9. Übungsblatt

Abgabe: Mo, 23.1.08

 $Aufgabe\ 1$ Sei G eine lineare algebraische Gruppe. Beweisen Sie:

- (a) Der unipotente Anteil G_u von G ist eine abgeschlossene Teilmenge von G.
- (b) Falls G abelsch ist, dann sind G_u und G_s Untergruppen von G.

Aufgabe 2 Bewiesen Sie: Weder G_u noch G_s ist eine Untergruppe von $G = SL_n(k)$ für $n \geq 2$.

Ist das ein Widerspruch zu Aufgabe 1?

Aufgabe 3 Zeigen Sie, dass U_n eine nilpotente Gruppe ist.