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Introduction

All non-abelian finite simple groups are either

◮ alternating OR

◮ sporadic OR

◮ automorphism groups of spherical buildings.
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Moufang polygons



Generalized polygons

Definition

A generalized n-gon is a

◮ bipartite graph

◮ of diameter n such that

◮ the length of a shortest circuit is 2n.

Generalized polygons

Definition

A generalized n-gon is thick if each vertex has at least three
neighbors.

Definition

A generalized n-gon is thin if each vertex has at exactly two
neighbors.

Examples

◮ generalized 2-gons = complete bipartite graphs

◮ generalized 3-gons = projective planes

Generalized polygons

We always assume that

◮ Γ is thick.

◮ n ≥ 3.

Definitions

A root is a path of length n.

An apartment is a circuit of length 2n.

◮ Every path of length n + 1 lies on a unique apartment.

The Moufang property

Definition

Let
α = (x0, x1, x2, . . . , xn−1, xn)

be a root. The root group Uα is the pointwise stabilizer of

Γx1 ∪ Γx2 ∪ · · · ∪ Γxn−1 .

Definition

Γ is Moufang if for every root α, the root group Uα acts
transitively on the set of apartments containing α.



Root group sequences

Let Σ be an apartment. We number its vertices consecutively

x0, x1, x2, . . .

(with indices modulo 2n).

◮ Let Ui denote the root group U(xi ,xi+1,...,xi+n).

◮ U1,U2, . . . ,Un fix the vertices xn and xn+1.

◮ Let U+ = 〈U1,U2, . . . ,Un〉.

Uniqueness

Definition

The sequence
(U+,U1,U2, . . . ,Un)

is called the root group sequence of Γ.

Theorem (Uniqueness)

Γ is uniquely determined by its root group sequence.

Properties of root groups

Let
U[k,s] = UkUk+1 · · ·Us

for all k, s with 1 ≤ k ≤ s ≤ n and U[k,s] = 1 if s < k.

◮ [Ui ,Uj ] ⊂ U[i+1,j−1] for all i , j with 1 ≤ i < j ≤ n.

◮ [Ui ,Ui+1] = 1.

Thus U+ = U1U2 · · ·Un.

◮ The product map from U1 × U2 × · · · × Un to U+ is a
bijection.

Key observation

The structure of U+ = 〈U1,U2, . . . ,Un〉 is uniquely determined by
the individual Ui and the commutator relations of the form

[ui , uj ] = ui+1 · · · uj−1,

where uk ∈ Uk for all k.



n = 3

◮ K is a field.

◮ xi : K → Ui is an isomorphism for i = 1, 2, 3:

xi(s)xi (t) = xi(s + t) for all s, t ∈ K .

◮ [x1(s), x3(t)] = x2(st).

This construction works also if K is a skew field or an octonion
division algebra. The Moufang triangles we obtain are

◮ algebraic if K is finite dimensional over its center

◮ classical if K is a skew field.

◮ exceptional if K is octonion.

n = 4: Quadratic form type

Let (K ,L, q) be an anisotropic quadratic space:

◮ K is a field.

◮ L is a vector space over K .

◮ q : L → K

such that

◮ f (a, b) = q(a + b) − q(a) − q(b) is bilinear.

◮ q(ta) = t2q(a).

◮ q(a) = 0 if and only if a = 0.

Let xi : K → Ui for i = 1 and 3 and xi : L → Ui for i = 2 and 4 and

[x1(t), x4(a)] = x2(ta)x3(tq(a)) and [x2(a), x4(b)] = x3(f (a, b)).

Anisotropic quadratic forms

Examples

◮ The norm of a quadratic extension.

◮ If K is finite, then dimKL ≤ 2.

If char(K ) 6= 2, then q(a) = f (a, a)/2.

n = 4: Involutory type

Let K be a field or skew field and let σ be an involution of K :

◮ σ is an additive automorphism of K .

◮ (st)σ = tσsσ.

◮ σ2 = identity.

An involutory set is a triple (K ,K0, σ), where K0 be an additive
subgroup of K containing 1 such that

◮ Kσ = {t + tσ | t ∈ K} ⊂ K0 ⊂ Kσ = {t ∈ K | tσ = t}.

◮ tKtσ ⊂ K0 for all t ∈ K .

Let xi : K0 → Ui for i = 1 and 3 and xi : K → Ui for i = 2 and 4
and

[x1(t), x4(u)] = x2(tu)x3(utuσ) and [x2(u), x4(v)] = x3(u
σv +vσu).



Involutory sets

An involutory set is a triple (K ,K0, σ), where K0 be an additive
subgroup of K containing 1 such that

◮ Kσ = {t + tσ | t ∈ K} ⊂ K0 ⊂ Kσ = {t ∈ K | tσ = t}.

◮ tKtσ ⊂ K0 for all t ∈ K .

• If char(K ) 6= 2, then t = (t/2) + (t/2)σ for t ∈ Kσ, so
Kσ = Kσ.

• If char(K ) = 2, let (u + Kσ)t = tutσ + Kσ for all u ∈ Kσ and
all t ∈ K . This makes Kσ/Kσ into a right vector space over
K !!

Involutory sets

Let (K ,K0, σ) be an involutory set.

◮ If K is commutative, then F := K0 is a subfield and K/F is a
separable quadratic extension.

◮ Either K = 〈K0〉 (as a subring) or

◮ K is commutative.

◮ K is a quaternion division algebra and σ is the standard
involution of K .

Pseudo-quadratic forms

Let (K ,K0, σ) be an involutory set, let L be a right vector space
over K and let f be a skew-hermitian form on L:

◮ f (u + v ,w) = f (u,w) + f (v ,w)

◮ f (ut,w) = tf (u,w) and f (u,wt) = f (u,w)tσ

◮ f (u,w)σ = −f (u,w)

A map q : L → K is a pseudo-quadratic form if for some
skew-hermitian form f :

◮ q(u + w) ≡ q(u) + q(w) + f (u,w) (mod K0)

◮ q(ut) ≡ tq(u)tσ (mod K0)

q is anisotropic if

◮ q(u) ≡ 0 (mod K0) iff u = 0.

Anisotropic pseudo-quadratic forms

Example

◮ Let (K ,K0, σ) be an involutory set.

◮ Let γ ∈ K\K0.

◮ Let q : K → K be given by q(t) = tγtσ.

◮ Let f (s, t) = s(γ − γσ)tσ for all s, t.

◮ Let L = K .

Then f is a skew-hermitian form on L and

q(s + t) = sγsσ + tγtσ + sγtσ + tγsσ

= q(s) + q(t) + f (s, t) + sγtσ + tγsσ

= q(s) + q(t) + f (s, t) + (tγsσ)σ + (tγsσ)

and (tγsσ)σ + (tγsσ) ∈ {a + aσ | a ∈ K} ⊂ K0.



Anisotropic pseudo-quadratic forms

◮ f (u, u) = q(u) − q(u)σ for all u ∈ L.

◮ If K is finite, then dimKL ≤ 1.

The remaining Moufang polygons

◮ The remaining Moufang n-gons satisfy n = 4, 6 or 8.

◮ They are parametrized by more exotic algebraic structures:
Jordan algebras, Tits endomorphisms, subvector spaces of
purely inseparable extensions, etc.

Quaternions

Let E/K be a separable quadratic extension with norm N, so
N(a) = a · aσ. Let α be in K\N(E ) and let

Q = {a + eb | a, b ∈ E},

where

a · eb = e(aσb), eb · a = e(ab), ea · eb = αaσb.

Then Q is a division algebra with center K . Its reduced norm N is
given by

N(a + eb) = N(a) − αN(b)

and its standard involution σ is given by

(a + eb)σ = aσ − eb.

Octonions
Let Q be a quaternion division algebra with center K .

Let β be in K\N(Q) and let

A = {a + eb | a, b ∈ Q},

where

a · eb = e(aσb), eb · a = e(ab), ea · eb = βaσb.

Then A is a (non-associative) division algebra with center K .

Its reduced norm N is given by

N(a + eb) = N(a) − βN(b)

and its standard involution σ is given by

(a + eb)σ = aσ − eb.



Moufang sets

Let X be a set. For each x ∈ X , let

◮ Ux be a subgroup of Sym(X ) fixing x such that

◮ Ux acts sharply transitively on X\{x}.

Let
G = 〈Ux | x ∈ X 〉.

Then (X , (Ux)x∈X ) is a Moufang set if for each x ∈ X :

◮ Ux is a normal subgroup of the stabilizer Gx .

Moufang sets

Examples

◮ The group of special fractional linear maps

x 7→
ax + b

cx + d

acting on the projective line K ∪ {∞}.

◮ The set of neighbors of a fixed vertex of a Moufang polygon.

Spherical Buildings

Coxeter groups

A square symmetric matrix (mij)i ,j∈S is a Coxeter matrix if

mii = 1 and mij ∈ {2, 3, 4, 5, . . . ,∞}.

Let (mij)i ,j∈S be a Coxeter matrix. Then

W = 〈si | (si sj)
mij = 1〉

is the corresponding Coxeter group and the pair (W ,S) is the
corresponding Coxeter system.

The graph with vertex set S and edges all pairs {i , j} such that
mij ≥ 3 labeled by the quantity mij is called the corresponding
Coxeter diagram.



Coxeter groups

Example

The Coxeter group corresponding to the Coxeter diagram having
just two vertices and one edge labeled by n ∈ {3, 4, 5, . . . ,∞} is
the dihedral group D2n.

Irreducible and spherical Coxeter matrices

Definition

A Coxeter matrix is irreducible if the Coxeter diagram is connected.

Definition

A Coxeter matrix is spherical if the Coxeter group W is finite.

The spherical Coxeter matrices were classified by Coxeter in the
1930’s.

Chamber systems

Let S be a set of colors. An S-colored chamber system is a
connected graph whose edges each have a color from the set S
such that for each vertex x the following hold:

◮ For each s ∈ S , there exists a vertex y such that {x , y} is an
edge of color s.

◮ If y , z are two vertices such that {x , y} and {x , z} are both
edges of color s, then {y , z} is also an edge of color s.

Chamber systems

Definitions

A chamber system is thick if for each vertex x and each color
s ∈ S , there exists at least two s-colored edges containing x .

A chamber system is thin if for each vertex x and each color s ∈ S ,
there exists exactly one s-colored edges containing x .

We sometimes call the vertices of a chamber system chambers.



Examples of chamber systems

Let (mij)x ,y∈S be a Coxeter diagram with vertex set S .

Let
W = 〈si | (si sj)

mij = 1〉

be the corresponding Coxeter group.

Let Σ be the S-colored graph with vertex set W whose si -colored
edges are all pairs of the form

{x , xsi}

for some x ∈ W .

Σ is a thin chamber system.

Examples of chamber systems

Let Γ be a connected bipartite graph.

We call the two sets in the bipartition of Γ’s vertex set B and W
and let S = {B ,W }.

Let ∆Γ be the graph whose vertices are the edges of Γ, where two
edges of Γ are joined by an edge of color s ∈ S in ∆Γ precisely
when the two edges of Γ intersect in a vertex of Γ contained in s.

Γ is a circuit if and only if ∆Γ is a circuit (of the same length).

Examples of chamber systems

In particular, a generalized n-gon can be thought of as a chamber
system with S = {B ,W }.

Residues and panels in chamber systems

◮ Let ∆ be an S-colored chamber system.

◮ Let J be a subset of S .

◮ Let ∆J be the graph obtained from ∆ by discarding all the
edges whose color is not contained in J.

Definition

A J-residue of ∆ is a connected component of ∆J .

◮ Each vertex of ∆ lies in a unique J-residue.

◮ The set J is the type of a J-residue and the cardinality of J is
the rank of a J-residue.

◮ The cardinality of S is the rank of ∆.



Residues and panels in chamber systems

◮ A residue of rank one is called a panel.

◮ Panels are complete graphs.

Buildings

◮ Let M = (mij)i ,j∈S be a Coxeter diagram with vertex set S .

◮ Let Σ be the corresponding S-colored thin chamber system.

◮ Let ∆ be an arbitrary S-colored chamber system.

Definition

An apartment (of type M) in ∆ is a subgraph isomorphic to Σ.

Buildings

Let M = (mij )i ,j∈S be our Coxeter diagram with vertex set S .

Definition

A building of type M is an S-colored chamber system ∆ such that
the following hold:

◮ For each vertex x and each panel P , there exists a unique
vertex in P nearest to x .

◮ Every two vertices are contained in an apartment.

◮ For every two apartments Σ1 and Σ2, there is an isomorphism
from Σ1 to Σ2 fixing every vertex contained in Σ1 ∩ Σ2.

Buildings and generalized polygons

Let M = (mij )i ,j∈S be an irreducible Coxeter matrix with |S | = 2
and let n be the unique label mij .

Let ∆ be a building of type M.

Let Γ be the corresponding bipartite graph with S = {B ,W }.

◮ If n < ∞, then Γ is a generalized n-gon.

◮ If n = ∞, then Γ is a tree.



Buildings of rank two

In fact:

◮ If n < ∞, then a building of type M is the same thing as a
generalized n-gon.

◮ If n = ∞, then a building of type M is the same thing as a
tree with no vertices of valency 1.

Other examples of buildings

Example

A building of rank one is just a complete graph whose apartments
are its 2-element subsets.

Example

◮ Let M = (mij)i ,j∈S be a Coxeter diagram with vertex set S .

◮ Let Σ be the corresponding thin S-colored chamber system.

Then Σ itself is the unique thin building of type M.

From now on, all buildings are assumed to be thick.

Irreducible buildings

Let ∆ be a building of type M.

Definition

◮ ∆ is called irreducible if the Coxeter diagram corresponding to
M is connected.

Spherical buildings

Definition

◮ A building ∆ is called spherical if its apartments are finite.



A basic property of buildings

Let ∆ be a building of type M.

Let J ⊂ S , let MJ be the matrix (mij)i ,j∈J and let R be a J-residue
of ∆.

Then R is a building of type MJ .

Roots in buildings

Suppose: ∆ is a building and Σ is an apartment of ∆.

If e is an edge and x a vertex of Σ, then x is nearer to one vertex in
e then it is to the other. The nearer vertex in e is called proje(x).

Two edges e and e′ of Σ are parallel if the map proje is a bijection
from e′ to e. This is an equivalence relation.

A root of Σ is a connected component of the graph obtained from
Σ by removing all the edges in a parallel class.

A root of ∆ is a root of one of its apartments. A root can be the a
root in many apartments simultaneously.

Moufang buildings

Let ∆ be an irreducible spherical building of rank at least two.

Let α be a root of ∆.

The root group Uα is the pointwise stabilizer in Aut(∆) of the set
of all vertices adjacent to at least two chambers in α.

The root group Uα acts trivially on α.

∆ is Moufang if for every root α, the root group Uα acts
transitively on the set of apartments containing α.

A local-to-global principle

Let M = (mij )i ,j∈S be an irreducible spherical Coxeter diagram of
rank at least three.

Definition

For each vertex x of a building ∆ of type M, let E2(x) be the
subgraph spanned by all the irreducible rank 2 residues of ∆
containing x .

Theorem

Let ∆ and ∆′ be two buildings of type M and let x ∈ ∆ and
x ′ ∈ ∆′ be vertices. Then an isomorphism from E2(x) to E2(x

′) (if
one exists) always extends to an isomorphism from ∆ to ∆′.



A local-to-global principle

Let M = (mij )i ,j∈S be an irreducible spherical Coxeter diagram of
rank at least three.

Corollary

A building of type M is uniquely determined by the irreducible
rank 2 residues containing a fixed vertex.

Corollary

Every building of type M is Moufang, as is every irreducible residue
of rank at least two of such a building.

⋆ ⋆ ⋆ Thus the irreducible rank 2 residues are Moufang polygons!

The classification of simply laced spherical buildings

Let ∆ be a building of type M.

◮ Suppose M = (mij )i ,j∈S is simply laced.

Simply laced means that mij ≤ 3 for all i , j ∈ S .

The classification of simply laced spherical buildings

Suppose M = (mij )i ,j∈S is simply laced.

◮ All irreducible rank 2 residues of ∆ are Moufang triangles
defined by the same field or skew field K .

◮ If the Coxeter diagram M has a vertex of degree 3, then K
must be commutative.

◮ For each field or skew field (commutative if M has a vertex of
degree 3), there exists a unique building whose residues are
Moufang triangles defined over K .

The classification of spherical buildings

Suppose that M is not simply laced and let x be a vertex of ∆.

Then:

◮ There is a unique edge J = {i , j} of S such that the J-residue
R of ∆ containing x is a generalized quadrangle.

◮ The building ∆ is uniquely determined by this residue and its
orientation.



The classification of spherical buildings

Suppose that M is of type Bℓ for ℓ ≥ 3.

Let K be the field or skew field or octonion division algebra
defining the residue of type Aℓ−1 containing a fixed chamber x .

Then ∆ is uniquely determined by

◮ An anisotropic quadratic space (K ,L, q) OR

◮ An involutory set (K ,K0, σ) OR

◮ An anisotropic pseudo-quadratic space (K ,K0, σ,L, q) OR

◮ An honorary involutory set (K ,K0, σ).

This last case can only occur if ℓ = 3.

The classification of spherical buildings

An honorary involutory set is a triple (K ,K0, σ), where

◮ K is an octonion division algebra

◮ K0 is its center

◮ σ is its standard involution.

Buildings of type F4

Buildings of type F4 are classified by the following families of
involutory sets (K ,F , σ), both genuine and honorary:

◮ char(K ) = 2, K is a purely inseparable extension of the field
F of exponent 1 and σ = id.

◮ F = K and σ = id.

◮ K/F is a separable quadratic extension and σ is the
non-trivial element in Gal(K/F ).

◮ K is a quaternion division algebra, F is its center and σ is its
standard involution.

◮ K is an octonion division algebra, F is its center and σ is its
standard involution.

The field of definition

In every case the relevant algebraic structure is defined over a field
or a skew field or (in a few cases) an octonion division algebra K .
We call K the field of definition of the spherical building ∆. It is
an invariant of ∆.

The algebraic structure itself is also an invariant, more or less. For
example, two anisotropic quadratic spaces yield the same building
of type Bℓ if and only if they are similar.



Conclusion

There is a Moufang spherical building corresponding to every
absolutely simple algebraic group of F -rank at least 2. Here F is
the center Z (K ) of the defining field K or, in the unitary case,
F = Z (K ) ∩ Kσ.

The only Moufang spherical buildings which do not arise in this
way are those that involve:

◮ an infinite dimensional vector space,

◮ a skew field of infinite dimension over its center,

◮ a bilinear (or skew-hermitian form) that is degenerate or

◮ a purely inseparable field extension in characteristic 2 or 3.

Affine Buildings

Affine Coxeter matrices

The affine Coxeter diagrams are the Coxeter diagrams underlying
the extended Dynkin diagrams.

They are all of the form Q̃ℓ, where Qℓ is one of the spherical
Coxeter diagrams Aℓ,Bℓ, . . . ,Gℓ.

Affine buildings

An (irreducible) affine building is a building of type Q̃ℓ for some
affine Coxeter diagram Q̃ℓ. Affine buildings are sometimes called
Euclidean buildings.

The apartments of an affine building of type Q̃ℓ have a canonical
representation as a tesselation of Euclidean space of dimension ℓ.

Example

An apartment A of a building X of type Ã2 looks like a Euclidean
space of dimension 2 tesselated by regular hexagons, each
subdivided into 6 equilateral triangles. These triangles are the
chambers of A.



The building at infinity

Let X be a building of type Q̃ℓ.

Apartments contain sectors. A sector of X is a sector in one of its
apartments.

Two sectors are equivalent if their intersection is a sector.

The set of sector classes is the vertex set of a building X∞ of type
Qℓ. The building X∞ is called the building at infinity of X . It is
spherical and

A 7→ A∞

is a bijection from the set of apartments of X to the set of
apartments of X∞.

Bruhat-Tits buildings

Definition

A Bruhat-Tits building is an irreducible affine building whose
building at infinity is Moufang.

The root groups of X
∞

Let X be a Bruhat-Tits building, let A be an apartment of X and
let a be a “half-space” of A. Then the following hold:

◮ α = a∞ is a root of the apartment A∞.

◮ Every element g in the root group U∗

α of X∞ is induced by a
unique element ĝ ∈ Aut(X ).

◮ The fixed point set of ĝ in A is a half-space of A contained in
or containing the half-space a. This gives rise to a function
ϕα : U∗

α → Z such that

ϕα(g) = ϕα(−g) and ϕα(g1 +g2) ≥ min{ϕα(g1), ϕα(g2)}.

◮ The map
dα(g1, g2) = 2−ϕα(g1−g2)

is a metric on Uα.

◮ Uα is complete with respect to the metric dα.

The classification of Bruhat-Tits buildings

Theorem

A Bruhat-Tits building is uniquely determined by its building at
infinity.

(A Bruhat-Tits building is not, however, uniquely determined by its
residues.)



The classification of Bruhat-Tits buildings

Theorem

Let ∆ be a spherical building satisfying the Moufang condition and
let K be its field of definition. Then ∆ is the building at infinity of
a Bruhat-Tits building iff

◮ K is complete with respect to a discrete valuation and

◮ for each root α, the root group Uα is complete with respect
to a certain metric (which turns out to be the metric dα).

Two final comments:

◮ The second condition follows from the first if ∆ is the
spherical building associated with an absolutely simple
algebraic group or if ∆ is simply laced.

◮ The proof of the Theorem is not finished: There is a family of
Moufang quadrangles arising from certain groups of type E8

for which the result has not yet been proved.

The End


