4. Übungsblatt

Abgabe: Mo, 26.11.07

- **Aufgabe 1** Zeigen Sie Korollar (2.3.12): Für $k = \overline{k}$ sind J und V Bijektionen zwischen den folgenden Mengen:
 - (i) $\{X \subseteq k^n \mid X \text{ affin algebraisch }\}$ und $\{a \leq k[T] \mid a = \sqrt{a}\}.$
 - (ii) $\{X \subseteq k^n \mid X \text{ affin algebraisch und irreduzibel }\}$ und $\{a \leq k[T] \mid a \text{ ist ein Primideal }\}$.
 - (iii) $\{\{x\} \mid x \in k^n\}$ und $\{a \leq k[T] \mid a \text{ ist ein maximales Ideal}\} = \{m_x \mid x \in k^n\}.$
- **Aufgabe 2** Zeigen Sie, dass die irreduziblen Komponenten eines topologischen Raums T eindeutig sind:

Angenommen

$$T = \cup_{i}^{n} V_{i} = \cup_{j}^{m} W_{j},$$

wobei die V_i und W_j irreduzible Komponenten sind und wobei $V_i \not\subseteq V_j$ und $W_i \not\subseteq W_j$ für $i \neq j$. Zeigen Sie, dass n = m und $V_i = W_j$ für eine geeignete Nummerierung.

- **Aufgabe 3** Sei $a = (T_2^2 T_1^3)$. Bestimmen Sie V(a) und die irreduziblen Komponenten von V(a).
- **Aufgabe 4** Sei $a = (T_1T_2, T_1T_3, T_2T_3) \subseteq k[T_1, T_2, T_3].$
 - (i) Finde V(a).
 - (ii) Ist V(a) irreduzibel?
 - (iii) Gilt a = J(V(a))?
 - (iv) Zeigen Sie, dass a nicht von zwei Elementen erzeugt werden kann.