6. Übung: Lineare Algebra I

Sommersemester 2005 Barbara Baumeister, Abgabe: Mo, 30.5.05

(1) Beweisen Sie:

Sei (G,\star) eine Gruppe und $U\subseteq G$. Dann gilt $U\le G$ genau dann, wenn $U\ne\emptyset$ und wenn die folgenden Bedingungen gelten:

- (i) Für alle $u, v \in U$ ist stets $u \star v \in U$.
- (ii) Ist $u \in U$, dann ist auch $u^{-1} \in U$.
- (2) Sei $m \in \mathbb{N}$. Zeigen Sie, dass $(m\mathbf{Z}, +)$ eine Untergruppe von \mathbf{Z} ist.
- (3) Sei (G, \star) eine endliche Gruppe, die eine gerade Anzahl von Elementen enthält. Zeigen Sie, dass es ein vom neutralen Element e verschiedenes Element a mit $a \star a = e$ gibt.
- (4) Sei R* die Gruppe der von 0 verschiedenen reellen Zahlen bezüglich der Multiplikation und R die Gruppe der reellen Zahlen bezüglich der Addition. Man prüfe, ob die folgenden Abbildungen Gruppenhomomorphismen sind: (Falls dies der Fall ist, beweisen Sie es, falls nicht, belegen Sie es durch ein Gegenbeispiel).
 - (a) $f: \mathbf{R}^* \to \mathbf{R}^*, x \mapsto x^4$.
 - (b) $f: \mathbf{R}^* \to \mathbf{R}^*, x \mapsto 4x$.
 - (c) $f: \mathbf{R} \to \mathbf{R}, \ x \mapsto x^4$.
 - (d) $f: \mathbf{R} \to \mathbf{R}, \ x \mapsto 4x$.
 - (e) $f: \mathbf{R} \to \mathbf{R}^*, x \mapsto 4^x$.