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Abstract. The “classical” Australian under-down shuffle starts with a deck
of n cards. Then one proceeds as follows: one card under the deck, one on
the table, one under the deck, one on the table, etc. One continues until
only one card remains. There is an explicit formula to calculate the number
of the card in the original deck that survives, and this is the basis of several
mathematical magic tricks.

Here we study the following variant. We have a deck of n cards, on each
card is written a number: a1, a2, . . . , an ∈ N0. (Number ai is written on card
number i; the top card has number 1.) The procedure is as follows: Have a
look at the top card, suppose that it bears the number a. Deal a cards one
by one from the top to the bottom of the deck and put the card that is now
on top on the table. Repeat this procedure until only one card remains.

There is no general result by which the remaining card can be predicted.
But, surprisingly, there are sequences a1, a2, . . . , an such that the same card
survives regardless whether one starts with a1, a2, . . . , an or with a cyclic
translation, i.e., with the sequence ak, ak+1, . . . , an, a1, . . . , ak−1 for any k ∈
{2, . . . , n}. To state it otherwise: the original deck can be cut at an arbitrary
position, the last card will always be the same. We investigate some properties
of such sequences and indicate how they can be used for mathematical magic
tricks.

AMS-classification: 00A08, 00A09;

keywords: mathematical magical tricks

1. The phenomenon

The starting point of my investigations was the following magic trick that was
communicated by the magician Henning Köhlert (who attributes the trick to Werner
Miller) at a seminar for magicians in 2015. We note that it will be necessary to
know that the German translations of the English words diamonds, hearts, clubs
and spades for the card suits are Karo, Herz, Kreuz and Pik.

• Four cards are given to a spectator, one of each suit. From now on the
magician gives only instructions, he has no further information concerning
the cards.

• The spectator is invited to arrange these cards arbitrarily to form a little deck.
The only condition: red and black cards must alternate.



• Then three times the following happens: Look at the top card. Put – one by
one – as many cards from the top to the bottom of the deck as the number
of letters in the suit of this card indicates. (I.e., three cards for

”
Pik“, five

cards for
”
Kreuz“ and four cards for

”
Herz“ and

”
Karo“.) The card that is

now on top is removed.

• One card will remain, and the magician knows for sure in advance that it will
be “Kreuz”, the club card.

We will investigate here a generalization of this phenomenon. First we will in-
troduce some notation. Suppose that n ∈ N with n ≥ 2 and (a1, . . . , an) ∈ Nn

0 are
given. Now a1 numbers from the beginning of the sequences move one-by-one to
the end and the number that is the now the first one is removed. (The cases a1 = 0
and a1 > n are expressly admissible.)
Call the result (b1, . . . , bn−1) and write (a1, . . . , an)→ (b1, . . . , bn−1).

We can iterate this procedure n−1 times, finally a single integer will remain.
Here are some examples:

(4, 3, 4, 5)→ (3, 4, 5) 7→ (4, 5)→ (5); (5, 2, 4)→ (5, 2)→ (5).

(0, 2, 4)→ (2, 4)→ (4); (1, 2, 3, 4, 1)→ (3, 4, 1, 1)→ (3, 4, 1)→ (4, 1)→ (1).

The last example reveals a little difficulty: we see that the remaining number is
“1”, but it is not clear whether it is the first or the last 1 in the sequence we started
with. Since this can be relevant later we repeat the calculation where we distinguish
the two 1’s:

(11, 2, 3, 4, 12)→ (3, 4, 12, 11)→ (3, 4, 12)→ (4, 12)→ (12).

Thus the second 1 persists.
In order to omit this ambiguity and to spare whenever possible the intermediate

calculations in this article it will be convenient to use the following notation: the
number that survives the procedure will be underlined. In this way we can write the
preceding examples as follows:

(4, 3, 4, 5), (5, 2, 4), (0, 2, 4), (1, 2, 3, 4, 1).

We will be interested in the following type of sequences:

Definition 1.1. A sequence (a1, . . . , an) ∈ Nn
0 will be called a good sequence,

if there is a k ∈ {1, . . . , n} such that ak is underlined in all cyclic translations,
i.e. the k’th element in (a1, . . . , an), the (k−1)-th in (a2, . . . , an, a1), etc. If this
is the case, we will write

(a1, . . . , ak−1, a
∗
k, ak+1, . . . , an),

i.e., the relevant ak is marked with a ∗.

With this notation the phenomenon that we described at the beginning implies
that (3, 4, 5∗, 4). Of course this is the same assertion as (4, 5∗, 4, 3), (5∗, 4, 3, 4), or
(4, 3, 4, 5∗).
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In the case (a1, . . . , an) = (1, . . . , 1) we arrive at the Australian under-down-
shuffle. (This fact motivates why we have chosen the above title for the present
article.) It can easily be proved by induction that the number at position 2r+ 1 has
to be underlined, where r is chosen such that n = 2s + r with a maximal s (see [2],
section 2.2, or [3], chapter 6; see also [1]).

Even in the case (2, . . . , 2) ∈ Nn
0 there seems to be no simple way to predict

which 2 has to be underlined. Thus computer simulations will play an important
role in the sequel, and theoretical results will concern only rather special examples.

We start our investigations of good sequences in section 2 . The main result will
be that for each n “nontrivial” good sequences (a1, . . . , an) exist. Section 3 deals
with good sequences where also the reflected sequence is good (with the “*” at
the same number): very good sequences. We describe a procedure by which (rather
special) “long” very good sequences can be constructed. Finally, in section 4 , we
provide some proposals how to use good and very good sequences for mathematical
magic tricks.

2. Good sequences

In the following lemma we collect some facts that can easily be proved:

Lemma 2.1. (i) Let λn be the least common multiple of the numbers 1, 2, . . . , n.
Then, for (a1, . . . , an), (b1, . . . , bn) ∈ Nn

0 with ai = bi mod λn for all i, the se-
quence (a1, . . . , an) is good if and anly if also (b1, . . . , bn) is. If this is the case,
the element with its “*” is at the same position in both sequences.
Therefore it suffices to consider only those (a1, . . . , an) where 0 ≤ ai < λn for
all i.

(ii) Arbitrary long good sequences exist: Let α ∈ N be such that α 6= 0 mod j for
j = 2, . . . , n. Then (0, . . . , 0, α) is a good sequence: (0, . . . , 0, α∗). Conversely, if
α = 0 mod j for some j ∈ {2, . . . , n}, then (0, . . . , α) is not good.

(iii) Suppose that there is a k0 ∈ {2, . . . , n} such that

(a1, . . . , an) = (ak0
, . . . , an, a1, . . . , ak0−1),

i.e., the sequence admits a nontrivial shift symmetry. Then (a1, . . . , an) is not
a good sequence.

In particular there is no good sequence of the form (a, a, . . . , a), and the
number of good sequences in {0, . . . , λn−1}n is always divisible by n.

(iv) Suppose that (a1, . . . , an) is good with the “*” at ak. Then ak mod n 6= 0
and it is not possible that both ak mod (n− 1) = 0 and ak mod n = n−1 hold.

Proof. (i) and the first part of (ii) are obvious. For the second suppose that
α mod j = 0 for some j ≥ 2. Then α would disappear when considering the cyclic
translation (0, . . . , α, 0, . . . , 0) (with j−1 zeros after α.)

For the proof of (iii) suppose that the k’th element of (a1, . . . , an) has the
“*” and that k0 ≤ k. This implies that the element number k of (a1, . . . , an) and
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element number (k − k0 + 1) of (ak0
, . . . , an, a1, . . . , ak0−1) are underlined. But

these are different elements (since k0 6= 1)in contradiction to the fact that only one
element can be underlined in the case of good sequences. (In the case k < k0 one
argues similarly.)

It remains to prove (iv). We may assume that k = 1. In the case a1 mod n = 0
(resp. a1 mod (n− 1) = 0 and a1 mod n=n-1) the number a1 would disappear in
the first (resp. the second) iteration so that a1 cannot have a “*”. �

Remark: We note that λn can not be replaced by n in part (i) of the lemma:
we have (0, 0, 1∗, 1), but (0, 4, 1, 1) is not a good sequence. (Since (0, 4, 1, 1), but
(4, 1, 1, 0).)

Let us consider some examples:

The case n = 2. We have λ2 = 2 so that, by lemma 2.1(i), we only have to check
22 = 4 sequences. Two of them are good sequences, namely (0, 1∗) and (1∗, 0).
(In fact, one of these sequences is the cyclic translate of the other so that there is
essentially only one good (a1, a2).)

The case n = 3. Since λ3 = 6 there are 63 = 216 candidates. The following 20
sequences are good:

(0, 0, 1∗), (0, 0, 5∗), (0, 1∗, 1), (0, 1∗, 3), (0, 1∗, 4), (0, 2, 1∗), (0, 2, 4∗),
(0, 2, 5∗), (0, 5∗, 1), (0, 5∗, 3), (0, 5∗, 4), (1∗, 1, 2), (1, 2, 5∗), (1∗, 3, 2),
(1, 3, 5∗), (1∗, 4, 2), (2, 4∗, 3), (2, 5∗, 3), (2, 5∗, 4), (3, 5∗, 4).

Note that each of these examples gives rise to three different good sequences: We
have listed here among the three cyclic translates only the sequence that is minimal
in the lexikographic order. So there are 60 good sequences in {0, 1, 2, 3, 4, 5}3.

The case n = 4. From λ4 = 12 we conclude that we have to examine 124 = 20.736
sequences (a1, a2, a3, a4). With the help of a computer one checks easily that 3924
(or 18.92 percent) of them are good. Here are some examples. (One recognizes the
second one as the sequence that motivated the present investigations.)

(3, 1∗, 1, 4), (4, 5∗, 4, 3), (2∗, 1, 3, 2), (3, 5∗, 4, 7), (4, 6, 5∗, 5), (8, 8, 10∗, 10).

For larger n the number of candidates grows rapidly: 605 = 777.600.000 for
n = 5, 606 = 46.656.000.000 for n = 6, 4207 ≈ 2.30 · 1018 for n = 7, etc.
We therefore have determined the percentage of good sequences stochastically: we
have generated “very often” n random numbers a1, . . . , an in {0, . . . , λn−1} and
checked whether (a1, . . . , an) is good or not. Here is our list:
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n Percentage of good (a1, . . . , an) (0 ≤ ai < λn)

2 50 %

3 60/216 ≈ 27.7 %

4 3924/20763 ≈ 18.92 %

5 ≈ 9.9 %

6 ≈ 5.5 %

7 ≈ 2.8 %

8 ≈ 1.4 %

9 ≈ 0.7 %

10 ≈ 0.3 %

We complement this table with some concrete examples. For later use we have
chosen them such that the ai are not too large and not zero.

n=5: (5, 2, 8, 3, 7∗), (5, 3, 8, 7∗, 6), (6, 5, 8, 3, 1∗), (1, 4, 3, 4, 1∗), (3, 3∗, 2, 1, 8)

n=6: (9, 5, 2, 6, 2, 1∗), (3, 9∗, 8, 1, 6, 4), (8, 1, 8, 3, 2, 9∗), (4, 9, 9∗, 8, 5, 5)

n=7: (4, 6, 9∗, 3, 1, 7, 8), (1∗, 2, 2, 6, 7, 5, 4), (10, 2, 1∗, 8, 2, 1, 2), (: 2, 3∗, 2, 6, 6, 4, 7)

n=8: (7, 3, 9, 7, 3, 2, 3∗, 2), (1∗, 9, 4, 1, 6, 6, 4, 6), (2, 1∗, 3, 9, 9, 7, 6, 3)

n=9: (5, 4, 7, 6, 1∗3, 9, 1, 7), (6, 1, 4, 1∗, 2, 1, 3, 7, 1), (9, 1, 7, 7, 4, 2, 3∗, 9, 9)

n=10: (3∗, 6, 9, 2, 1, 7, 6, 5, 3, 2), (2, 2, 1, 6, 6, 4, 3, 8, 4∗, 5), (3, 7, 6, 8, 6, 6, 2, 1∗, 6, 1)

Several natural questions come to mind:

1. Is there a formula for the proportion of good sequences?
2. Is there a procedure to derive longer good sequences from known ones?
3. Can one construct systematically all good sequences of length n ?
4. Is there an easy-to-apply criterion to decide whether a sequence is good or not?
5. Are there nontrivial good sequences for every n ? (I.e., sequences that are different
from the sequences in lemma 2.1(ii).)

For question 1 we have no answer. In view of part (i) and (iv) of lemma 2.1
it is unlikly that an answer to question 2 exists. (If ak has a “*” it will lose it for
sufficiently large n). Question 3 has in fact a positive answer, the “construction”,
however, is – taking into account the huge numbers under consideration – of no
practical use:

– Fix an n and a ”target number” a ∈ {1, . . . , λn−1}.
– Find all (a1, a2) with ai ∈ {0, . . . , λn−1} such that one of the ai equals a and
such that this ai is underlined in (a1, a2). Call this collection ∆2.
– Next construct all (a1, a2, a3) that are mapped by “→” to an element of ∆2. Call
this collection ∆3.
– Continue in this way until ∆n is constructed. Now find all (a1, . . . , an) ∈ ∆n such
that all cyclic translates (ak, . . . , an, a1, . . . , ak−1) also belong to this set.

For an answer to question 4 one should note that according to the definition of
“good sequence” one needs n2 steps to check this property. For a sequence chosen
at random the test will in many cases stop much earlier since there is no need to
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continue the calculations as soon as there are two cyclic translates with different
underlined numbers. But it is unlikely that a criterion exists that needs significantly
less than n2 steps for arbitray (a1, . . . , an).

Question 5 is answered affirmatively in the next proposition. We start with
a sequence (dr, dr−1, . . . , d1) of length r and we will find conditions that imply
(dr, dr−1, . . . , d

∗
1). (It will be convenient here to let the indices decrease.)

First we introduce a further notation. Recall that (a1, . . . , an)→ (b1, . . . , bn−1)
means that (b1, . . . , bn−1) is derived in one step from (a1, . . . , an). If one or several
“→” are necessary to come from (a1, . . . , an) to a sequence (c1, . . . , cm) we will
write (a1, . . . , an)⇒ (c1, . . . , cm). (So that, e.g., (5, 2, 4, 1)⇒ (5, 4).) We have to
guarantee that (ds, ds−1, . . . , d1, dr, . . . , ds−1)⇒ (d1) for every s.

We start with (dr, dr−1, . . . , d1) in its original order. Obviously the condition
ds mod s = 0 for s ≥ 2 (condition 1) implies (dr, dr−1, . . . , d1) ⇒ (d1). Now
we translate this sequence cyclically. Let’s first deal with (ds, . . . , d1, dr, . . . , ds+1),
where s ∈ {2, . . . , r−1}. If we assume that ds mod r = s for these s (condi-
tion 2) we conclude that (ds, . . . , d1, dr, . . . , ds+1) → (dr−1, . . . , d1). And since
(dr−1, . . . , d1)⇒ (d1) (by condition 1) it follows that
(ds, . . . , d1, dr, . . . , ds+1)⇒ (d1).

It remains to treat (d1, dr, dr−1, . . . , d2), this is the most difficult case. We will
assume that β := d1 mod r ∈ {1, . . . , r−2} (condition 3). When β = 1 we arrive at
(d1, dr, dr−1, . . . , d2)→ (dr−1, . . . , d2, d1), and (dr−1, . . . , d2, d1)⇒ (d1) (by con-
dition 1) so that we are done. More interesting is the case β ∈ {2, . . . , r−2}. Then
(d1, dr, dr−1, . . . , d2) → (ds, . . . , d2, d1, dr, . . . , ds+2), where s ∈ {2, . . . , r−2}. If
we knew that ds mod (r−1) = s for s ∈ {2, . . . , r−2} (condition 4) it would follow
that (ds, . . . , d2, d1, dr, . . . , ds+2)→ (dr−1, . . . , ds+2, ds, ds−1, . . . , d2, d1). (This is
the original sequence, but dr and ds+1 disappeared.) In order to guarantee that
d1 survives at this stage we now assume that dr−1 mod (r−2) = 1 (condition 5).
Then

• (dr−1, . . . , ds+2, ds, ds−1, . . . , d2, d1)→ (ds−1, . . . , d1, dr−1)
(if r−1 = s+2, case A) or

• (dr−1, . . . , ds+2, ds, ds−1, . . . , d2, d1)→ (dr−3, . . . , ds+2, ds, . . . , d1, dr−1)
(if r−1 > s+2, case B)

will hold. Let us treat case A first. If we assume that r ≥ 6 (condition 6) it follows
from r−1 = s+2 that s ≥ 3 so that s−1 ≥ 2. Consequently, if dt mod (t+1) = t for
t ∈ {2, . . . , r−2} would hold (condition 7 , we will use it first for t = s−1) we could
conclude that (ds−1, . . . , d1, dr−1) → (ds−1, . . . , d1). Condition 1 now guarantees
that (ds−1, . . . , d1) ⇒ (d1), i.e, we have shown that (d1, dr, dr−1, . . . , d2) ⇒ (d1)
in case A.

In order to treat case B we observe that (dr−3, . . . , ds+2, ds, . . . , d1, dr−1) has
r−3 elements, and thus, by condition 1, dr−3, . . . , ds+2 disappear:

(dr−3, . . . , ds+2, ds, . . . , d1, dr−1)⇒ (ds, . . . , d1, dr−1).

6



Once more condition 7 comes into play (this time applied for t = s). We conclude
that (ds, . . . , d1, dr−1) → (ds, . . . , d1). But (ds, . . . , d1) ⇒ (d1) by condition 1 so
that we have in fact shown that (d1, dr, dr−1, . . . , d2)⇒ (d1) also in case B.

We summarize our investigations in

Proposition 2.2. Fix r ∈ N. One has (dr, dr−1, . . . , d
∗
1) provided that the fol-

lowing conditions are satisfied:
ds mod s = 0 for s ≥ 2; ds mod r = s for 2 ≤ s < r; d1 mod r ∈ {1, . . . , r−2};
ds mod (r−1) = s for s ≥ 2; dr−1 mod (r−2) = 1; r ≥ 6; dt mod (t+ 1) = t for
t ∈ {2, . . . , r−2}.

Examples: Suppose that r ≥ 6. The conditions of the proposition are obviously met
if ds = s for s ≥ 2 and d1 mod r ∈ {1, . . . , r−2}. Thus, e.g., (20, 19, . . . , 3, 2, α∗)
will hold for every α such that α mod 20 ∈ {1, . . . , 18}. Examples with di < λr
and di 6= i can also easily be found. For example, if r = 8, we have λ8 = 840, and
d4 will have to satisfy the conditions d4 mod 4 = 0, d4 mod 8 = 4, d4 mod 7 = 4,
d4 mod 5 = 4. Not only d4 = 4 is admissible, but also d4 = 284.

With a similar analysis one can prove:

Proposition 2.3. The sequence (0, . . . , 0, dr, . . . , d1) starts with m zeros, and
n := m+ r. Then (0, . . . , 0, dr, . . . , d

∗
1) provided that:

ds mod s = 0 for s ≥ 2; dr mod (r+m2) = r for m2 = 1, . . . ,m; ds mod n = s
for s ∈ {2, . . . , r−2}; d1 mod n ∈ {1, . . . , n−2}; ds mod (n−1) = s for s =
2, . . . , r−1; dr mod r−1 = 1; r ≥ 5; dr−3 mod (r−2) = r−3; dt mod (t+1) = t
for t ∈ {2, . . . , r−2}.

Examples: As in the preceding proposition the choice ds = s for s = 2, . . . , r is
admissible. For large m, however, it might be difficult to find further examples.

3. Very good sequences

Sometimes good sequences have a special property:

Definition 3.1. If both (a1, . . . , ak−1, a
∗
k, ak+1, . . . , an) and (an, . . . , ak+1, a

∗
k,

ak−1, . . . , a1) hold, then (a1, . . . , ak−1, ak, ak+1, . . . , an) is called a very good
sequence. To state it otherwise: (b1, . . . , bn) ⇒ (ak), where (b1, . . . , bn) runs
through all translates of the sequence and its reflection. In this case we will
write (a1, . . . , ak−1, a

∗∗
k , ak+1, . . . , an).

It should be stressed that the condition is stronger than the requirement that
both (a1, . . . , an) and (an, . . . , a1) are good sequences: the number with the “*”
must be the same. (E.g. (1∗, 7, 4, 3, 4) and (4, 3, 4, 7∗, 1) hold, but (1, 7, 4, 3, 4) is
not very good.)

With the help of a computer it is not difficult to find examples:

n=3: (0, 0, 1∗∗), (0, 0, 5∗∗). (In fact these are essentially the only very good se-
quences in {0, 1, 2, 3, 4, 5}3.)
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n=4: (10, 1, 4, 11∗∗), (2, 5∗∗, 8, 9), (6, 5∗∗, 2, 7), (5∗∗, 8, 3, 4).

n=5: (4, 1, 2, 11∗∗, 2), (7∗∗, 2, 4, 4, 12), (4, 2, 9∗∗, 2, 4), (2, 4, 6, 2, 1∗∗).

n=6: (2, 12, 4, 6, 12, 1∗∗), (3, 1, 6, 12, 10, 11∗∗), (9∗∗, 4, 1, 8, 1, 4).

n=7: (2, 11∗∗, 3, 6, 6, 9, 7), (10, 1, 7, 6, 5, 11∗∗, 2), (5, 6, 12, 9, 7, 14, 11∗∗), .

n=8: (1, 6, 1, 8, 12, 11∗∗, 10, 8), (4, 6, 11∗∗, 4, 3, 6, 6, 4), (1, 10, 3, 3, 17∗∗, 14, 12, 20).

n=9: (17, 16, 1, 9, 10, 4, 2, 11∗∗, 14), (10, 9, 7, 1, 4, 18, 17∗∗, 6, 15).

n=10: (5, 4, 7, 19, 2, 18, 3, 2, 17∗∗, 8), (8, 23∗∗, 2, 25, 6, 2, 1, 18, 15, 25).

Certain very good sequences have a special structure: one has a good sequence
where the length n is odd, the central element has the “*” and the sequence
is symmetric with respect to the center. An example is the very good sequence
(4, 2, 9∗∗2, 4) above, more – even rather long – such sequences can easily be found by
checking ”many” randomly generated symmetric n-tuples with a computer. (In this
way we found, (1, 2, 0, 8, 8, 7, 7∗∗, 7, 8, 8, 0, 2, 1), (1, 1, 1, 7, 7, 6, 9∗∗, 6, 7, 7, 1, 1, 1),
(0, 0, 0, 10, 8, 8, 18, 10, 7∗∗, 10, 18, 8, 8, 10, 0, 0, 0) and many others.) This motivates
the strategy to find very good sequences by identifying good sequences with odd n
that are symmetric with respect to the center and where the central element has
the “*”.

Lemma 3.2. (i) Let (a1, . . . , ar) ∈ Nn
0 be a sequence where the k’th element is

underlined such that a1 = r and ai ≥ r for all i. Expand (a1, . . . , ar) by writing
s1 zeros at the beginning and s2 zeros at the end:

(0, . . . , 0, a1, . . . , ar, 0, . . . , 0)

Then (0, . . . , 0, a1, . . . , ak−1, a
∗
k, ak+1, . . . , ar, 0, . . . , 0) provided that s1+s2 ≥

M + 1, where M = maxi=1...,r ai.

(ii) Suppose that in addition r = 2l + 1 is odd, that ak is the central element
al+1 and that the sequence is symmetric: al+1+i = al+1−i for i = 1, . . . , l.
Then (0, . . . , 0, a1, . . . , al, a

∗∗
l+1, al+2, . . . , ar, 0, . . . , 0) holds.

Proof. (i) We have to show that in all cyclic translates the number ak survives.
This is clear by our assumption for the translate (0, . . . , 0, a1, . . . , ar). We consider
next a translate (0, . . . , 0, a1, . . . , ar, 0, . . . , 0). Since a1 = r we conclude that

(0, . . . , 0, a1, . . . , ar, 0, . . . , 0) ⇒ (a1, . . . , ar, 0, . . . , 0)

→ (0, . . . , 0, a1, . . . , ar)

⇒ (ak).

It remains to deal with translates of the form (al, . . . , ar, 0, . . . , 0, a1, . . . , al−1) for
some l with at least M + 1 zeros in the middle. Since r ≤ al ≤ M we conclude
that

(al, . . . , ar, 0, . . . , 0, ar, . . . , al+1) → (0, . . . , 0, a1, . . . , ar, 0, . . . , 0)

⇒ (a1, . . . , ar, 0, . . . , 0)

→ (a1, . . . , ar)

⇒ (ak).
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(ii) follows at once from (i). �

Proposition 3.3. For every n0 there exist very good sequences with at least n0
nonzero elements.

Proof. We show that one can find sequences (a1, . . . , ar) for every r = 2l+1 that
satisfy the conditions of lemma 3.2 (ii). Thus it suffices to choose r ≥ n0.

We start by setting a1 = ar = r. Then (a1, . . . , ar) → (a2, . . . , ar). Now we
choose any a2 ≥ r such that a2 mod (r − 1) = (r − 2) and a2 mod (r − 2) = 0
(e.g., a2 = (r − 1)(r − 2) + (r − 2) = r(r − 2)), and we put ar−1 := a2. This
guarantees that

(a2, . . . , ar)→ (a2, . . . , ar−1)→ (a3, . . . , ar−1).

We continue with this strategy: a3 satisfies a3 ≥ r, a3 mod (r − 2) = (r − 3),
a3 mod (r − 3) = 0, ar−2 := a3 etc. In this way we arrive at (a1, . . . , ar) ⇒
(al+1, al+2), and thus it suffices to choose an odd al+1 such that al+1 ≥ r. This
shows that (a1, . . . , al, al+1, al+2, . . . , ar). Lemma 3.2 (ii) now provides the very

good sequence

(0, . . . , 0, a1, . . . , al, a
∗∗
l+1, al+2, . . . , ar, 0, . . . , 0),

where the sequence starts and ends with s zeros (s arbitrary such that 2s > max ai).
�

Remark: A “minimal” candidate for which lemma 3.2 (ii) together with the preceding
proposition could possibly be applied would be the sequence (r, . . . , r) ∈ Nr

0 for odd
r > 2. For which r is it true that the central element is underlined? Among the
odd r in {3, . . . , 20.000} the numbers r = 3, 7, 171, 513, 517, 519, 529, 531 are the
only examples. It is open whether infinitely many such r exist and why there is this
mysterious accumulation near 520.

4. Mathematical magic

Our starting point was a magic trick. By our investigations variations are possi-
ble. Here are some proposals.

1. Choose any good or very good sequence from our supply, e.g. (2, 4, 6, 2, 1∗∗),
and realize it by using playing cards or blank cards with numbers written on them.
(We will assume that Ace, Jack, Queen and King count 1, 2, 3, 4, respectively):

The very good sequence (2, 4, 6, 2, 1∗∗).
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This little deck might be cut by a spectator arbitrarily often, also – in the case of
very good sequences – the order might be reversed by counting the cards one by one
on the table. The magician knows the card that will survive the advanced Australian
shuffle (in our example it will be the Ace).

2. The three numbers 7, 1, 2 have the property that they give rise to good sequences
in their original and in their reflected order: (7∗, 1, 2) and (2, 1∗, 7). Put three cards
that represent these values faceup side by side on the table. A random number k
is generated by throwing a dice. Now the magician turns his back to the table and
asks a spectator to interchange arbitrarily k times two of the three cards. Then
he knows: In the case of even (resp. odd) k the cards now form a cyclic translate
of 7, 2, 1 (resp. of 2, 1, 7). It is therefore guaranteed that the number 7 (resp. the
number 1) will survive our advanced Australian shuffle when the cards on the table
are put together properly (from top to bottom the left, middle and right card).

Here are some other triples that could also be used: (6, 7∗, 1) and (1∗, 7, 6);
(7, 8, 1∗) and (1, 8, 7∗); (6, 1∗, 7) and (7∗, 1, 6).

Very good sequences with three elements exist also. Then the spectator can
choose the order of the three cards completely arbitrarily. But there are essentially
only two candidates, namely (0, 0, 1∗∗) and (0, 0, 5∗∗). By lemma 2.1(i) (6, 6, 1∗∗),
(6, 12, 1∗∗), (6, 6, 5∗∗) and (6, 12, 1∗∗) work similarly well. But 12 is too large for
our purpose and a repeated 6 decreases the number of different permutations. (This
fact, however, will be overlooked by most spectators.)

3. Choose a very good sequence of four elements where the numbers that are
(cyclically) neighbours of the element with the “**” are identical. As in illustration
we consider the sequence (6, 5∗∗, 6, 4).

The very good sequence (6, 5∗∗, 6, 4).

Ask a spectator to arrange them in any order subject to the condition that red and
black cards alternate. The advanced Australian shuffle will end with the five.

If there are German speaking people in the audience one can repeat the trick
with the same cards, this time using the numbers of the letters in the German
words of the suits: then one deals with (3, 4, 5∗∗, 4) in disguise. Provided that red
and black cards alternate one can be sure that the Kreuz-card (the 6 of clubs) will
survive.

Similarly well one could deal with (4, 5∗∗, 4, 7) , (6, 1∗∗, 6, 4), (2, 3, 2, 5∗∗) or
(6, 4, 6, 1∗∗),
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