λ̃ : = Λ0 − p|Γ

= {η ∈ H1/2(Γ ) : η = v|Γ for a v ∈ K0 − p} .

with a p ∈ K0 (which will later be the assumed solution

of (8)). We refer to Lemma 1 to make sure that traces

of H1(Ω)-functions in the interior of Ω are well defined.

With respect to the setting for the Poisson problem

considered in [26, p. 6] we note that our convex sets
degenerate and fit into that setting if we only have ho-

mogeneous Dirichlet values imposed on ∂Ω. More con-

cretely, for i = 1, 2 we obtain the spaces

K0 = H1
0 (Ω)

Ki = {v ∈ H1(Ωi) : vi|∂Ω∩∂Ωi
= 0}

Kpi

i − pi = H1
0 (Ωi)

Λ0 = Λ̃ = {η ∈ H1/2(Γ ) : η = v|Γ for a v ∈ H1
0 (Ω)}

in this case. We recall that the latter trace space is

H1/2(Γ ) for Γ ∩ ∂Ω = ∅ and H
1/2
00 (Γ ) if Γ ∩ ∂Ω 6= ∅

which is the case we mostly consider here (compare [11,

pp. 1.60] and [26, pp. 6/7]). Obviously, the structure of

Λ̃ is more delicate in our general case since here we can

only guarantee that Λ̃ is a convex subset of H1/2(Γ ).

For our equivalence result (Theorem 1), however, we
need the vector space structure of Λ̃ which we cannot

expect if Γ ∩ γS 6= ∅.

2.2 Substructuring equivalence result in a

homogeneous setting

We start with a result which guarantees that Λ̃ is a

vector space.

Proposition 1 We assume Γ ∩ γS = ∅. Then Λ̃ is a
subspace of H1/2(Γ ) with the property

Λ̃ = {η ∈ H1/2(Γ ) : η = v|Γ for a v ∈ H1
γD∪γS

(Ω)} ,

(9)
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i.e. containing H
1/2
00 (Γ ). If, in addition, Γ∩γN = ∅ and

Γ ∩∂Ω 6= ∅, or Γ ∩γD = ∅, then we have Λ̃ = H
1/2
00 (Γ ),

or Λ̃ = H1/2(Γ ), respectively. In the general case Λ̃ is

a Hilbert space with the quotient norm

‖η‖Λ̃ = inf
{

‖v‖1,Ω : v ∈ H1
γD∪γS

(Ω) ∧ η = v|Γ

}

. (10)

Moreover, with the subspace

H̃1
γDi

∪γSi
(Ωi) := {v ∈ H1

γDi
∪γSi

(Ωi) : vi|Γ ∈ Λ̃}

of the Hilbert space H1
γDi

∪γSi
(Ωi) the trace operator

trΓ : H1
γD∪γS

(Ω) → Λ̃ (11)

induces continuous linear trace operators

trΓ,i : H̃1
γDi

∪γSi
(Ωi) → Λ̃ , i = 1, 2 ,

for which, in addition, continuous linear extension op-
erators

Ri : Λ̃→ H1
γDi

∪γSi
(Ωi) , i = 1, 2 , (12)

with trΓ,iRiη = η for all η ∈ Λ̃ exist.

Proof In order to see “⊃” in (9) observe that v + p ∈
K0 for p ∈ K0 and any v ∈ H1

γD∪γS
(Ω). Conversely,

since we have dist(Γ, γS) > 0 or γS = ∅ there are open

neighbourhoods OΓ and OγS
of Γ and γS , respectively,

with OΓ ∩ OγS
= ∅ and an open ball B ⊂ R

d with

OΓ ∪OγS
∪Ω ⊂ B. It is well known that there is a ϕ ∈

C∞
0 (B) with a range in [0, 1] satisfying ϕ|OγS

= 0 and

ϕ|OΓ
= 1, consult e.g. [20, p. 277]. Let η ∈ Λ̃ and v ∈ K0

with v|Γ = η. Then one can check with the Leibniz rule

(compare e.g. [1, p. 21]) and ϕ|Ω ∈W 1,∞(Ω) that ϕv ∈
H1

γD∪γS
(Ω) holds. Moreover, we have (ϕv)|Γ = v|Γ = η.

In particular, (9) entails Λ̃ ⊃ H
1/2
00 (Γ ). Note that the

arguments can also be applied to the case γS = ∅.

If, in addition, Γ ∩ γN = ∅, then we can replace

H1
γD∪γS

(Ω) by H1
0 (Ω) in (9) and obtain Λ̃ = H

1/2
00 (Γ )

due to Γ∩∂Ω 6= ∅. This can be seen in the same manner

as above: If, now, OΓ and OγN
are chosen analogously

as OΓ and OγS
before, and a function ϕ ∈ C∞

0 (B)
with ϕ|OγN

= 0 and ϕ|OΓ
= 1 is at hand, then for

any v ∈ H1
γD∪γS

(Ω) the function ϕv ∈ H1
0 (Ω) satisfies

(ϕv)|Γ = v|Γ .

If, instead, we have Γ ∩ γD = ∅, then we can re-
place H1

γD∪γS
(Ω) by H1(Ω) in (9). Now we choose OΓ

and OγD∪γS
analogously as OΓ and OγS

above and a

ϕ ∈ C∞
0 (B) with ϕ|OγD∪γS

= 0 and ϕ|OΓ
= 1. As a con-

sequence, for any v ∈ H1(Ω) we have ϕv ∈ H1
γD∪γS

(Ω)

and (ϕv)|Γ = v|Γ .

With regard to the general case it is easily checked

that the quotient norm in (10) is indeed a norm (com-

pare [31, p. 34]). With this norm, trΓ in (11) is a quo-

tient map and therefore Λ̃ is isometrically isomorphic to

the quotient H1
γD∪γS

(Ω)/ ker(trΓ ), see [31, pp. 54, 56].
Since H1

γD∪γS
(Ω) is a Hilbert space we have the canon-

ical representation H1
γD∪γS

(Ω) = ker(trΓ ) ⊕ ker(trΓ )⊥

in which ker(trΓ )⊥ is the orthogonal complement of the

(closed) kernel ker(trΓ ), see [31, p. 221]. Therefore, we
can conclude the isometric isomorphisms

ker(trΓ )⊥ ∼= H1
γD∪γS

(Ω)/ ker(trΓ ) ∼= Λ̃

in which trΓ induces the isomorphism ker(trΓ )⊥ ∼= Λ̃.

In particular, Λ̃ is a Hilbert space. The inverse

R : Λ̃→ ker(trΓ )⊥ ⊂ H1
γD∪γS

(Ω)

of trΓ restricted to ker(trΓ )⊥ is a continuous linear map

with the property trΓRη = η for all η ∈ Λ̃. The defini-
tion Riη := (Rη)|Ωi

for all η ∈ Λ̃ and i = 1, 2 provides

continuous linear operators (12) with the properties

‖Riη‖1,Ωi
≤ ‖Rη‖1,Ω = ‖η‖Λ̃ ∀η ∈ Λ̃

and (with a glance at Lemma 1) trΓ,iRiη = trΓRη = η

as required. ⊓⊔

Observe that for the existence of the extension op-

erators Ri, i = 1, 2, we needed to use the Hilbert space
structure of H1

γDi
∪γSi

(Ωi), in particular the existence

of an orthogonal complement of ker(trΓ ). In contrast, a

closed subspace in a general Sobolev spaceW 1,p
γDi

∪γSi
(Ω)

for p ≥ 1 and p 6= 2 does not necessarily have a comple-

mented subspace inW 1,p
γDi

∪γSi
(Ω), see [31, pp. 162, 248].

In such a case one would be forced to define extension

operators as in (12) or, equivalently, projections from

W 1,p
γDi

∪γSi
(Ω) on ker(trΓ ) more explicitly. Concerning

this question, which becomes relevant for correspond-
ing generalizations of our main result in Theorem 1, we

refer to Lions and Magenes [23, pp. 19–23, 38–43].

Remark 1 We suppose that (9) is still true if at least
Γ ∩ γS ⊂ Γ ∩ γD holds. Furthermore, although one

might be used to definitions of trace spaces as collec-

tions of traces from functions in another Sobolev space

(compare e.g. [11, p. 1.60]), we recall that the space

H
1/2
00 (Γ ) is also intrinsically definable (see [26, p. 7])

and thus only dependent on Γ . Considering this, it

becomes plausible that Λ̃ = H
1/2
00 (Γ ) holds whenever

Γ ∩ γD = Γ ∩ ∂Ω is satisfied (clearly, at least if we

have Γ ∪ γD ⊂ ∂Ω̃ with some Lipschitz domain Ω̃). In
case of (Γ ∩ γS)\γD 6= ∅, however, it seems that Λ̃ is

no longer a vector space. Then there are no extension

operators as in (12), either, see Proposition 2.
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Although the following property of Sobolev func-

tions is elementary, we note it here since it is crucial for

any substructuring in H1(Ω).

Lemma 1 If p ∈ H1(Ω), then we have pi := p|Ωi
∈

H1(Ωi) for i = 1, 2 and p1|Γ = p2|Γ . Conversely, if

pi ∈ H1(Ωi) for i = 1, 2 and p1|Γ = p2|Γ holds, then

p :=

{

p1 on Ω1

p2 on Ω2

(13)

is contained in H1(Ω).

Proof The first assertion is easy to see by considering a

sequence of functions (ϕn)n∈N ⊂ C∞(Ω) converging to

p in H1(Ω) and observing that their restrictions to Ωi

or to Γ converge to pi or to pi|Γ , respectively, for i = 1, 2
in the corresponding norms. Conversely, to see that p as

defined by (13) is weakly differentiable we apply partial

integration (see e.g. [26, p. 340]) in H1(Ωi) to the weak

derivatives of pi for i = 1, 2 tested with test functions in

C∞
0 (Ω) and observe that the contributions on Γ cancel

each other due to p1|Γ = p2|Γ . ⊓⊔

We can now prove the main result of this section

which is a generalization of Lemma 1.2.1 in Quarteroni

and Valli [26] to problems of Signorini’s type for non-

linear equations. Recall that extension operators are

defined as right inverses to corresponding trace maps.

Theorem 1 Let Γ∩γS = ∅. Then the variational prob-
lem (8) which in short reads

p ∈ K0 : ã(p, v − p) − ℓ(v − p) ≥ 0 ∀v ∈ K0 (14)

can be equivalently reformulated as: Find p1 ∈ K1 and

p2 ∈ K2 such that

ã1(p1, v1 − p1) − ℓ1(v1 − p1) ≥ 0 ∀v1 ∈ Kp1

1 (15)

p1 = p2 on Γ (16)

ã2(p2, v2 − p2) − ℓ2(v2 − p2) ≥ 0 ∀v2 ∈ Kp2

2 (17)

ã2(p2, R2µ) =

ℓ2(R2µ) + ℓ1(R1µ) − ã1(p1, R1µ) ∀µ ∈ Λ̃ (18)

where Ri denotes any possible extension operator from

Λ̃ to H1
γDi

∪γSi
(Ωi) for i = 1, 2.

Note that Ri, i = 1, 2, exist and can be chosen as the

continuous linear extension operators given by Propo-
sition 1.

Proof First let p be a solution of (14). Then we have

pi := p|Ωi
∈ Ki for i = 1, 2 and (16) due to Lemma 1.

Let v1 ∈ Kp1

1 . Since (16) holds, the function

v :=

{

v1 on Ω1

p2 on Ω2

is contained in K0 (by Lemma 1), and (15) follows

from (14). Analogously, we obtain (17). Now, for each

µ ∈ Λ̃ the function Rµ defined by

Rµ :=

{

R1µ on Ω1

R2µ on Ω2

(19)

belongs to H1
γD∪γS

(Ω) due to Lemma 1 and we have

±Rµ+ p ∈ K0. The variational inequality (14) applied

to both v = Rµ + p ∈ K0 and v = −Rµ + p ∈ K0

provides (18).
Conversely, let pi ∈ Kpi

i , i = 1, 2, be solutions of

(15)–(18). Setting

p :=

{

p1 on Ω1

p2 on Ω2

we obtain p ∈ K0 due to (16), the definitions of Kpi

i

and Lemma 1. Choosing a v ∈ K0 we set µ := v|Γ
and λ := p|Γ and obtain µ − λ ∈ Λ̃ by definition of Λ̃.

Defining R(µ− λ) according to (19) we see that

vi := v|Ωi
−Ri(µ− λ) ∈ Kpi

i , i = 1, 2 ,

holds. Now, (15), (17) and (18) entail

ã(p, v − p) − ℓ(v − p)

=

2
∑

i=1

ãi(pi, v|Ωi
− pi) − ℓi(v|Ωi

− pi)

=

2
∑

i=1

(

ãi(pi, vi − pi) − ℓi(vi − pi)

+ ãi(pi, Ri(µ− λ)) − ℓi(Ri(µ− λ))
)

≥ 0

as required. ⊓⊔

Remark 2 We point out that it seems unrealistic to gen-
eralize Theorem 1 in a satisfying way to situations in

which Γ and γS have a nonempty intersection (and thus

Λ̃ is in general no longer a vector space). Observe that

for the second part of the proof we need extension op-
erators

Ri : Λ̃→ Ki −Kpi

i ⊂ H1
γDi

(Ωi) , i = 1, 2 , (20)

not necessarily linear or continuous, with the property

(v −R(v|Γ − p|Γ ))|γS
≤ 0 ∀v ∈ K0 (21)

(with R as in (19)) and for which (18) is satisfied with

“≥” instead of “=”. Indeed, with this modified con-

dition (18) we obtain equivalence — if such extension
operators exist. However, we have the following propo-

sition, in which the second assertion presumably also

holds in all cases where the intersection of Γ and γS

leads to a Λ̃ without a vector space structure.
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Proposition 2 Let p ∈ K0 and R : Λ̃ → H1
γD

(Ω) be

some (not necessarily linear or continuous) extension

operator, i.e. trΓRµ = µ for all µ ∈ Λ̃. In addition,

assume with (19) that R satisfies (20) and (21). Then

we have

R : Λ̃→ {v ∈ H1
γD

(Ω) : v|γS
≥ 0} . (22)

In particular, if (Γ ∩ γS)\γD 6= ∅ holds, then such a

map R does not exist.

Proof Without loss of generality we start by assuming
p = 0. Then (21) reads

v|γS
≤ (R(v|Γ ))|γS

∀v ∈ K0 . (23)

The following construction can be carried out as in the

proof of Proposition 1. Assuming that γS is open in

the relative topology of ∂Ω, we consider neighbour-
hoods On ⊂ R

d of γS\γS and neighbourhoods Un of

Γ for n ∈ N with Lebesgue measure |On|, |Un| → 0

for n→ ∞. Now, for any η ∈ Λ̃ it is possible to con-

struct a sequence of functions (vn)n∈N ⊂ K0 that sat-
isfy vn|Γ = η and vn|γS\(On∪Un) = 0 for all n ∈ N.

Now, it follows from (23) that (Rη)|γS
≥ 0 holds for all

η ∈ Λ̃. This proves the first assertion (22) of Proposi-

tion 2, which can analogously be obtained for arbitrary

p ∈ K0.

Consequently, Λ̃ is contained in

trΓ

(

{v ∈ H1
γD

(Ω) : v|γS
≥ 0}

)

.

However, by definition, Λ̃ is the set

trΓ

(

{v ∈ H1
γD

(Ω) : (v − p)|γS
≤ 0}

)

.

This leads to a contradiction if γ := (Γ ∩ γS)\γD 6= ∅.
Indeed, we can pick a point x ∈ γ, a neighbourhood Ux

of this point and a function η ∈ Λ̃ satisfying η ≤ −1

in Ux ∩ Γ where η̃ := (Rη)|γS
≥ 0 holds although we

have η = v|Γ and η̃ = v|γS
for a v ∈ H1

γD
(Ω). As a con-

sequence trΓ∪γS
v ∈ H1/2(Γ ∪ γS) has a discontinuity

of first order in x. This, however, cannot be the case

for H1/2-functions, for which the Sobolev–Slobodeckij–
norm has to be finite (see e.g. [1, p. 214]) ⊓⊔

Remark 3 Although our considerations in Remark 2

lead to the non-existence result in Proposition 2 they

still contain a positive message for the discrete setting.
If we discretize the problems (14) and (15)–(18) appro-

priately with finite elements (see e.g. [7, Sec. 2.5]), then

Theorem 1 and Remark 2 can be established accord-

ingly in the discrete setting. Now, however, the prop-
erties (20) and (21) are satisfied if we consider R to

be the trivial extension, setting Rµ as 0 on the nodes

in Ω\Γ while respecting the Dirichlet values. In this

case we also obtain an equivalence between the dis-

cretized version of (14) and the discretized versions of

(15)–(18), where “=” is replaced by “≥” in the dis-

cretization of (18).

2.3 Domain decomposition for the

Richards equation in heterogeneous soil

As far as the interpretation of the interface conditions is

concerned, it is clear that (16) indicates the continuity
of the pressure p across the interface Γ . Furthermore,

with the help of Green’s formula (see [11, p. 1.65]) one

can easily verify that (18) is the weak formulation for

the continuity of the implicit-explicitly time-discretized

flux

−
(

kr(θ(p1))∇p1 − kr(θ(p̃1))ez

)

· n =

−
(

kr(θ(p2))∇p2 − kr(θ(p̃2))ez

)

· n on Γ (24)

corresponding to the implicit-explicitly time-discretized

Richards equation (3), (4). Here, we adapt to the usual

convention that n is the outward normal of the subdo-

main Ω1 (see Figure 1 and compare [26, pp. 1/2]).
We remark that one can also establish Theorem 1

for the variational form of the Richards equation (1),

(2) before time discretization. Then, we have pi = p̃i

for i = 1, 2 in (24), and the strong form of (18) is just

the continuity of the water flux (2) at the time t.
Now we turn to the case of heterogeneous soil, i.e. to

the case of possibly different parameter functions θ1(·)
and kr1(·) in Ω1, and θ2(·) and kr2(·) in Ω2. In anal-

ogy to the common term jumping coefficients we refer
to this situation as jumping nonlinearities (see [7]). We

assume that ãi(·, ·) and ℓi(·), i = 1, 2, are defined ac-

cording to Subsection 2.1. With these ingredients one

can also define ã(·, ·) and ℓ(·) on Ω and give sense to

the corresponding variational inequality (14).
However, our solution theory for the Richards equa-

tion in homogeneous soil (compare [7, Ch. 4] or [10])

cannot be applied in this heterogeneous setting since

the Kirchhoff transformation does not lead to a mini-
mization problem if applied globally on Ω. Therefore,

we turn to the corresponding substructuring problem

(15)–(18) for which arising local Dirichlet, Neumann

and Robin problems turn out to be uniquely solvable

after suitable (domain-dependent) Kirchhoff transfor-
mations in the subdomains. The interface conditions

discussed above also seem hydrologically justified. Con-

tinuity of the (time-discretized) water flux represents

the mass conservation whereas continuity of the physi-
cal pressure (16) is assumed in several standard models

[17]. (See [18] for cases with discontinuity which could

in principle also be considered here.) Therefore, we note
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Definition 1 Let Γ ∩γS = ∅ and θi(·), kri(·), i = 1, 2,

be given (possibly different) parameter functions on Ωi.

Let ãi(·, ·), ℓi(·), i = 1, 2, be defined with these func-

tions according to Subsection 2.1. We call a function p

defined a.e. on Ω with pi := p|Ωi
, i = 1, 2, a weak so-

lution of the corresponding Signorini-type problem for

the Richards equation in heterogeneous soil on Ω if we

have p1 ∈ K1 and p2 ∈ K2 such that

ã1(p1, v1 − p1) − ℓ1(v1 − p1) ≥ 0 ∀v1 ∈ Kp1

1 (25)

p1 = p2 on Γ (26)

ã2(p2, v2 − p2) − ℓ2(v2 − p2) ≥ 0 ∀v2 ∈ Kp2

2 (27)

ã2(p2, R2µ) =

ℓ2(R2µ) + ℓ1(R1µ) − ã1(p1, R1µ) ∀µ ∈ Λ̃ (28)

where Ri denotes any possible extension operator from

Λ̃ to H1
γDi

∪γSi
(Ωi) for i = 1, 2.

As usual, for more than two subdomains, one con-

siders convex problems for each subdomain and imposes

continuity of the pressure and the (time-discretized)

water flux on each interface.

3 Solution of the Richards equation in

heterogeneous soil

This section is devoted to the question of how the do-

main decomposition problem for the Richards equa-
tion in heterogeneous soil as given in Definition 1 can

be solved. To this end, we first introduce nonlinear

Dirichlet–Neumann and Robin schemes in Subsection

3.1. These address the treatment of the heterogeneity.

Then, in Subsection 3.2, we make clear that the lo-
cal Robin problems (33) and (34) for the homogeneous

Richards equation are associated to convex minimiza-

tion problems which are uniquely solvable under reason-

able assumptions on the parameter functions. Finally,
in Subsection 3.3, we introduce the finite element dis-

cretization of these problems and make clear that the

monotone multigrid method can be applied to the dis-

crete problems.

3.1 Dirichlet–Neumann and Robin schemes for the

domain decomposition problem

As in the linear case in [26, p. 7], the subproblems (25)

and (27) are underdetermined because of lacking bound-

ary values for pi, i = 1, 2, on Γ . If these problems in-
volve nonempty Signorini-type boundaries, then even

the convex sets of test functions Kpi

i are unknown a

priori. This is not the case if γSi
= ∅ since then Kpi

i −

pi = H1
0 (Ωi) is a vector space. Nevertheless, in order

to tackle the domain decomposition problem (25)–(28)

analytically or numerically, it is essential to formulate

uniquely solvable local subproblems.

As in the linear case this can be done by establishing
iterative schemes with the help of the Dirichlet inter-

face condition (26) and the Neumann interface condi-

tion (28). Given an iterate pk
2 ∈ K2 for a k ≥ 0, one can

compute an iterate pk+1
1 ∈ K1 by solving the variational

inequality

pk+1
1 ∈ K

pk
2

1 : ã1(p
k+1
1 , v1 − pk+1

1 ) − ℓ1(v1 − pk+1
1 ) ≥ 0

∀v1 ∈ K
pk
2

1 (29)

imposing the Dirichlet condition pk+1
1 = pk

2 on Γ in-

duced by (26). Unique solvability of this problem is

extensively discussed in [7, Th. 1.5.18, 2.3.16]. On the

other hand, given pk+1
1 ∈ K1, one can obtain p̃k+1

2 ∈ K2

by solving the variational inequality

p̃k+1
2 ∈ K2 : ã2(p̃

k+1
2 , ṽ2 − p̃k+1

2 ) − ℓ2(ṽ2 − p̃k+1
2 )

−
(

ℓ1(R1(ṽ2 − p̃k+1
2 )|Γ ) − ã1(p

k+1
1 , R1(ṽ2 − p̃k+1

2 )|Γ )
)

≥ 0 ∀ṽ2 ∈ K2 (30)

into which the weak form (28) of the Neumann condi-

tion (24) (with p1 and p2 replaced by pk+1
1 and p̃k+1

2 ,

respectively, and kr, θ indexed accordingly) has been in-

serted. To see this we first assume that (30) is uniquely

solvable (see again [7, Th. 1.5.18, 2.3.16] for suitable
conditions). Now, for any ṽ2 ∈ K2 we consider the trace

function

µ := (ṽ2 − p̃k+1
2 )|Γ ∈ Λ0 − p̃k+1

2|Γ

and

v2 := ṽ2 −R2µ ∈ K
p̃k+1

2

2 .

Then, with these functions, adding (27) and (28) leads

to (30).

In order to obtain a reasonable iterative procedure

by (29) and (30) for k ≥ 0, we need an initial guess p0
2

and additional damping, i.e. for a ϑ ∈ (0, 1) we replace

the intermediate iterate p̃k+1
2 by

pk+1
2 = ϑ p̃k+1

2 + (1 − ϑ) pk
2 (31)

before carrying out (29) for the next iterate. The damp-

ing is necessary even in the linear case in order to get

convergence (see [26, p. 12]). Now, with the initial iter-
ate p0

2 the scheme (29)–(31), k ≥ 0, provides a damped

nonlinear Dirichlet–Neumann method in a weak formu-

lation applied to the Signorini-type problem (25)–(28)
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for the time-discretized Richards equation. We have in-

dicated a convergence proof for this method applied to

a stationary case in 1D and given a numerical example

for the applicability of the method in 2D in [9].

It is also possible to combine the two interface con-
ditions (26) and (28) in order to obtain convex sub-

problems with Robin boundary conditions on Γ . In our

setting, given non-negative γ1 and γ2 with γ1 + γ2 > 0,

this approach seeks to realize the interface conditions

τ
(

kr1(θ1(p1))∇p1−kr1(θ1(p̃1))ez

)

·n+(−1)i+1γi p1 =

τ
(

kr2(θ2(p2))∇p2−kr2(θ2(p̃2))ez

)

·n+(−1)i+1γi p2

(32)

on Γ , i = 1, 2, for the fixed point

p =

{

p1 on Ω1

p2 on Ω2

of a corresponding iterative procedure (compare [26,

p. 16]). In the following we present such a nonlinear

Robin method for the Signorini-type problem (25)–(28)

in a weak formulation. For this purpose we abbreviate

the L2-scalar product on Γ as

(η, µ)Γ :=

∫

Γ

ηµ dσ ∀η, µ ∈ L2(Γ )

and also write

(v, w)Γ := (trΓ v, trΓw)Γ ∀v, w ∈ H1(Ωi) , i = 1, 2 .

Now, given an initial iterate p0
2 on Ω2 the Robin method

reads as follows. For k ≥ 0 solve successively the sub-

problems

pk+1
1 ∈ K1 :

ã1(p
k+1
1 , ṽ1−p

k+1
1 )−ℓ1(ṽ1−p

k+1
1 )+γ1(p

k+1
1 , ṽ1−p

k+1
1 )Γ

+ ã2(p
k
2 , R2(ṽ1 − pk+1

1 )|Γ ) − ℓ2(R2(ṽ1 − pk+1
1 )|Γ )

− γ1(p
k
2 , v1 − pk+1

1 )Γ ≥ 0 ∀ṽ1 ∈ K1 , (33)

pk+1
2 ∈ K2 :

ã2(p
k+1
2 , ṽ2−p

k+1
2 )−ℓ2(ṽ2−p

k+1
2 )+γ2(p

k+1
2 , ṽ2−p

k+1
2 )Γ

+ ã1(p
k+1
1 , R1(ṽ2 − pk+1

2 )|Γ ) − ℓ1(R1(ṽ2 − pk+1
2 )|Γ )

− γ2(p
k+1
1 , ṽ2 − pk+1

2 )Γ ≥ 0 ∀ṽ2 ∈ K2 . (34)

Just as the Dirichlet and Neumann problems (29) and

(30) these Robin subproblems for the Richards equa-

tion in homogeneous soil are also related to convex
minimization problems which are uniquely solvable un-

der natural conditions. In the next subsection we will

address this topic in more detail and provide a nu-

merical example which involves the Robin method for
the Richards equation in heterogeneous soil. Analytic

convergence results will be presented in a forthcoming

paper [8].

3.2 Homogeneous problem of Signorini’s type with

Robin boundary conditions

In Section 2.1 we have considered boundary value prob-

lems for the implicit-explicitly time-discretized Richards

equation (8) in which Dirichlet, Neumann and Signorini-

type boundary conditions (5)–(7) can be contained. In
(33) and (34) these problems have been generalized by

incorporating Robin boundary conditions, which (we

drop the indices k and k + 1 from now on) assign a

certain value to

τ
(

kri(θi(pi))∇pi

)

· n + (−1)i+1γi pi on Γ , i = 1, 2 .

With the discrete water fluxes

ṽi := −kri(θi(pi))∇pi + kri(θi(p̃i))ez

on Ωi, i = 1, 2, this is equivalent to assigning a value
to the linear combinations

−τ ṽi · n + (−1)i+1γi pi on Γ , i = 1, 2 .

Kirchhoff’s transformation for (8)

In [7, Ch. 1, 2] and [10] problems of the kind (8) have
been analysed extensively. As indicated in the intro-

duction, the basic approach is as follows. First, (8) is

transformed into generalized variables u on Ω by Kirch-

hoff’s transformation

κ : p 7→ u :=

∫ p

0

kr(θ(q)) dq . (35)

Concretely, we denote the transformed saturation by

M(u) := θ(κ−1(u)) ,

set the transformed Dirichlet value as uD := κ(pD)

on γD 6= ∅ as well as ũ := κ(p̃) and define the con-

vex set

K̃ := {v ∈ H1(Ω) : trγD
v = uD ∧ trγS

v ≤ 0} . (36)

Now, by the chain rule, the transformed variational in-

equality (8) is no longer quasilinear but semilinear and
reads

u ∈ K̃ :

∫

Ω

M(u) (v − u) dx+ τ

∫

Ω

∇u∇(v − u) dx ≥

∫

Ω

M(ũ) (v − u) dx+ τ

∫

Ω

kr(M(ũ))ez∇(v − u) dx

∀v ∈ K̃ . (37)

In the following we assume θ, kr to be Borelfunctions

with kr satisfying

c ≤ kr(·) ≤ 1 (38)
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for some c > 0. Then the Kirchhoff transformation

κ : R → R is monotonically increasing, Lipschitz con-

tinuous, has a Lipschitz continuous inverse, i.e. κ and

κ−1 induce continuous superposition operators acting

on H1(Ω), consult [24, 25]. Due to (35) and (38) we
also have

K̃ − u ⊂ K0 − p (39)

and

trγS(t) p(t) ≤ 0 =⇒ trγS(t) u(t) ≤ 0 .

Note that we have equality in (39) if γS = ∅ holds.

Altogether, with these ingredients one can prove the

following result, see [7, Thm. 1.5.18].

Proposition 3 With the definitions and assumptions

above, every solution p of (8) gives a solution u = κ(p)

of (37). Furthermore, we have equivalence of (8) and
(37) in case of γS = ∅ .

Convex minimization for (8)

Now, we assume additionally that M : R → R is mono-

tonically increasing, continuous and bounded (which

by (38) is equivalent to imposing the same conditions

on θ(·)). Then (37) turns out to be equivalent to a con-
vex minimization problem which is uniquely solvable,

see [7, Thm. 2.3.16]. More concretely, we define the co-

ercive and continuous bilinear form

a(u, v) := τ

∫

Ω

∇u∇v dx ∀u, v ∈ K̃

and the continuous linear form

ℓ(v) :=

∫

Ω

M(ũ) v dx+ τ

∫

Ω

kr(M(ũ))ez∇v dx

for v ∈ H1(Ω) as well as the convex functionals

J (v) :=
1

2
a(v, v) − ℓ(v) ∀v ∈ H1(Ω) (40)

and

φ(v) :=

∫

Ω

Φ(v(x)) dx ∀v ∈ K̃ , (41)

the latter with a (convex) primitive Φ : R → R of M .
Then we have

Proposition 4 With the preceeding definitions and as-

sumptions, the variational inequality (37) is equivalent
to the uniquely solvable convex minimization problem

u ∈ K̃ : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ K̃ . (42)

Kirchhoff’s transformation for (33) and (34)

Now we turn to the Signorini-type problems (33) and

(34) with additional Robin boundary conditions. Since

these problems are symmetric we concentrate on (33)

and skip the indices k and k+ 1 for convenience. From
now on we must assume that the extension operator

R2 : Λ̃→ H1
γD2

∪γS2
(Ω2) is linear and continuous .

Then, by linearity and continuity of the trace operator

trΓ : H1(Ω1) → H1/2(Γ ), the contributions coming

from all summands in (33) except for

ã1(p1, ṽ1 − p1) and γ1(p1, ṽ1 − p1)Γ

provide a continuous linear form on H1(Ω1) applied

to ṽ1 − p1.

On the other hand, by definition of ã1(·, ·) in Sec-

tion 2.1 the contribution of this term in (33) has exactly

the same structure as the right hand side in (37) if a lo-

cal Kirchhoff transformation κ1 (coming from kr1(θ1(·))
in (35)) is applied to this subproblem on Ω1.

Altogether, apart from the summand

γ1(p1, ṽ1 − p1)Γ ∀ṽ1 ∈ K1

the variational inequality is related to a convex mini-
mization problem like (42). In an untransformed version

such a summand provides an additional coercive and

continuous bilinear form in the problem, thus guaran-

teeing its unique solvability. Here, we have to deal with
the transformed counterpart

γ1(κ
−1
1 (u1), w1)Γ ∀w1 ∈ K̃1 − u1 ⊂ K1 − p1

if we define K̃1 just as K̃ in (36) and analogously assume

(38) which entails (39) with the subscript 1. Again, with

arguments as in the proof of [7, Thm. 1.5.18], we obtain

Proposition 5 With the preceeding assumptions, if the

variational inequality (33) has a solution p1, then u1 =

κ1(p1) is a solution of its transformed version

u1 ∈ K̃1 :

∫

Ω1

M1(u1)(v1 −u1) dx+γ1(κ
−1
1 u1, v1−u1)Γ

+ a1(u1, v1 − u1) − ℓ1(v1 − u1) ≥ 0 ∀v1 ∈ K̃1 . (43)

In addition, this latter problem is equivalent to (33) if

γS1
= ∅.

Convex minimization for (33) and (34)

As above, the variational inequality (43) can be treated

by convex analysis.
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Theorem 2 Let Mi : R → R, i = 1, 2, be monotoni-

cally increasing, continuous and bounded. Furthermore,

let kri, i = 1, 2, be Borelfunctions with kri ≥ c > 0 for

some c > 0. Then the Robin subproblem (43) corre-

sponding to (33) for i = 1 as well as its counterpart
for i = 2 are equivalent to a uniquely solvable convex

minimization problems.

Proof As before we restrict ourselves to i = 1. Due to
the preliminary arguments we only need to deal with

the term γ1(κ
−1
1 u1, v1 − u1)Γ . In view of (41) we first

consider a primitive Ψ1 of κ−1
1 . Since by the assumptions

on kr1 the real function κ−1
1 is monotonically increas-

ing and Lipschitz continuous, Ψ1 is convex and differ-
entiable with

|Ψ1(z) − Ψ1(z
′)| ≤ a(|z| + |z′|) + b ∀z, z′ ∈ R (44)

for some positive a, b. Consequently, the functional ψ1

defined on K̃1 by

ψ1 : v1 7→

∫

Γ

Ψ1(trΓ v1(s)) dσ(s) ∀v1 ∈ K̃1 (45)

assumes finite values (even for all functions in L2(Γ )),

is convex and continuous and has an affine minorant

ψ1(v1) ≥ α− β ‖v1‖1,Ω1
∀v1 ∈ K̃1 (46)

with some real α, β (consult [22, Prop. 1.1, 1.5] and

use the continuity of trΓ : K̃1 → L2(Γ )). Furthermore,

the differentiability of Ψ1 entails the existence of the

directional derivative ∂v−wψ1(w) for any v, w ∈ K̃1 with

∂v−wψ1(w) =

∫

Γ

κ−1
1 (trΓw) · trΓ (v − w) dσ

= (κ−1
1 w, v − w)Γ , (47)

see e.g. [7, Prop. 2.3.9, 1.5.16].

Therefore, if we choose a convex primitive Φ1 of M1

as above, which leads to a convex and differentiable
functional φ1 on K̃1, one can verify that (43) is the

condition

∂v1−u1
F (u1) ≥ 0 ∀v1 ∈ K̃ (48)

on the directional derivatives of the convex functional

F1 : v1 7→ φ1(v1) + γ1ψ1(v1) +
1

2
a1(v1, v1) − ℓ1(v1)

∀v1 ∈ K̃1 (49)

in the point u1 ∈ K̃1 and all directions v1 − u1 with

v1 ∈ K̃1. This, however, is equivalent to u1 solving the

convex minimization problem

u1 ∈ K̃1 : F1(u1) ≤ F1(v1) ∀v1 ∈ K̃1 , (50)

compare e.g. [14, Prop. 2.1].

Now, a classical result (see e.g. [14, Prop. 1.2]) shows

that (50) is uniquely solvable. This is because the func-

tional F1 : K̃1 → R is strictly convex, coercive and

continuous. Apart from the contribution of the func-
tional ψ1 this has been discussed above. However, we

already know that ψ1 is convex and continuous. Since,

in addition, it has an affine minorant (46) just as φ1,

the coercivity of F1 is guaranteed by the coercivity of
the bilinear form a1(·, ·), compare [7, Thm. 2.3.16]. ⊓⊔

Summary and generalizations

At the end of this subsection it seems appropriate to
point out the main steps one has to take on the way

from the variational inequality (33) to the unique solv-

ability of (43) since each of them requires its own special

conditions. In particular, Theorem 2 actually embraces
two different steps.

First, the variational inequality is Kirchhoff–trans-

formed. If it has a solution p1 then u1 = κ1(p1) is a

solution of the transformed variational inequality (43)

provided that θ1, kr1 are Borelfunctions with kr1 sat-
isfying 0 ≤ kr1(·) ≤ 1. This guarantees at least that no

solution of (33) gets lost by the transformation which is

relevant on the level of physics. We note this here since

it applies to the parameter functions given by Brooks
and Corey [12, 30], even though in this case we only

have κ(R) = (uc,∞) with a uc < 0 such that M is

only defined on an interval (uc,∞). We use the Brooks–

Corey functions in our numerical example below, see

Figures (2), (3).

Conversely, a solution u1 of (43) provides a solution

p1 = κ−1
1 (u1) of (33) if we have additionally c ≤ kr1(·)

for a c > 0 and γS = ∅ which is of course a strong

restriction. Note, however, that κ−1
1 (u1)|Γ ∈ L2(Γ ) in

(43) is not guaranteed if κ−1
1 has a singularity.

Secondly, the variational inequality (43) is reformu-

lated as a convex minimization problem (50) which re-

quires to identify it as the corresponding condition (48)
on the directional derivatives of F1 in u1. In order to

achieve this, differentiation under the integral is nec-

essary, for which continuity of M1 and κ−1
1 is needed.

Here, γS 6= ∅ is allowed, kr1(·) ≤ 1 is no longer needed,

and in case of γ1 = 0 the reformulation also works for
the Brooks–Corey functions.

Thirdly, we strive for unique solvability of the con-

vex minimization problem (50), for which the continuity

condition on M1 and κ−1
1 is no longer necessary. Here,

M1 and κ−1
1 have to be monotonically increasing (so

that φ1 and ψ1 are convex) and bounded or else Hölder

continuous outside of a bounded Intervall (so that (44)
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is satisfied). Again, unique solvability is also obtained

in case of γ1 = 0 for the Brooks–Corey functions.

Finally, we remark that by above arguments one can

see how the domain decomposition problem (25)–(28)

is related to its Kirchhoff–transformed counterpart and
formulate conditions for their equivalence, even if (25)

and (27) also contain Robin boundary conditions on

subsets of ∂Ωi, i = 1, 2 (for which the Theorem 1 also

holds). See [6] for a more detailed discussion on this
topic also including a proof for the commutativity

trΓκ
−1
i ui = κ−1

i trΓui ∀ui ∈ H1(Ωi) , i = 1, 2 , (51)

which gives the equivalence

trΓ p1 = trΓ p2 ⇐⇒ κ−1
1 trΓu1 = κ−1

2 trΓu2 .

We highlight property (51) because, although we have

used it almost unnoticeable in (47), it is not straight-

forward. For example, the definition

ψ1 : v1 7→

∫

Γ

trΓΨ1(v1(s)) dσ(s) ∀v1 ∈ K̃1

instead of (45) would be meaningless since in general

Ψ1(v1) ∈ H1(Ω1) does not hold for all v1 ∈ H1(Ω1).

Indeed, this can only be guaranteed for Lipschitz con-

tinuous Ψ1 (or locally Lipschitz continuous Ψ1 in 1D),
see [24]. In this case, however, the commutativity (51)

holds.

3.3 Discretization and numerical treatment

As far as the discretization and the numerical treat-
ment of the Robin method is concerned, it is enough

to consider this with respect to one subproblem (33)

or else (34). However, since our approach aims at ex-

ploiting the convex minimization in the subdomains,

we choose a certain finite element discretization of the
transformed problem (43) instead, that preserves the

convex structure. Then the corresponding discrete prob-

lem can be solved by monotone multigrid methods. The

question what kind of discretized problem with respect
to the physical variables we actually solve with this

approach is discussed in [10]. Here, one can also find

convergence results for the discretizations that can be

extended to Robin problems.

For simplicity, if we refer to the variational inequal-
ity (43) and related terms from now on, we think of

the index 1 skipped everywhere. By setting the Robin

parameter γ = 0 we recover a Signorini-type problem

like (37). The discretization and the numerical treat-
ment of such problems is given in [10], a detailed expo-

sition can be found in [7]. In the proof of Theorem 2 we

have seen that the term induced by the Robin boundary
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Fig. 2 Brooks–Corey function p 7→ θ(p)
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Fig. 3 Brooks–Corey function θ 7→ kr(θ)

condition induces a convex functional just as the other

nonlinearity M(·) in (43). Therefore, it is natural to

treat it analogously as the latter in the discretization.

Brooks–Corey parameter functions

Before we can give the discretization in concrete terms,
we need to introduce the parameter functions since they

induce a more general setting than discussed above.

They have been introduced by Brooks–Corey [12, 30]

with results due to Burdine [13]. The functions depend

on a bubbling pressure pb < 0 and a pore size distri-
bution factor λ > 0 as the soil parameters. Concretely,

the saturation θ as a function of the pressure p is given

by

θ(p) =







θm + (θM − θm)
(

p
pb

)−λ

for p ≤ pb

θM for p ≥ pb

(52)

and the relative permeability kr as a function of the

saturation θ reads

kr(θ) =

(

θ − θm

θM − θm

)3+ 2
λ

, θ ∈ [θm, θM ] . (53)
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Fig. 4 Inverse Kirchhoff transformation u 7→ κ−1(u)
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Fig. 5 Generalized saturation u 7→ M(u)

Typical shapes of these nonlinearities are depicted in

Figures 2 and 3.

Now, in contrast to the cases considered so far, the

image κ(R) of the Kirchhoff transformation turns out

to be a strict subset (uc,∞) of R and, consequently, κ−1

and M are only defined on (uc,∞). Obviously, the crit-

ical pressure uc < 0 corresponds to p = −∞ and, there-

fore, M(uc) = θm is a sensible definition. The situation

is more extreme than before since M has unbounded
derivatives and κ−1 is ill-conditioned around uc, com-

pare Figures 4 and 5.

With these parameter functions the convex set K̃ in
(36) is replaced by

K := {v ∈ H1(Ω) : v ≥ uc ∧ trγD
v = uD ∧ trγS

v ≤ 0} .

and the first statement in Proposition 3 as well as Pro-
position 4 remain true. Although the variational in-

equality (43) for the Robin problem does no longer

make sense with this generalized convex set, its cor-

responding minimization problem (50) does and is still
uniquely solvable (since κ−1 is improperly integrable on

(uc, 0) and, therefore, Ψ is continuous in uc). This min-

imization problem shall be discretized in the following.

Finite element discretization

For simplicity, we assume that Ω ⊂ R
2 is a polygonal

domain. Let Tj , j ∈ N0, be a partition of Ω into trian-
gles t ∈ Tj with minimal diameter of order O(2−j). We

assume the triangulation Tj to be conform, i.e. the in-

tersection of two different triangles in Tj is either empty

or consists of a common edge or a common vertex. The

set of all vertices of the triangles in Tj is denoted by Nj

and we set ND
j := Nj ∩ γD as well as NS

j := Nj ∩ γS .

Let Sj ⊂ H1(Ω) be the subspace of all continuous

functions in H1(Ω) which are linear on each triangle

t ∈ Tj . It is spanned by the nodal basis functions λ
(j)
p ,

p ∈ Nj . For the definition of the finite dimensional ana-

logue of K we assume that the Dirichlet boundary con-
dition uD is continuous in each node p ∈ ND

j so that

we can evaluate uD(p) in these nodes. Then we define

this convex set Kj ⊂ Sj by

Kj :=
{

v ∈ Sj : v(p) ≥ uc ∀p ∈ Nj ∧

v(p) = uD(p)∀p ∈ ND
j ∧ v(p) ≤ 0 ∀p ∈ NS

j

}

.

The convex functionals φ and ψ in (49) are discretized

by a quadrature formula arising from Sj-interpolation

of the integrands in (41) and (45), respectively. In this
way, we arrive at the discrete convex functionals φj , ψj :

Kj → R defined by the weighted sums

φj(v) :=
∑

p∈Nj

Φ(v(p))hp ∀v ∈ Kj (54)

and

ψj(v) :=
∑

p∈Nj∩Γ

Ψ(v(p))hΓ,p ∀v ∈ Kj (55)

which contain the weights

hp :=

∫

Ω

λ(j)
p (x) dx and hΓ,p :=

∫

Γ

λ(j)
p dσ ,

respectively. Recall that Γ is the part of the boundary

of Ω where Robin boundary conditions are given.

With these definitions our finite element discretiza-

tion of (49) reads

u ∈ Kj : J (uj) + φj(uj) + γ ψj(uj) ≤

J (v) + φj(v) + γ ψj(v) ∀v ∈ Kj , (56)

where J is the quadratic functional defined in (40).

For this discrete convex minimization problem the ex-
istence and uniqueness result from Theorem 2 carries

over to the discrete case, even if we consider Brooks–

Corey functions (consult e.g. [14, Prop. 1.2]).
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Proposition 6 Let M : R → R or M : (uc,∞) → R,

uc < 0, be monotonically increasing, continuous and

bounded. Furthermore, let kr : M(R) → R be a bounded

Borelfunction. Then the discrete convex minimization

problem (56) has a unique solution.

Finally, we mention that with some regularity as-
sumptions on uD and Kj one can proveH1-convergence

of the discrete solutions uj, j ≥ 0, to the solution of

the continuous problem (49) under natural conditions

(compare [7, Sec. 2.5]).

Monotone multigrid

The standard reference for the numerical treatment of

discrete minimization problems like (56) by monotone
multigrid methods is [21]. Therefore, we can restrict

ourselves to a very basic description of such methods

and mention the special situation given by the use of

the Brooks–Corey functions. In particular, we note that
Φ in (54), which is considered in [21], may well depend

on p ∈ Nj .

The smoother used in the monotone multigrid is the

nonlinear Gauss–Seidel method. Starting with a given

iterate, this method minimizes the convex functional

Fj := J (·) + φj(·) + γ ψj(·)

successively in the directions of the nodal basis func-

tions λ
(j)
p for p ∈ Nj\N

D
j . Thanks to a decoupling pro-

vided by the definitions (54) and (55) of the discrete

convex functionals, this leads to successive one-dimen-

sional problems of finding the zero of the functions

M(·)hp + τγ κ−1(·)hΓ,p + gp(·)

where gp(·) are certain affine functions. Here, M(·) has

to be extended to a monotone graph in uc (and in 0

if p ∈ NS
j ). The smoother on the fine grid guarantees

convergence of the method.

As in the linear case, coarse grid corrections are

carried out in order to increase the convergence speed.

These are provided by considering constrained quadra-
tic approximations of the functional Fj around smoo-

thed iterates (in nodes where Fj is C2), which result in

quadratic obstacle problems. The latter are solved on

the coarse grid within the constraints induced by the

critical value uc, the bubbling pressure pb (whereM and
κ−1 are non-differentiable and, therefore, Fj is not C2)

and 0 in Signorini-nodes. These constraints, the coarse

grid obstacles, can be obtained from the fine grid ob-

stacles by different quasioptimal truncation techniques.
Additional damping, locally for each coarse grid direc-

tion, ensures that the iterates provided by the coarse

grid correction lead to a further decreasing energy Fj .

Under some technical and non-degeneracy condi-

tions one can prove that the coarse grid corrections

of the monotone multigrid eventually become Newton

multigrid steps applied to smooth problems for which

convergence rates can be derived. Concretely, one can
prove that these asymptotic convergence rates only de-

generate very mildly with j.

4 Numerical example in 2D: Robin’s method
for the Richards equation without gravity

In this last section, we present a numerical example

in 2D which we obtained by a successful application
of Robin’s method to the Richards equation without

gravity in a heterogeneous setting with two different soil

types in two subdomains. It is based on the analytical

and numerical approaches described in Section 3. We
present convergence rates of the monotone multigrid

method used for the local problems and convergence

rates of the Robin iteration. Since our focus is on the

performance of the Robin method, which deals with

the heterogeneity of the spatial problems, we ignore the
gravitational term for simplicity since its contribution

would only be treated explicitly in our approach [10].

Ω2

Ω1

Fig. 6 Coffee filter like domain Ω

Concretely, we consider the domain Ω ⊂ R
2 de-

picted in Figure 6 which resembles a coffee filter. We
assume that the top subdomain Ω1 is filled with sandy

loam while the bottom subdomain Ω2 contains loamy

sand. For the parametrization we use the Brooks–Corey

functions p 7→ θ(p) and θ 7→ kr(θ) according to Burdine

given in (52) and (53). The corresponding hydrological
data are chosen according to the USDA soil texture

triangle [27, Tables 5.3.2 and 5.5.5] and collected in Ta-

ble 1 with the corresponding indices i = 1, 2. The max-

imal water contents θM,i are constant with θM,i = 1
for i = 1, 2 according to [27, Table 5.1.1]. We remark

that the variation of residual water contents θm,i and

the porosity-values ni does not effect the performance
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Fig. 7 t = 0

of the Robin method as strongly as the other more rel-

evant soil parameters λi, pb,i and Kh,i, i = 1, 2, which

influence the spatial derivative in (1).

Ωi ni θm,i λi pb,i Kh,i

i = 1 0.453 0.091 0.378 −0.147 6.06 · 10−6

i = 2 0.437 0.080 0.553 −0.087 1.66 · 10−5

Table 1 Brooks–Corey soil parameters for sandy loam (i = 1)
and loamy sand (i = 2)

The domainΩ is chosen to be situated in the quadri-
lateral [−1, 1] × [−0.74, 0.56] and the top boundary is

[−1, 1]× {−0.74}, the z-axis is directed downward. We

start with a practically dry soil as the initial condi-

tion given by p0 = −20 on Ω except for p0 = 100 on
the subset [−0.21, 0.21] × {−0.74} of the top bound-

ary, see Figure 7. The latter is treated as a Dirichlet

boundary γD with constant data pD = 100 for all time

steps. The pressure unit is one meter of a water col-

umn. Apart from the bottom boundary γS situated on
[−0.25, 0.25] × {0.56}, which is chosen as a Signorini-

type boundary where outflow is possible, we assume

homogeneous Neumann boundary conditions v · n = 0

on ∂Ω\(γD ∪ γS). This situation results in an evolu-
tion process with an increasing saturation due to flow

of water into Ω with possible outflow across γS until Ω

is fully saturated and a stationary solution is obtained.

We treat the problem as described in the previ-

ous sections using an implicit time discretization (since

there is no gravity) with the constant time step size

τ = 1 [s] and a space discretization with linear finite el-
ements. The discrete Robin problems for the Richards

equation in each time step result in convex minimiza-

tion problems which are solved by monotone multigrid.

We use 4 levels of a grid hierarchy with 112 nodes on
the coarse grid in Figure 6 and about 5500 nodes on the

finest grid with a mesh size of h = (10 · 24)−1 = 1/160

obtained by uniform refinement. Moreover, a constant

Robin parameter γ = γ1 = γ2 = 3 · 10−4 suggested by

numerical experiments is chosen.

Time evolution in physical pressure

In Figures 8–19 one can see the evolution of the phys-

ical pressure at equidistant time steps (except for the

last one) in heightplots on the left and colourplots on
the right. One can clearly detect the wetting front

(cf. [5, p. 303]), where a pressure difference of almost

∆p = 20 occurs, moving from the top to the bottom.

More concretely, the wetting front marks the free bound-

ary which separates the unsaturated from the fully sat-
urated regime and, thus, around which we encounter

the pressure difference between the initial condition p0

and the bubbling pressure pb,i on Ωi for i = 1, 2. We

need 684 time steps until the stationary situation with
a fully saturated Ω is reached. At about t = 133 the

wetting front reaches the interface, and starting with

t = 473 the top subdomain Ω1 is fully saturated. The

range of p is between −20 and 100 until shortly before

the last time step, and in the stationary case it is in the
interval [26.3, 100] on Ω1 and [0.0, 32.2] on Ω2. One can

see in the heightplots that the physical pressure is non-

smooth across the interface, at least in the saturated

regime.

Multigrid convergence rates in generalized pressure

The local problems on the subdomains with homoge-
neous soil are treated by a monotone multigrid solver

which we already mentioned in Subsection 3.3. More

concretely, we use truncated monotone multigrid with a

V (3, 3)-cycle, i.e. containing 3 presmoothing and 3 post-
smoothing steps. As a stopping criterion for this local

solver we require the relative error to satisfy

|uj
i − uj−1

i |1,Ωi

|uj−1
i |1,Ωi

≤ 10−12 , i = 1, 2 ,

for the last multigrid iterate uj
i with j ≥ 1 where | · |1,Ωi

is the energy norm on Ωi induced by the bilinear form
ai(·, ·). The initial condition is given by the solution

from the previous time step.

Figures 20 and 21 show averaged multigrid conver-

gence rates ρm,1 and ρm,2 as well as maximal multigrid

convergence rates ρM,1 and ρM,2 per time step for Ω1

and Ω2, respectively. They are determined in the fol-

lowing way. For each domain decomposition step l ∈ N

in a fixed Ωi, i = 1, 2, the geometric mean

ρ̄l,j =

(

j
∏

k=2

ρk

)1/j
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Fig. 8 t = 60

Fig. 9 t = 120

Fig. 10 t = 180

Fig. 11 t = 240

Fig. 12 t = 300

Fig. 13 t = 360

Fig. 14 t = 420

Fig. 15 t = 480

Fig. 16 t = 540

Fig. 17 t = 600

Fig. 18 t = 660

Fig. 19 t = 684
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Fig. 20 Multigrid convergence rates per time step in Ω1

(top: maximal, bottom: averaged)
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Fig. 21 Multigrid convergence rates per time step in Ω2

(top: maximal, bottom: averaged)

of the approximated rates

ρk =
|uk

i − uk−1
i |1,Ωi

|uk−1
i − uk−2

i |1,Ωi

, i = 1, 2 ,

with the multigrid iterates uk
i is calculated for k ≥ 2 as

long as ρ̄l,j increases. We set ρ̄l,1 = 0 if one multigrid

step is needed only. With the maximum obtained in this
way, which we call ρ̄l, we determine ρm,i and ρM,i as

ρm,i =
1

n

n
∑

l=1

ρ̄l and ρM,i = max
1≤l≤n

ρ̄l , i = 1, 2 ,

where n is the number of Robin steps needed for the
corresponding time step.

Since we use the solution from the previous time

step as the initial condition for the next time step, we

already have a good approximation for the solution at
that time step. With this choice we obtain fast multigrid

convergence as one can see from Figures 20 and 21.

Here, ρM,i often occurs in the first few Robin steps,
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Fig. 22 Convergence rates ρ per time step for Robin’s method
measured in generalized variables with stopping criterion (57)

and the multigrid convergence rates can improve quite

a lot for higher accuracies in the domain decomposition

iteration history (where finally often one multigrid step

is enough). This explains that the difference between
ρM,i and ρm,i can be quite considerable.

Convergence rates of Robin’s method in generalized pres-

sure

With initial iterates u0
i for i = 1, 2, given as the solu-

tions from the previous time step, the Robin iteration

is carried out until the relative error satisfies
(

∑2
i=1 ai(u

n
i − un−1

i , un
i − un−1

i )
)1/2

(

∑2
i=1 ai(u

n−1
i , un−1

i )
)1/2

< 10−12 (57)

for some n ≥ 0. Then we calculate ρ as the maximum

of the geometric means of the rates

(

∑2
i=1 ai(u

k
i − un

i , u
k
i − un

i )
)1/2

(

∑2
i=1 ai(u

k−1
i − un

i , u
k−1
i − un

i )
)1/2

(58)

for 1 ≤ k ≤ ñ over all ñ < n (note that we get zero for

ñ = n).

Figure 22 displays the average convergence rates ρ

for the domain decomposition iteration given by the
Robin method at each time step. For t ∈ [138, 472],

when the location of the wetting front has a nontriv-

ial intersection with the interface Γ , the convergence

rates vary quite a lot between around 0.3 and 0.9. These
big variations can also be observed in the Robin itera-

tion history at various time steps. In Figures 23 and 24

we illustrate two examples of such cases for t = 197
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Fig. 23 Error (59) vs. Robin iteration step at time t = 197
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Fig. 24 Error (59) vs. Robin iteration step at time t = 443

and t = 443 where we have the average convergence

rates 0.56 and 0.63, respectively. One can see that dif-

ferent error reduction rates (i.e. convergence rates) are
obtained for different accuracies, i.e. absolute errors

(

2
∑

i=1

ai(u
k
i − un

i , u
k
i − un

i )

)1/2

, k = 0, ..., n−1 , (59)

(un
i being the last Robin iterate) in the iteration his-

tory. We assume that these effects occur because the
pressure values for nodes directly at the wetting front

probably depend quite sensitively on the solution of the

previous time step, the precise Robin conditions at the

interface and the required accuracy given by the stop-
ping criterion. In addition, our measuring (57), (58) of

the convergence rates in the generalized variables ui

seems to be particularly sensitive in this respect, see

the paragraph on the convergence rates in the physical

pressure below.

In general the first convergence rate in the iteration

history is considerably smaller than the following ones

for any time step. In particular, for time steps t < 133

the error reduction in the first Robin step is such that

it already provides an almost vanishing average conver-

gence rate. For t ≥ 473, when Ω1 is fully saturated and

the wetting front is entirely located in Ω2, the conver-

gence rates do no longer oscillate, neither with respect
to t nor in the iteration history for fixed t. Further-

more, they increase as the wetting front approaches the

Signorini-type boundary until the stationary solution is

attained at t = 684 (for t > 684 vanishing convergence
rates are observed as expected).

Convergence rates of Robin’s method in physical pres-

sure

Quite natually, one is as interested in the convergence

rates of the Robin iteration measured in the physical

variables pi as in the generalized pressure variables ui,

i = 1, 2. However, one has to be careful here because the
inverse transformations κ−1

i , by which ui is transformed

into pi for i = 1, 2, are ill-conditioned for small general-

ized pressure values now, compare Figures ?? and ??.

As can be seen in these figures, small perturbations in
ui can result in big variations of pi in the unsaturated

regime (we refer to [10] where this phenomenon is in-

vestigated numerically in detail).

Therefore, the stopping criterion (57) expressed in

pi may correspond to a much more restrictive stopping
criterion in ui which might require a higher accuracy

than provided by the local solvers given by (??). In

the example above, a certain absolute error (59) in ui

usually corresponds to a much bigger absolute error cal-
culated in pi, i = 1, 2. In fact, they can differ by sev-

eral orders of magnitude. We even observe numerical

instabilities if we choose the same accuracy 10−12 in

the stopping criterion (57) with ui replaced by pi. If,

instead, we choose the stopping criterion
(

∑2
i=1 ai(p

n
i − pn−1

i , pn
i − pn−1

i )
)1/2

(

∑2
i=1 ai(p

n−1
i , pn−1

i )
)1/2

< 10−9 (60)

rather than (57) and measure the convergence rates as
in (58) with ui replaced by pi, we obtain a time evo-

lution (with 684 time steps) which practically does not

differ from the one above (i.e., the first few digits of

the obtained pressure values usually coincide). Interest-

ingly, however, the convergence rates ρp per time step
measured in the physical pressure p and displayed in

Figure 25 do not show as big oscillations as the ones

measured in u in Figure 22. Considerable oscillations

only occur shortly before time step t = 473 when Ω1 is
fully saturated. In addition, the convergence rates mea-

sured p are more stable in the iteration history for fixed

time steps than the ones measured in u.
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Fig. 25 Convergence rates ρp per time step for Robin’s method
measured in physical variables with stopping criterion (60)

Limitations for the applicability of the method

Unfortunately, the convergence rates of the Robin iter-

ation deteriorate for higher levels. They also deteriorate

if we choose sets of parameters corresponding to more

extreme pairs of soil-types like very coarse sand and

very fine clay. Furthermore, the convergence rates de-
pend on the choice of the time step size for the variation

of which we have to alter γ as well. (Observe that the

time step size occurs as an additional factor in front of

the water flux in the Robin conditions (32).)

In addition, we observe deteriorating convergence

rates if the pressure difference ∆p of the wetting front
is too big. Note, however, that the situation ∆p = 20 in

our example above where we have the Dirichlet value

p = 100, measured in meters of a water column, is al-

ready chosen quite extreme.

Therefore, it seems possible that the Robin method

can be successfully applied in reasonable hydrological

settings which are not too extreme (compare e.g. [7,
Sec. 4.3]). Finally, ongoing research indicates that the

convergence rates of the Robin method can be consider-

ably improved if different Robin parameters γ1 and γ2

corresponding to the subdomains are suitably chosen.

We close this section by noting that the implemen-

tation for the numerical example has been performed
in the numerics environment DUNE [4] using the grid

manager from UG [3]. For the visualization of the re-

sults we made use of the toolbox AMIRA [29].
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