Subgroup structure of finite simple groups

The study of representations of groups as permutation groups
(ie. permutation representations), and the study of the sub-
oroup structure of groups, are really the same subject, viewed
from two slightly different perspectives.

Namely the indecomposable permutation representations of
a group G are its transitive representations, and the equivalence
classes of such representations are in 1-1 correspondence with
the conjugacy classes of subgroups of G.

The modern theory of finite permutation groups proceeds by

(1) first reducing a permutation group problem to the prim-
itive case, and then

(2) appealing to the structure of primitive permutation groups.||
Hopefully the problem can be solved unless the group is almost
simple, so we are reduced to

(3) the study of primitive permutation representations of al-
most simple groups, or equivalently, maximal subgroups of al-
most simple groups. Then

(4) we appeal to the classification of the finite simple groups,
and information about the maximal subgroups of such groups,
to hopefully complete the solution of the problem.

This process has proved to be very successful over the last 25
years.

Moreover by now we have good qualitative knowledge of the
maximal subgroups of almost simple groups, although very dif-
ficult technical problems remain open, particularly in the case
of the classical groups.




So perhaps it is time to break some new ground and look
deeper into the lattice of subgroups of finite groups, beyond the
maximal subgroups, and particularly at the subgroup lattices of

finite simple groups.

But what are the right questions to ask?

[ don’t know the answer, but over the last year or two (in
collaboration with John Shareshian) I've been investigating an
old question (due to Palfy and Pudlak) about the subgroup lat-
tice of finite groups, with the hope that, in grappling with that
problem, I'll be led to less specialized and more fundamental

questions.
Here is the theorem which motivates the problem:

Theorem. (Palfy-Pudlak [PP]) The following are equivalent:
(1) Every finite lattice is isomorphic to an interval in the
lattice of subgroups of some finite group.
(2) Every finite lattice is isomorphic to the lattice of congru-
ences of some finite algebra.

Of course this leads to:

Palfy-Pudlak Question. Is each nonempty finite lattice 1so-
morphic to a lattice Og(H) of overgroups of H in G, for some

finite group G' and subgroup H7

The answer to the Palfy-Pudlak Question is almost certainly

no.
Indeed there is a conjecture of Shareshian that, if true, what

imply that relatively few finite lattices are overgroup lattices in
finite groups.



But how to prove this?

Reduce to the case of almost simple groups.

'l discuss a reduction of that flavor, aimed at showing that
certain classes of lattices are not overgroup lattices.

After the reduction, one is left with two problems about al-
most simple groups. I will concentrate on one of those problems:
Show that for certain classes C of lattices, there exists no almost

simple group G and subgroup H of G such that Og(H) € C.

This focuses attention on the overgroups in almost simple
groups of suitable subgroups.

I will concentrate on groups of Lie type, and usually on the
classical groups.

There exist many results on overgroups in simple groups of
certain subgroups.

eg. overgroups of long root subgroups and overgroups of max-
imal tori in groups of Lie type.

To attack the Palfy-Pudlak question, it appears to be usetul
to modify and extend those results.

eg. describe overgroups of short root subgroups.

Later I'll discuss existing theorems on overgroups 1n groups
of Lie type of root subgroups and maximal tori, and some of the
extensions I've obtained.

I'll also point out open problems of this sort.

Still later we’ll see how to use such theory to to determine
the subgroups H of a group G of Lie type, such that the lattice
O¢(H) has one of several tight structures.

eg. the subgroups H of depth 2; that is those H such that
the longest chain in Og(H) is of length 2.
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Section 1. Lattices

A lattice is a poset A such that for each x,y € A, there is a
least upper bound z V y and a greatest lower bound x A y for
z,y in A.

Let A be a finite lattice.
Then A has a greatest member oo and least member 0; set

A=A —{0,00}.

Regard A’ as a graph where the adjacency relation is the
comparability relation.

Define the depth of A to be the maximal length of a chain in

A
The lattices of depth 2 are called M-lattices and the M-lattice

with n + 2 elements is denoted by M,.

An interval in A is a sublattice of the form [z,y] = {z € A :
v <y <z} for some z <y in A.

Example 1.1. Let G be a finite group.

Then the poset of all subgroups of G, partially ordered by
inclusion, is a lattice, and for H, K < G, HV K = (H,K) and
I AK = H T K

Write Og(H) for the set of all overgroups of H in G.
Thus Og(H) is the interval [H, G].

Define H to be of depth d in G if Og(H) is of depth d.
Thus the maximal subgroups of G are the subgroups of depth




Palfy-Pudlak Question. Is every nonempty finite lattice iso-
morphic to Og(H) for some finite group G and some subgroup
H of G7

The Palfy-Pudlak Question has remained open for the roughlyli
30 years since Palfy and Pudlak proved their theorem. However
presumably the Question fails badly. For example there is the
following conjecture of John Shareshian:

Conjecture. (Shareshian [Sh]) Let G be a finite group, H < G,
and A(H,G) the order complex of the poset Og(H)". Then
A(H,G) has the homotopy type of a wedge of spheres.

Example 1.2. Write A(m) for the lattice of subsets of an m
set, and define a DA-lattice to be a lattice A such that A’ has
r > 1 connected components A, 1 < ¢ < r, and for each 1,
AL = A(m;)" for some m; > 2. If Sharesian’s Conjecture holds,
then there is no finite group G and subgroup H of G with O¢(H )
a DA-lattice.

Example 1.3. M-lattices. |

Define 91y to consist of the integers 1, 1 4+ ¢q, 1 1 géjll, 2+ q,
for 7 an odd prime and ¢ a prime power. Let 91 be the set of
integers n such that M,, & Og(H) for some finite group G' and
subgroup H. In [BL|, Baddeley and Lucchini conjecture that
Ny = M. Moreover they reduce the proof of this conjecture to
four or five statements about finite simple groups.
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Definition 1.4. Let A be a finite lattice.
Define A to be a D-lattice if A is disconnected and at least

two connected components of A’ contain edges.
For example M-lattices and DA-lattices are disconnected,
and DA-lattices are D-lattices, but M-lattices are not D-lattices.|i

The dual of A is the lattice obtained by reversing the partial
order.

Define A to be a C*-lattice if each x € A’ is of the form
z =mj A--- Am, for some maximal members m; of A’.

Further A is a C-lattice if both A and its dual are C'*-lattices.

Finally A is a CD-lattice if it is both a C-lattice and a D-

lattice.

Observe that DA-lattices are C D-lattices.



Section 2. Overgroup lattices

In this section G is a finite group and H is a subgroup of G.
Write kery (G) for the largest normal subgroup of G contained
in H. Thus kery(G) = 1 precisely when G acts faithfully on

the coset space G/H.
For D < G, write Zp(H) for the set of H-invariant subgroups

of D, and set Vp(H) =Zp(H)NOp(H N D).
Constraints on Og(H) can lead to strong constraints on the
structure of G.

Proposition 2.1. [A2] Assume kerg(G) =1 and Og(H) s a

D-lattice. Then
(1) G has a unique minimal normal subgroup D.

(2) G = HD, so G is quasiprimitive on G/H.

(3) D is the direct product of the set L of components of G,
and H is transitive on L.

(4) The map ¢ : Oc(H) — Vp(H) is an isomorphism of
lattices, where p(U) =UND.

Remark 2.2. There is a similar result when H is of depth 2,
except that there are many more possible structure for G, and

the proof is much more complicated.

We wish to show that Og(H) can not be a DA-lattice. Since
Og(H) = OG/R:ETH(G)(H/ kerH(G)),

we may assume kery(G) = 1, so Proposition 2.1 gives us infor-
mation about GG and the embedding of H in G.



To get a handle on Og(H ), we need the notions of “signalizer
lattices” and “lower signalizer lattices”.

Definition 2.3. Let L be a nonabelian finite simple group.
Define 7/(L) to be the set of triples 7 = (H, N, I) such that
H is a finite group, I < N <G, and F*(N/I) = L.

Assume 7 € 7 (L) and write Ny for the preimage in N of
F*(N/I).

Define YW = W(7) to be the set of N-invariant subgroups W
of H such that W NN = I. Define

P =P(r) = {(V,K) € WxOpn,v)(VN) : NoV/V = F*(K/V)} }

Partially order P by (Vi,K7) < (Va, Ka) if Vo < Vi and Kg <
K;.
Let A(7) be the poset obtained by adjoining a least element

0 to P.
It turns out that A(7) is a lattice called a signalizer lattice.

Given a normal subgroup Hy of H, define
Wo = WQ(T,HU) — {W eW: W< H{]I},

and partially order Wy by inclusion.

Define = = Z(7, Hp) to be the poset obtained by adjoining a
greatest member oo to Wy.

Then = is a lattice called a lower signalizer lattice.
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Proposition 2.4. [A2] Assume D < G and H is a comple-
ment in G to D. Assume D is the direct product of the set L
of components of D, H is transitive on L, and L € L 1is simple
with Inn(L) < Autg(L). Then

(1) 7 = (H, Nu(L),Cr (L)) € T(L), and

(2) Oq(H) = A(T).

If kery(G) = 1 and Og(H) is a D-lattice, then Proposition
2.1 comes close to supplying the hypotheses of Proposition 2.4;
to close the gap, we need the extra constraints: # N D = 1 and

for L € L, Inn(L) < Autg(L).

Definition 2.5. Let A be a finite lattice. Write G(A) for the
set of pairs (G, H) such that G is a finite group, H < G, and
O¢(H) is isomorphic to A or its dual. Let G*(A) be the the set
of pairs (G, H) € G(A) with |G| minimal.

Let A be a DA-lattice. We need to show that the set G*(A) of
minimal counter examples is empty. The follow theorem begins
our reduction to the almost simple case:

Theorem 2.6. [A2] Assume A is a CD-lattice and (G,H) €

G*(A). Then either G is almost simple or the following hold:
(1) D = F*(Q) is the direct product of the set L of compo-

nents of G, the components are simple, and H is transitive on

Lo
(2) H is a complement to D in G.

(3) Let L € L. Then Inn(L) = AutH(L); T = (H, NH(L),,CH(L)) EI
T(L), and Og(H) = A(T).
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Now we must analyze signalizer lattices.

Theorem 2.7. [A3] Assume L is a nonabelian finite simple
group, A is a CD-lattice, T = (H,N,I) € T(L) with A(T) iso-
morphic to A or its dual, and |H| is minimal subject to this con-
straint. Then F*(H) is the direct product of nonabelian simple
groups permuted transitively by H.

Finally to complete our reduction, we have:

Theorem 2.8. [A3] Assume A is a DA-lattice which 1is 1so-
morphic to an overgroup lattice in some finite group. Then there
exists an almost simple group G such that either

(1) A = Og(H) for some subgroup H of G, or

(2) there exists a nonabelian finite simple group L and T =
(G,N,I) € T(L) such that G = F*(G)N = Wo(, F*(G)),N),
and A 2 2(1, F*(G)).

Remark 2.9. We wish to show that Pudley-Pudlak Question
has a negative answer, by showing no DA-lattice 1s an overgroup
lattice. Theorem 2.8 reduces that problem to two problems
about almost simple groups G:

Problem 1. There exists no subgroup H of G such that Oy (G)
is a DA-lattice.

Problem 2. There exists no simple group L and 7 = (G, N, I) €|}
7 (L) such that the lower signalizer lattice Z(7, F'*(G)) is a DA-

lattice.
In [ASh| and [A4], these problems are solved when G is an

alternating or symmetric group. We will concentrate on the case
where [*(G) is a classical group.
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Remark 2.10. There exists an analogous reduction for M-
lattices.

Namely to prove the Baddeley-Lucchini conjecture that 91 =
Mo, it (essentially) suffices to prove that, under the hypotheses
of cases (1) and (2) of Theorem 2.9, when A is an M,,-lattice,

then n € Ny.
Further in [B], A. Basile solves problem 1 when G 1is alter-

nating or symmetric.

However I fear the M-lattice problem might be very difficult
when G is classical, whereas the problem for DA-lattices should

be tractable.
This is because we have relatively little control over nearly

simple maximal subgroups of classical groups, whereas the work
of Liebeck-Praeger-Saxl supplies relatively good control over al-
most simple primitive subgroups of symmetric groups.

Thus we can’t expect that Basile’s success with M-lattices in
symmetric groups will translate into an analogous result for the
classical groups.

But we can hope that the extra structure possessed by DA-
lattices, will make it possible to overcome such difficulties in
treating those lattices.

Note that in some respects, the lower signalize lattices are

easier to work with.

Namely if W € W) is a nontrivial lower signalizer, then W N
is not almost simple, so the difficulties arising from almost sim-
ple subgroups are not encountered in this case.




12
Section 3. The finite classical groups
In this section we assume the following hypothesis:

Hypothesis 3.1. (The (V, f)-setup) F' is a finite field of char-
acteristic p, V is an n-dimensional vector space over F', q = p°
is a prime power, and f: V x V — F'is a form on V satistying
one of the following:

(I) f is trivial and F' = F,.

(IT) f is symplectic and F' = F,,.

(IIT) f is orthogonal with quadratic form (), such that for
each z,y €V, Q(z+y) = Q(z) + Q(y) + f(z,y), and F' = F,.

(IV) f is unitary and F' = F .

Remark 3.2. Recall in case (III) when p is odd that for z € V,
Q(z) = f(z,2)/2, so that f and @ determine each other. On
the other hand when p = 2, there are many quadratic forms ¢
associated to f. Also odd dimensional orthogonal spaces exist
only when ¢ is odd.
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Notation 3.3. Let I'L(V) be the group of semilinear maps g
on V: that g preserves addition, and for some o(g) € Aut(F)
and alla € F and v € V, (av)g = a® 9.

Let I' = I'(V, f) (or I'(V, Q) in III) consist of those g € I'L(V')
preserving f (or @Q); that is for some 7(g) € F# and for all
u,v € V, f(vg,ug) = 7(g)f(u,v)79 (or Q(vg) = 7(9)Q(v)”¥
in IIT).

Let A = A(V, f) (or A(V,Q) in III) be the group of simi-
larities of (V, g); that is the subgroup of I' consisting of those g
with o(g) = 1.

Let O = O(V, f) (or O(V, Q) in III) be the group of isometries
of (V, f); that is the subgroup of those g € A with 7(g) = 1.

Define R to be the set of root subgroups of O and write

QO =Q(V, f) (or QV,Q) in III) for the subgroup (R) of O.

Let Z = Z(A) be the group of scalar maps on V, and G =
0Z.

Let PG (V) be the projective geometry of V. Thus PG(V) is
the poset of nonzero proper subspaces of V', partially ordered
by inclusion. We have a representation P : I' — Aut(PG(V)),
where for g € ' and U € PG(V), P(g) : U — Ug, and of course
7 = ker(P) is the kernel of P. Write PT', PA, etc. for the
image of the corresponding group under P.

Recall points of V (or really of PG(V)) are 1-dimensional
subspaces, lines are 2-dimensional subspaces, and hyperplanes
are subspaces of codimension 1.
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For our purposes, a classical group over F' is a group G
such that G < G < T, or the image PG of such a group 1n

Aut(PG(V)).
Definition ' 3.4. Let U < V. Recall
Ut ={veV:f(u,v)=0for allu € U}.

The form f (or @ in III) restricts to a form on U, which we also
write as f.

The f-radical of U is Rad;(U) = U N U+, and in IIT when ¢
is even we also have the Q-radical Radg(U) = {v € Rad;(U) :
Q(v) = 0}.

The radical Rad(U) of U is defined to be Rady(U), unless 111
holds with ¢ even, where Rad(U) = Radg(U).

Further U is nondegenerate if Rads(U) = 0 and U 1is totally
singular if Rad(U) =U.

Recall that if U is nondegenerate, then (U, f) (or (U,Q) in
[IT) also satisfies Hypothesis 3.1.

Remark 3.5. When f is nontrivial, the form f adds extra
combinatorial structure to the projective geometry of V. Indeed
the building of the classical group is essentially the subposet of
PG(V) consisting of the totally singular subspace of V.
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We will be investigating the subgroup structure of a classical
oroup G using its linear representation on (V, f), and the pro-
jective representation on the building. We begin by recalling
a theorem which gives a qualitative description of the maximal
subgroups of G. I will give only an imprecise statement of the
result.

Theorem 3.6. [Al] For each subgroup H of G, either

(1) H stabilizes one of a number of natural structures on V,
or

(2) PH is almost simple, and H is absolutely irreducible and
primitive on V, tensor indecomposable, etc.

The “natural structures” consist of certain subspaces, direct
sum decompositions, extension field structures, subfield struc-
tures, tensor product structures, etc. Theorem 3.6 says that if
M is a maximal subgroup of G, then either M is the stabilizer
in G of one of the structures, or PM is almost simple, and the
representation of M has various properties, resulting from the
constraint that M stabilizes none of the structures.
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The question remains, which of these candidates for maximal
subgroups is actually maximal?

The answer is supplied for the stabilizers of structures in a
theorem of Kleidman and Liebeck in [KL].

More precisely, [KL] tells us which stabilizers are maximal
when n = dim(V') > 13.

Old papers list the maximal subgroups of certain very small
dimensional classical groups, and I believe Kleidman’s thesis,
and some of his published work, treats some of the other small

CasSes.

One corollary to some of the work on overgroups we will be
discussing, is an alternate approach to determining when certain
stabilizers are maximal, which works in all dimensions.

Definition 3.7. The Witt index of (V, f) is the maximal di-
mension of a totally singular subspace.

In I the Witt index is n, while in IT and IV, and in III when
n is odd, it is the greatest integer less than or equal to n/2.

In case III when n is even, the Witt index is n/2 or (n/2) —1;
define the sign of (V, Q) to be +1 or —1 in the respective case,
and write sgn(V) for the sign.
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Section 4. Finite groups of Lie type

In this section G is a finite group of Lie type over a finite
field of characteristic p.

[ won’t be precise as to what that means, and my use of the
term will be more inclusive than is usually the case. But what
ever it means, it includes the following facts:

Associated to G is a root system ®, and a choice ®* of positive
roots. Further associated to each root a € ® is a subgroup U,
of G called the root subgroup of c. Write €2 for the subgroup of
(G generated by the root subgroups U,, a € @, and write

U= || Ua

aED+

for the product of the root subgroups determined by the positive
roots. Then U € Syl,(Q), and ® determines a certain comple-
ment 7" to U in B = Ng(U). The conjugates of B are the
Borel subgroups of G, and the conjugates of T' are the Cartan
subgroups of G.

If G is untwisted, then each root subgroup is isomorphic to
the additive group of a certain finite field I’ of order ¢ and
characteristic p, but for the twisted groups the situation is a bit
more complicated.

The root subgroups of G are the conjugates of the subgroups
U,, a« € ®. The roots have one or two lengths. In the first
case all root groups are long, and in the latter, the long root
subgroups are conjugates of the U,, with «a a long root.
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Example 4.1. The classical groups are groups of Lie type.
In I and II, and in III when n is odd, or when n is even and
sgn(V) = +1, the groups are untwisted and the defining field £

1s the field of 3.1.
In the remaining cases, GG is twisted.

Recall a transvection on V is a nontrivial element ¢t € GL(V)
such that [V,t] is a point (called the center of V'), Cy(t) is a

hyperplane (called the azis of t), and [V,t] < Cy(?).
The root group of t is the set of transvections with the same

axis and center as t (together with 1).

In I, there is one root length, and the root subgroups of G, in
the Lie theoretic sense, are the root subgroups of transvections.

In II and IV, for each transvection ¢, the center [V,t] of ¢ is
a singular point, and [V, t]* is the axis of t.

Again the long root group U, is the root group of some
transvection t, except in IV when n is odd, where U, 1s non-
abelian of order ¢° and Z(U,) is the root group of the transvec-

tion t.

Finally in III, the long root groups are in 1-1 correspondence
with totally singular lines [, with the corresponding root group

R =Cg(lt).
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Parabolic Subgroups.

Recall the parabolic subgroups of G are the overgroups of
Borel subgroups. Further if [ is the number of simple roots
in ® then the lattice Og(B) is isomorphic to A(l). The inte-
ger [ is the'Lie rank of G. For each proper parabolic over P,
F*(P) = O,(P) is the unipotent radical Rad(P) of P, and there
is a distinguished class of complements to Rad(P) in P called
the Levi factors of P.

Note that each maximal parabolic is a maximal subgroup of

(.

Example 4.2. Let G be a classical group. Then (essentially)
the maximal parabolics are the stabilizers in G of the totally
singular subspaces W of V. Further if P = Ng (W) is a maximal
parabolic then Rad(P) is the subgroup of G centralizing each
factor in the chain 0 < W < W+ <V, and the Levi factors are
the subgroups Ng(W)NNg(W'), where in I, W' ranges over the
complements to W in V, while in the remaining cases W' ranges
over the complements to W+ in V. The parabolics Ng(W') are
called opposites to the parabolic Ng(W).
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Theorem 4.3. (Timmesfeld [T2]) Let G be a group of Lie type,
and Q the subgroup generated by the root subgroups of G. As-
sume Q has a connected Dynkin diagram, and let R be the radical
of some proper parabolic. Then the mazimal overgroups of R in
G, which do not contain 2, are maximal parabolics.

An undergraduate at Caltech (Po-Ling Loh) first proved this
result for classical groups. Timmesfeld also has stronger versions
of the theorem which gives information about the overgroups of
suitable subgroups of R.

Theorem 4.4. (Borel-Tits) Assume G is generated by its root
subgroups. Then for each nontrivial p-subgroup S of G:

(1) There exists a parabolic subgroup P of G such that 5 <
Rad(P) and Ng(S) < P.

(2) S = 0,(Ng(S)) iff Na(S) is a parabolic and S = Rad(Ng(S))




21

Example 4.5. Assume G is a finite group of Lie type such
that G = QZ, where Q is the subgroup generated by the root
subgroups of G, and 7 = Z(G).

Assume G < G with Co(G) = Z. By a Frattini argument,
G = QNg(U).

Further B = Né(U) d Ng(U), so Ng(U) = N¢a(B), and
hence Ng(U) permutes the set O4(B) of parabolics of G over
D

Now G is a group of Lie type with Borel subgroup Ng(U)
and parabolics the conjugates of the members of Og(Ng(U)).

The Dynkin diagram D of €2 has [ nodes, which index the set
P* of maximal parabolics of G over B.

The action of Ng(U) on P* induces an equivalent action
on D, with the set D/Ng(U) of orbits indexing the maximal
members of Og(Ng(U)) — {G}, which we will call the mazimal

G'-parabolics.

In particular, we say G is trivial on D if all orbits of Ng(U)
on D are of length one.

In that event the G-parabolics over Ng (U ) are the subgroups
Ng(P), for P € O4(B) a parabolic of G.

Moreover for each such P, G = QNg(P).




