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1 The phenomenon

Let p be a prime number. We write ℤp for the set {0, 1, . . . , p−1} of residues modulo p,
and we consider the usual addition and multiplication modulo p onℤp . It will be important
in the sequel that ℤp , provided with these operations, is a field, i.e., one calculates as in
the usual number system. (E.g., for x �= 0, the number 1/x is defined as that element
y ∈ ℤp for which x · y = 1. In the case p = 7, for example, one has 1/5 = 3. And
−x means that y such that x + y = 0. E.g., −1 = p − 1 for x ∈ ℤp .) Now let numbers
a, b ∈ ℤp be given. They generate a sequence x0, x1, . . . in ℤp by x0 := a, x1 := b,
xn := xn−1 + xn−2 mod p for p ≥ 2. Note that this is the usual Fibonacci sequence
modulo p in the case (a, b) = (0, 1).

.

Die Fibonacci-Folge hat auch unter Nichtmathematikern einen hohen Bekanntheits-
grad. Viele wissen, dass sie durch die Vorschrift u0 = 0, u1 = 1, un = un−1 +un−2 für
n ≥ 2 definiert ist und dass sie etwas mit dem goldenen Schnitt zu tun hat. Über diese
Folge werden immer wieder neue Forschungsergebnisse gefunden, und das Fibonacci
Quarterly widmet sich speziell diesem Thema. Im vorliegenden Artikel geht es um ein
überraschendes Phänomen, das dann auftritt, wenn man verallgemeinerte Fibonacci-
Folgen modulo einer Primzahl p betrachtet. Als Beispiel betrachten wir die Primzahl
p = 7. Für beliebige a, b ∈ {0, 1, . . . , 6} (die nicht beide Null sein sollen) definieren
wir x0 = a, x1 = b sowie xn = xn−1 + xn−2 mod 7. Dann ist die “gewöhnliche”
Summe (also nicht die Summe modulo p) über die ersten 16 Folgenglieder immer
gleich 49, unabhängig von a, b. Diese Tatsache ist auch schon für einen Vorhersage-
Zaubertrick verwendet worden. Der Autor erklärt, wie das Ergebnis mit Konzepten der
elementaren Zahlentheorie, insbesondere mit quadratischen Resten, zusammenhängt.
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Sometimes it happens that, for a particular γ ∈ ℕ (depending on p) the sum of the first γ

elements of (xn)n=0,1,... is the same for all choices of a, b with (a, b) �= (0, 0) (here we
mean the “ordinary” sum, not the sum modulo p).

As a special case we note that one can work with γ = 16 if p = 7, there the sum is always
49. This was used as a magical trick, one finds it, e.g., in Chapter 10 (page 153 ff.) of the
book “Magical Mathematics” written by Diaconis and Graham1 (see [1]). The reader is
invited to check this fact with some initial values a, b.

In the present paper we will see that a similar phenomenon occurs when 7 is replaced
by certain other primes p. For example, when working with p = 43 one can choose
γ = 88: one can predict that the sum x0 + · · · + x87 equals 1849 for arbitrary (a, b) ∈
ℤ43 × ℤ43 \ (0, 0).

Admittedly, this might be not extremely interesting for magicians since lengthy calcu-
lations are not particularly attractive. It seems, however, to be worthwile to study the
interplay between ordinary summation and summation modulo p and to see the connec-
tion of this kind of problem with (mainly known) facts from elementary number theory, in
particular the theory of quadratic residues.

Our main results can be found in Section 3, they are prepared in Section 2. And finally,
Section 4 contains a short summary.

2 Basic definitions
Some parts of the material presented here are folklore. For generalisations see, e.g., [3] or
Chapter 2(IV) in [2].

The Fibonacci sequence

By (un)n≥0 we denote the usual Fibonacci sequence: u0 := 0, u1 := 1 and un :=
un−1 + un−2 for n ≥ 2; sometimes it will be convenient to put u−1 := 1. The following
representations are well known:

Proposition 2.1. Denote by P and Q the matrices

P =
(

0 1
1 1

)
, Q = P−1 =

( −1 1
1 0

)
.

(i) Pn =
(

un−1 un

un un+1

)
, Qn = (−1)n

(
un+1 −un

−un un−1

)
for n ≥ 0.

(ii) Let r, s be the roots of x2 − x − 1 :

r = 1 + √
5

2
, s = 1 − √

5

2
.

Then un = (rn − sn)/
√

5.

(iii) un = ((n
1

) + 5
(n
3

) + 52
(n
5

) + · · · ) /2n−1; note that this is a finite sum for every n
since

(n
m

) = 0 for n < m.

1The authors prescribe a slightly modified summation modulo 7: subtract 7 from the sum if it exceeds 7. As a
consequence the xn with xn = 0 and n ≥ 1 will have to be replaced by 7, and the predicted sum will be 63.
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Proof. (i) and (ii) can easily be proved by induction using the definition of the un and the
fact that r2 = r + 1 as well as s2 = s + 1.

(iii) From (ii) we conclude that

un = rn − sn

√
5

= (1 + √
5)n − (1 − √

5)n

2n
√

5
.

We continue by using the binomial formula for (x + y)n , and we observe that only the
terms containing binomial coefficients

(n
j

)
with odd j survive. It only remains to simplify

the resulting terms. □

Matrix calculations modulo p

We now fix an odd prime p, and we consider the powers of P and Q modulo p.

! If not otherwise stated we will calculate from now on modulo p !

The following proposition will be crucial for our investigations:

Proposition 2.2. Suppose that c ∈ ℤp and that for some n the matrix Pn is c times the
identity matrix Id.

(i) If c = 1 or c = −1 (= p − 1) then n is an even number. We write n = 2l.

(ii) Suppose that c = 1. If l is even then Pl is the matrix Id or the matrix − Id. If l is odd,

then Pl is of the form

(
r −2r

−2r −r

)
, where r ∈ ℤp is such that 5r2 = 1 mod p.

(iii) Suppose that c = −1. If l is odd then Pl is of the form r · Id, where r2 = −1, and if

l is even one has Pl =
(

r −2r
−2r −r

)
for an r ∈ ℤp such that 5p2 = −1.

(iv) If n = 2l is even, then c = 1 or c = −1.

Proof. (i) Suppose that n were of the form 2l + 1. From P2l+1 = c · Id it would follow
that Pl = c · Ql+1 so that, by Proposition 2.1 (ii),

(
ul−1 ul

ul ul+1

)
= c(−1)l+1

(
ul+2 −ul+1

−ul+1 ul

)
.

It would follow that ul = c(−1)l+2ul+1 and ul+1 = c(−1)l+1ul so that ul = (−1)2l+1c2ul

= −ul , and this would imply that ul = ul+1 = 0. (Here it is essential that p > 2 so that
2 �= 0 in ℤp .) But this cannot happen since otherwise one would have uk = 0 for k ≥ l in
contrast to the fact that Pn = c · Id.

(ii) We conclude from P2l = Id that Pl = Ql so that ul = (−1)l+1ul and ul+1 =
(−1)lul−1. If l is even this implies that ul = 0 so that Pl is diagonal. Since the square of
this diagonal matrix is Id it is either Id or − Id.
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Now suppose that l is odd. We then know that ul+1 = −ul−1 so that ul = (ul+1 −ul−1) =
−2ul−1. Thus, with r := ul−1, the matrix Pl has in fact the form

(
r −2r

−2r −r

)
. That

5r2 = 1 holds follows from P2 = Id.

(iii) These assertions can be proved similarly.

(iv) The assumption implies that Pl =cQl so that ul =c(−1)l+1ul and ul−1 =c(−1)lul+1
hold. If ul �= 0 it follows that c = (−1)l+1, and in the case ul = 0 we know that
ul+1 = ul−1 with ul−1 �= 0. Therefore we can conclude from ul−1 = c(−1)lul+1 that
c = (−1)l . □

The period

Let γ = γ (p) be the smallest integer m such that Pm is the identity matrix modulo
p. This number is just the order of P considered as an element in the finite group of
invertible matrices with entries in ℤp . From Proposition 2.1(i) it follows that (un mod p)

is γ -periodic and that γ is the smallest positive number m such that un+m = un mod p
for all n. By Proposition 2.2(1) γ is an even number.

Quadratic residues

Quadratic residues modulo p are studied since centuries. A number b is called a quadratic
residue modulo p if there exists a such that a2 = b mod p. For example, 9 is a quadratic
residue modulo 11 since 82 = 9 mod 11. On the other hand, 5 is not a quadratic residue
modulo 7 since the only squares in ℤ7 are 1 = 12 = 62, 4 = 22 = 52 and 2 = 32 = 42.
If b is a quadratic residue modulo p one writes (b | p) = 1, and if this is not the case this
is expressed by writing (b | p) = −1. (In many books one uses

( b
p

)
instead of (b | p), but

for typographical reasons we prefer our notation.)

We will take the following facts as building blocks for our further investigations. All of
them are proved in a course on elementary number theory or follow easily from results
shown there.

• (a | p) = a(p−1)/2 mod p.
• The prime numbers p such that (5 | p) = −1 are precisely the primes p with p =

3 mod 10 or p = 7 mod 10.
• A prime p satisfies (−1 | p) = −1 iff p = 3 mod 4, and (−1 | p) = 1 holds iff

p = 1 mod 4.

• (5 | p) = −1 and (−1 | p) = −1 (i.e., p = 3, 7 mod 10 and p = 3 mod 4) are true
at the same time iff p = 3 mod 20 or p = 7 mod 20. Similar characterizations are
possible for all cases (5 | m) = ±1 and (−1 | p) = ±1.

• If p is a prime, then for every a ∈ {1, . . . , p − 1} one has a p−1 = 1 (the “little”
Fermat theorem).

The period in the cases (5 | p) = ±1

Proposition 2.3.
(i) Suppose that (5 | p) = −1. Then P p+1 = − Id mod p so that γ divides 2(p + 1).

(ii) If (5 | p) = 1 one has P p−1 = Id so that γ | p − 1.
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Proof. (i) If we multiply the representation 2.1(iv) with 2n−1 we arrive at

2n−1un =
(

n

1

)
+ 5

(
n

3

)
+ 52

(
n

5

)
+ · · · ,

and this equation contains only integers. We will consider it modulo p for the particular
values n = p and n = p + 1.

Suppose that n = p. The left-hand side reduces to u p mod p. Here we have used the fact
that 2 �= 0 mod p so that by Fermats little theorem 2p−1 = 1. Also it is important that
x �→ x mod p is multiplicative. As far as the right-hand side is concerned we observe that
all

(p
k

)
with k < p contain a factor p : since p is a prime it will not be cancelled when

simplifying
(n
k

) = p(p − 1) · · · (p − k + 1)/k! . Thus all summands with the exception
of the last one are zero modulo p. This last one is 5(p−1)/2

(p
p

)
. The first factor modulo p

is −1 (since we assumed that (5 | p) = −1) and the second is one. So we conclude that
u p = −1 mod p.

Let us now consider n = p + 1. Evaluated modulo p the left-hand side equals 2u p+1 mod
p. The right-hand side has the same number of summands as before. Now the first sum-
mand is p + 1 = 1 mod p whereas the last one is (−1)(p + 1) = −1 mod p. The
remaining summands vanish modulo p since each of them contains a factor p that is not
cancelled when calculating

(p+1
k

)
for k ≤ p − 1. We thus have proved that 2u p+1 = 0,

and consequently u p+1 vanishes.

It follows from Proposition 2.1(i) that P p+1 = − Id.

(ii) As in the preceding part of the proof we can show that u p = u p+1 = 1: this time
we use the fact that 5(p−1)/2 = 1. It follows that u p−1 = 0 and u p−2 = 1 so that
P p−1 = Id. □

Note. If (5 | p) = −1 (resp. (5 | p) = 1) it is often true that γ = 2(p + 1) (resp.
γ = p − 1). If this is the case we will say that p has maximal period.

However, there are also examples where γ is smaller. The first p with (5 | p) = 1 (resp.
(5 | p) = −1) is p = 47 where γ = 32 (resp. p = 29 where γ = 14).

There are also cases where γ is much smaller than possible. E.g., for p = 967, the
proposition predicts that γ divides 2(p + 1) = 1936, and one has γ = 176.

Primes where Pγ/2 = − Id

It will be clear rather soon that primes p where Pγ /2 = − Id play an important role. We
will call them good primes.

Proposition 2.4.

(i) p is a good prime iff γ mod 4 = 0.

(ii) Primes such that (5 | p) = −1 are good primes.

(iii) There are no good primes with (5 | p) = 1 and (−1 | p) = −1.

(iv) Let p be such that (5 | p) = (−1 | p) = 1. If the period of p is maximal then p is a
good prime.
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Proof. (i) This follows immediately from Proposition 2.2(i) and (ii).

(ii) γ is even, we write γ = 2l. By Proposition 2.2(ii) Pl is one of the matrices Id,

− Id or

(
r −2r

−2r −r

)
with 5r2 = 1 mod p. By the definition of γ it is not possible

that Pl = Id, and (5 | p) = −1 implies that there are no r ∈ ℤp with 5r2 = 1. Thus
Pl = − Id.

(iii) Suppose that, with l := γ /2, we would have Pl = − Id. By Proposition 2.2(i) l would
be even. Let R be the matrix Pl/2.

By Proposition 2.2(iii) there are two possibilities. R could be a diagonal matrix

(
r 0
0 r

)

with r2 = −1. This is not possible since (−1 | p) = −1. Or R =
(

r −2r
−2r −r

)

with 5r2 = −1. But by our assumption we can write 5 = d2 so that (dr)2 = −1 in
contradiction to (−1 | p) = −1.

(iv) The p such that (5 | p) = (−1 | p) = 1 are precisely the primes with p mod 20 ∈
{1, 9}. Thus p − 1 mod 4 = 0 when the period is maximal. (There are, however, good p
with (5 | p) = (−1 | p) = 1 where the period is not maximal. 89 is the smallest p with
this property, the period is 44.) □

The zeros in (un mod p)n=0,1,...

As a last preparation of our main results we investigate how often the un mod p vanish in
a period. Let ν be the cardinality of the set {k | 0 ≤ k ≤ γ − 1, uk = 0}. (Recall that all
calculations are modulo p.)

Proposition 2.5.
(i) ν ∈ {1, 2, 4}.
(ii) If (5 | p) = −1, then ν ∈ {2, 4}. More precisely: if (−1 | p) = −1 holds, then ν = 2,

and in the case (−1 | p) = 1 one has ν = 4.

Proof. (i) ul = 0 means that Pl is diagonal. Let k be the smallest positive number such
that Pk is diagonal. By Proposition 2.2(iv) P2k is either Id or − Id. This proves the claim:
if Pk = Id then k = γ and ν = 1; if k < γ and P2k = Id then ν = 2; and if k < γ and
P2k = − Id then ν = 4.

(ii) Since p is good we already know that uγ /2 = 0 so that ν ∈ {2, 4}. Suppose that

(−1 | p) = −1. If ν = 4 would hold we would know that R := Pγ /4 =
(

r 0
0 r

)
is

diagonal with R2 = − Id. This is not possible since this would imply that r2 = −1, a
contradiction. This proves that ν = 2 in this case.
It remains to consider the case (−1 | p) = 1. Again, with R = Pγ /4, we know that
R2 = − Id. By Proposition 2.2(iii) R is of the form r · Id (which would imply ν = 4)

or of the form

(
r −2r

−2r −r

)
with 5r2 = −1. The second variant is not possible since

we can write −1 as d2 so that 5r2 = −1 would yield 5 = (d/r)2, a contradiction to
(5 | p) = −1. □
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3 The main results
Let us return to the problem of the first section: we choose (a, b) �= (0, 0), we define
x0 := a, x1 := b and xn := xn−1 + xn−2 mod p, and we are interested in x0 + · · · + xγ−1,
where here we mean the “ordinary” sum, not the sum modulo p.

Proposition 3.1. Suppose that p is a good prime. Then, regardless of a, b, the following
is true:

• If no zero occurs in x0, . . . , xγ−1, then x0 + · · · + xγ−1 equals γ · p/2.

• If there are zeros in x0, . . . , xγ−1, then

x0 + · · · + xγ−1 = p(γ /2 − ν/2).

Proof. We know that Pγ /2 = − Id and it is easy to see that (xn, xn+1)
⊥ = Pn(a, b)⊥.

(For a row vector (c, d) we denote by (c, d)⊥ the associated column vector.) This implies
that xγ /2+t = −xt for every t .

Thus, if we write x0 + · · · + xγ−1 as (x0 + xγ /2) + (x1 + xγ /2+1) + · · · we generate γ /2
summands of type r + (−r). Each of these summands equals p if r �= 0 and 0 in the case
r = 0: note that −r = p − r in ℤp if r �= 0.

This proves the first part of the proposition. It remains to check the number of zeros in
x0, . . . , xγ−1.

Suppose that there is a zero, at position k, say. For the calculation of the (ordinary) sum
of the x0, . . . , xγ−1 we may start at xk : xk, xk+1, . . . , xγ−1, x0, . . . , xk−1 (note that the
sequence is γ -periodic). But this is precisely the sequence “u0, . . . , uγ−1 mod p, mul-
tiplied with xk+1”. In particular there are precisely ν zeros in the shifted sequence and
this is therefore also true for the original sequence. They will occur pairwise at certain
positions k and k + γ /2. There are ν/2 such pairs and each one contributes with the value
0 to the sum. γ /2 − ν/2 pairs of type r, p − r with r �= 0 remain, and this proves the
proposition. □

Sometimes it is not necessary to consider both cases in the preceding proposition. Let p be
a good prime. We will call it very good if for each choice of (a, b) �= (0, 0) the associated
sequence contains ν zeros.

Proposition 3.2.

(i) Let p be a prime with maximal period such that (5 | p) = (−1 | p) = −1. Then p is
a very good prime.

(ii) There are no other very good primes.

Proof. (i) It will be convenient to associate with P a discrete dynamical system. We define
a map �p on �p := ℤp × ℤp by

(a, b)⊥ �→ P(a, b)⊥ = (b, a + b)⊥.

By the orbit of an (a, b)⊥ we mean the sequence (�n
p(a, b)⊥)n=0,1,..., and the period of

(a, b)⊥ is the smallest positive m with �m
p (a, b)⊥ = (a, b)⊥.
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The period of (0, 1)⊥ is γ , and the orbit of this point visits precisely ν = 2 elements in
{0} × ℤp in a full period (cf. Proposition 2.5). Let us consider any orbit starting at some
(a, b)⊥ that passes through an element of {0} × ℤp . It will be the shift of a multiple of
the orbit through (0, 1) and therefore its length is also γ and it will also touch two points
in {0} × {1, . . . , p − 1} on its way. Thus there are (p − 1)/2 possible orbits that do not
omit this set. Different orbits are disjoint, and we may conclude: the union of the orbits
that touch {0} × {1, . . . , p − 1} visit (p − 1)/2 (= the number of orbits) times 2(p + 1) (=
the length of each orbit) points in �′ := � \ {(0, 0)}. This number equals p2 − 1, and this
is just the cardinality of �′. It follows that there are no orbits that omit {0} × ℤp , and this
proves (i).

The preceding argument shows that p will be very good iff γ times (p−1)/ν equals p2−1.
By propositions 2.3 and 2.5 this happens only when the conditions of (i) are met. □

4 Résumé: Which primes can be used for a magic trick?

How our results can be translated to give rise to a magic trick will be described now; p
will always denote an odd prime.

Very good primes

These are the primes with (5 | p) = (−1 | p) = −1 (or, equivalently, the p that satisfy
p mod 20 ∈ {3, 7}) with maximal period 2(p + 1). The first examples are

3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, . . .

They can be directly used for a magical prediction trick: the (ordinary) sum over the
first 2(p + 1) elements of the sequence (xn) is p(γ /2 − ν/2) = p2, regardless how
(a, b) �= (0, 0) have been chosen.

Good primes

Good primes can be found in the following three families:

• The primes with (5 | p) = (−1 | p) = −1 (or, equivalently, the p that satisfy p mod
20 ∈ {3, 7}) where the period is smaller than 2(p + 1). For these p we have ν = 2.
Here are the first examples (with the period in brackets):

47(32), 107(72), 263(176), 307(88), 347(232), 563(376), . . .

• The primes with (5 | p) = −1 and (−1 | p) = 1 (or, equivalently, the p that satisfy
p mod 20 ∈ {13, 17}). Here we have ν = 4. The first examples are the following (in
brackets one fnds the period):

13(28), 17(36), 37(76), 53(108), 73(148), 97(196), 113(76), . . .

• The primes with (5 | p) = 1 and (−1 | p) = −1 (or, equivalently, the p that satisfy
p mod 20 ∈ {1, 9}) such that γ mod 4 = 0.There are cases where ν = 2 and others
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where ν = 4. We do not know a general result. Here are examples together with the ⇐= ok?
associated γ and ν in brackets.

41(40; 2), 61(60; 4), 89(44; 4), 109(108; 4), 149(148; 4), . . .

The transformation to a magical prediction trick is in these cases slightly more compli-
cated: there have to be prepared two envelopes with the “prediction”, one containing the
number p(γ /2 − ν/2), the other the number pγ /2.

One starts by inviting someone in the audience to choose a, b ∈ ℤp with (a, b) �= (0, 0)

and to calculate the first γ elements of the associated sequence (xn). It is crucial to check
during these calculations whether one of these numbers is zero. Depending on whether
the answer is “yes” resp. “no” the prediction of the (ordinary) sum x0 + · · · + xγ−1 will
be p(γ /2 − ν/2) resp. pγ /2. (It will be really necessary to prepare both envelopes since
both “yes” and “no” can occur.)

It is natural to ask what one can predict in the case of p that are not good, i.e., for
the p that satisfy either p mod 20 ∈ {11, 19} or p mod 20 ∈ {1, 9} where in addition
γ mod 4 = 2. In all these cases there seem to be more than two – even many – can-
didates for x0 + · · · + xγ−1. E.g, for p = 29 the period is 14, and the possible sums
are 116, 145, 174, 203, 232, 261. At present there seems to be no possibility to provide
precise predictions.
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