Introduction

Buildings

Richard M. Weiss

Tufts University

September 2, 2009

All non-abelian finite simple groups are either

- alternating OR
- ▶ sporadic OR
- automorphism groups of spherical buildings.

- B - - B - - 2 - - 2 - - 2 - - 940

Table of Contents

- Moufang polygons
- Spherical buildings
- Affine buildings

Moufang polygons

0.00 St. (2) (2) 2 000

Generalized polygons

Definition

A generalized n-gon is a

- bipartite graph
- of diameter n such that
- ▶ the length of a shortest circuit is 2n.

Generalized polygons

Definition

A generalized *n*-gon is thick if each vertex has at least three neighbors.

Definition

A generalized *n*-gon is thin if each vertex has at exactly two neighbors.

Examples

- generalized 2-gons = complete bipartite graphs
- ▶ generalized 3-gons = projective planes

Generalized polygons

We always assume that

- Γ is thick.
- ▶ n ≥ 3.

Definitions

A root is a path of length n.

An apartment is a circuit of length 2n.

▶ Every path of length n+1 lies on a unique apartment.

The Moufang property

Definition	
Let	
	$\alpha = (x_0, x_1, x_2, \dots, x_{n-1}, x_n)$
be a root. T	The root group U_{lpha} is the pointwise stabilizer of
	$\Gamma_{x_1} \cup \Gamma_{x_2} \cup \cdots \cup \Gamma_{x_{n-1}}.$

Definition

 Γ is Moufang if for every root α , the root group U_{α} acts transitively on the set of apartments containing α .

Root group sequences

Let Σ be an apartment. We number its vertices consecutively

 x_0, x_1, x_2, \ldots

(with indices modulo 2n).

- Let U_i denote the root group U_(xi,xi+1,...,xi+n).
- ▶ U₁, U₂,..., U_n fix the vertices x_n and x_{n+1}.
- Let $U_+ = \langle U_1, U_2, \dots, U_n \rangle$.

Uniqueness

Definition The sequence

 $(U_{+}, U_{1}, U_{2}, \dots, U_{n})$

is called the root group sequence of Γ .

Theorem (Uniqueness)

Γ is uniquely determined by its root group sequence.

(B) (B) (2) (2) 2 000

Properties of root groups

Key observation

Let

$U_{[k,s]} = U_k U_{k+1} \cdots U_s$

 $\text{ for all } k,s \text{ with } 1 \leq k \leq s \leq n \text{ and } U_{[k,s]} = 1 \text{ if } s < k.$

- ▶ $[U_i, U_j] \subset U_{[i+1,j-1]}$ for all i, j with $1 \le i < j \le n$.
- ▶ $[U_i, U_{i+1}] = 1.$

Thus $U_+ = U_1 U_2 \cdots U_n$.

▶ The product map from U₁ × U₂ × · · · × U_n to U₊ is a bijection.

The structure of $U_+ = \langle U_1, U_2, \dots, U_n \rangle$ is uniquely determined by the individual U_i and the commutator relations of the form

$$[u_i, u_j] = u_{i+1} \cdots u_{j-1}$$

where $u_k \in U_k$ for all k.

n = 3

- K is a field.
- x_i: K → U_i is an isomorphism for i = 1, 2, 3:

$$x_i(s)x_i(t) = x_i(s + t)$$
 for all $s, t \in K$.

► [x₁(s), x₃(t)] = x₂(st).

This construction works also if K is a skew field or an octonion division algebra. The Moufang triangles we obtain are

- algebraic if K is finite dimensional over its center
- classical if K is a skew field.
- exceptional if K is octonion.

n = 4: Quadratic form type

Let (K, L, q) be an anisotropic quadratic space:

- K is a field.
- L is a vector space over K.
- ▶ $q: L \rightarrow K$

such that

- ▶ $q(ta) = t^2 q(a)$.
- ▶ q(a) = 0 if and only if a = 0.

Let $x_i : K \to U_i$ for i = 1 and 3 and $x_i : L \to U_i$ for i = 2 and 4 and

 $[x_1(t), x_4(a)] = x_2(ta)x_3(tq(a))$ and $[x_2(a), x_4(b)] = x_3(f(a, b))$.

10-10-12-12-12-040

Anisotropic guadratic forms

Examples

- ► The norm of a quadratic extension.
- ▶ If K is finite, then $\dim_K L \leq 2$.

If char(K) $\neq 2$, then q(a) = f(a, a)/2.

n = 4: Involutory type

Let K be a field or skew field and let σ be an involution of K:

- σ is an additive automorphism of K.
- ▶ $(st)^{\sigma} = t^{\sigma}s^{\sigma}$.
- $\sigma^2 = \text{identity.}$

An involutory set is a triple (K, K_0, σ) , where K_0 be an additive subgroup of K containing 1 such that

- $K_{\sigma} = \{t + t^{\sigma} \mid t \in K\} \subset K_0 \subset K^{\sigma} = \{t \in K \mid t^{\sigma} = t\}.$
- ▶ $tKt^{\sigma} \subset K_0$ for all $t \in K$.

Let $x_i \colon K_0 \to U_i$ for i = 1 and 3 and $x_i \colon K \to U_i$ for i = 2 and 4 and

 $[x_1(t), x_4(u)] = x_2(tu)x_3(utu^{\sigma})$ and $[x_2(u), x_4(v)] = x_3(u^{\sigma}v + v^{\sigma}u)$.

Involutory sets

An involutory set is a triple (K, K_0, σ) , where K_0 be an additive subgroup of K containing 1 such that

- $\blacktriangleright \ \ \mathcal{K}_{\sigma} = \{t + t^{\sigma} \mid t \in \mathcal{K}\} \subset \mathcal{K}_{0} \subset \mathcal{K}^{\sigma} = \{t \in \mathcal{K} \mid t^{\sigma} = t\}.$
- tKt^σ ⊂ K₀ for all t ∈ K.
- If $char(K) \neq 2$, then $t = (t/2) + (t/2)^{\sigma}$ for $t \in K^{\sigma}$, so $K_{\sigma} = K^{\sigma}$.
- If char(K) = 2, let (u + K_σ)t = tut^σ + K_σ for all u ∈ K^σ and all t ∈ K. This makes K^σ/K_σ into a right vector space over K!!

Involutory sets

Let (K, K_0, σ) be an involutory set.

- If K is commutative, then F := K₀ is a subfield and K/F is a separable quadratic extension.
- Either K = (K₀) (as a subring) or
 - K is commutative.
 - K is a quaternion division algebra and σ is the standard involution of K.

Pseudo-quadratic forms

Let (K, K_0, σ) be an involutory set, let L be a right vector space over K and let f be a skew-hermitian form on L:

- ▶ f(u + v, w) = f(u, w) + f(v, w)
- ▶ $f(u, w)^{\sigma} = -f(u, w)$

A map $q: L \rightarrow K$ is a pseudo-quadratic form if for some skew-hermitian form f:

- $q(u + w) \equiv q(u) + q(w) + f(u, w) \pmod{K_0}$
- ▶ $q(ut) \equiv tq(u)t^{\sigma} \pmod{K_0}$

q is anisotropic if

▶ $q(u) \equiv 0 \pmod{K_0}$ iff u = 0.

Anisotropic pseudo-quadratic forms

Example	
Let (K, K ₀ , σ) be an involutory set.	
• Let $\gamma \in K \setminus K_0$.	
Let q: K → K be given by q(t) = tγt ^σ .	
Let f(s, t) = s(γ − γ ^σ)t ^σ for all s, t.	
▶ Let L = K.	
Then f is a skew-hermitian form on L and	
$a(s \pm t) = s \propto s^{\sigma} \pm t \propto t^{\sigma} \pm s \propto t^{\sigma} \pm t \propto s^{\sigma}$	

$$= q(s) + q(t) + f(s, t) + s\gamma t^{\sigma} + t\gamma s^{\sigma}$$

= q(s) + q(t) + f(s, t) + (t\gamma s^{\sigma})^{\sigma} + (t\gamma s^{\sigma})

and $(t\gamma s^{\sigma})^{\sigma} + (t\gamma s^{\sigma}) \in \{a + a^{\sigma} \mid a \in K\} \subset K_0$.

Anisotropic pseudo-quadratic forms

- ▶ If K is finite, then $\dim_K L \leq 1$.

The remaining Moufang polygons

- ▶ The remaining Moufang n-gons satisfy n = 4, 6 or 8.
- They are parametrized by more exotic algebraic structures: Jordan algebras, Tits endomorphisms, subvector spaces of purely inseparable extensions, etc.

101 (01 121 121 2 1040)

Quaternions

Let E/K be a separable quadratic extension with norm N, so $N(a) = a \cdot a^{\sigma}$. Let α be in $K \setminus N(E)$ and let

$$Q=\{a+eb\mid a,b\in E\},$$

where

$$a \cdot eb = e(a^{\sigma}b)$$
, $eb \cdot a = e(ab)$, $ea \cdot eb = \alpha a^{\sigma}b$.

Then Q is a division algebra with center K. Its reduced norm N is given by

$$N(a + eb) = N(a) - \alpha N(b)$$

and its standard involution σ is given by

$$(a + eb)^{\sigma} = a^{\sigma} - eb.$$

Octonions

Let Q be a quaternion division algebra with center K.

Let β be in $K \setminus N(Q)$ and let

$$A = \{a + eb \mid a, b \in Q\},\$$

where

$$a \cdot eb = e(a^{\sigma}b)$$
, $eb \cdot a = e(ab)$, $ea \cdot eb = \beta a^{\sigma}b$.

Then A is a (non-associative) division algebra with center K.

Its reduced norm N is given by

$$N(a + eb) = N(a) - \beta N(b)$$

and its standard involution σ is given by

$$(a + eb)^{\sigma} = a^{\sigma} - eb.$$

Moufang sets

Let X be a set. For each $x \in X$, let

- ► U_x be a subgroup of Sym(X) fixing x such that
- ► U_x acts sharply transitively on X\{x}.

Let

$$G = \langle U_x \mid x \in X \rangle.$$

Then $(X, (U_x)_{x \in X})$ is a Moufang set if for each $x \in X$:

▶ U_x is a normal subgroup of the stabilizer G_x.

Moufang sets

Examples

► The group of special fractional linear maps

$$x \mapsto \frac{ax + b}{cx + d}$$

acting on the projective line $K \cup \{\infty\}$.

The set of neighbors of a fixed vertex of a Moufang polygon.

Coxeter groups

A square symmetric matrix $(m_{ij})_{i,j \in S}$ is a Coxeter matrix if

$$m_{ii} = 1$$
 and $m_{ii} \in \{2, 3, 4, 5, \dots, \infty\}$.

Let $(m_{ii})_{i,i\in S}$ be a Coxeter matrix. Then

$$W = \langle s_i | (s_i s_i)^{m_{ij}} = 1 \rangle$$

is the corresponding Coxeter group and the pair (W, S) is the corresponding Coxeter system.

The graph with vertex set S and edges all pairs $\{i, j\}$ such that $m_{ij} \ge 3$ labeled by the quantity m_{ij} is called the corresponding Coxeter diagram.

10-10-12-12-12-040

Spherical Buildings

Coxeter groups

Irreducible and spherical Coxeter matrices

Example

The Coxeter group corresponding to the Coxeter diagram having just two vertices and one edge labeled by $n \in \{3, 4, 5, \ldots, \infty\}$ is the dihedral group D_{2n} .

Definition

A Coxeter matrix is irreducible if the Coxeter diagram is connected.

Definition

A Coxeter matrix is spherical if the Coxeter group W is finite.

The spherical Coxeter matrices were classified by Coxeter in the 1930's.

Chamber systems

Let S be a set of colors. An S-colored chamber system is a connected graph whose *edges* each have a color from the set S such that for each vertex x the following hold:

- For each s ∈ S, there exists a vertex y such that {x, y} is an edge of color s.
- If y, z are two vertices such that {x, y} and {x, z} are both edges of color s, then {y, z} is also an edge of color s.

Chamber systems

Definitions

A chamber system is *thick* if for each vertex x and each color $s \in S$, there exists at least two *s*-colored edges containing x.

A chamber system is *thin* if for each vertex x and each color $s \in S$, there exists exactly one s-colored edges containing x.

We sometimes call the vertices of a chamber system chambers.

Examples of chamber systems

Let $(m_{ij})_{x,y \in S}$ be a Coxeter diagram with vertex set S.

Let

 $W = \langle s_i | (s_i s_j)^{m_{ij}} = 1 \rangle$

be the corresponding Coxeter group.

Let Σ be the S-colored graph with vertex set W whose s_i -colored edges are all pairs of the form

 $\{x, xs_i\}$

for some $x \in W$.

Σ is a thin chamber system.

Examples of chamber systems

Let Γ be a connected bipartite graph.

We call the two sets in the bipartition of Γ 's vertex set B and Wand let $S = \{B, W\}$.

Let Δ_{Γ} be the graph whose vertices are the edges of Γ , where two edges of Γ are joined by an edge of color $s \in S$ in Δ_{Γ} precisely when the two edges of Γ intersect in a vertex of Γ contained in s.

 Γ is a circuit if and only if Δ_{Γ} is a circuit (of the same length).

Examples of chamber systems

In particular, a generalized *n*-gon can be thought of as a chamber system with $S = \{B, W\}$.

Residues and panels in chamber systems

- ▶ Let ∆ be an S-colored chamber system.
- ▶ Let J be a subset of S.
- Let Δ_J be the graph obtained from Δ by discarding all the edges whose color is not contained in J.

Definition

A *J*-residue of Δ is a connected component of Δ_J .

- ► Each vertex of ∆ lies in a unique J-residue.
- The set J is the type of a J-residue and the cardinality of J is the rank of a J-residue.
- The cardinality of S is the rank of Δ.

Residues and panels in chamber systems

A residue of rank one is called a panel.

Panels are complete graphs.

Buildings

- Let M = (m_{ij})_{i,j∈S} be a Coxeter diagram with vertex set S.
- Let Σ be the corresponding S-colored thin chamber system.
- Let ∆ be an arbitrary S-colored chamber system.

Definition

An apartment (of type M) in Δ is a subgraph isomorphic to Σ .

Buildings

Let $M = (m_{ij})_{i,j \in S}$ be our Coxeter diagram with vertex set S.

Definition

A building of type M is an S-colored chamber system Δ such that the following hold:

- For each vertex x and each panel P, there exists a unique vertex in P nearest to x.
- Every two vertices are contained in an apartment.
- $\blacktriangleright \mbox{ For every two apartments } \Sigma_1 \mbox{ and } \Sigma_2, \mbox{ there is an isomorphism from } \Sigma_1 \mbox{ to } \Sigma_2 \mbox{ fixing every vertex contained in } \Sigma_1 \cap \Sigma_2.$

Buildings and generalized polygons

Let $M = (m_{ij})_{i,j \in S}$ be an irreducible Coxeter matrix with |S| = 2and let n be the unique label m_{ij} .

Let Δ be a building of type M.

Let Γ be the corresponding bipartite graph with $S = \{B, W\}$.

- If n < ∞, then Γ is a generalized n-gon.</p>
- If n = ∞, then Γ is a tree.

Buildings of rank two

In fact:

- If n < ∞, then a building of type M is the same thing as a generalized n-gon.
- If n = ∞, then a building of type M is the same thing as a tree with no vertices of valency 1.

Other examples of buildings

Example

A building of rank one is just a complete graph whose apartments are its 2-element subsets.

Example

- ▶ Let M = (m_{ij})_{i,i∈S} be a Coxeter diagram with vertex set S.
- Let Σ be the corresponding thin S-colored chamber system.

Then Σ itself is the unique thin building of type M.

From now on, all buildings are assumed to be thick.

Irreducible buildings

Spherical buildings

Let Δ be a building of type M.

Definition

 Δ is called irreducible if the Coxeter diagram corresponding to M is connected.

Definition

A building Δ is called spherical if its apartments are finite.

A basic property of buildings

Let Δ be a building of type M.

Then R is a building of type M_J .

of A

Let $J \subset S$, let M_I be the matrix $(m_{ii})_{i \in I}$ and let R be a J-residue

Roots in buildings

Suppose: Δ is a building and Σ is an apartment of Δ .

If e is an edge and x a vertex of Σ , then x is nearer to one vertex in e then it is to the other. The nearer vertex in e is called $proj_e(x)$.

Two edges e and e' of Σ are *parallel* if the map proj_e is a bijection from e' to e. This is an equivalence relation.

A root of Σ is a connected component of the graph obtained from Σ by removing all the edges in a parallel class.

A root of Δ is a root of one of its apartments. A root can be the a root in many apartments simultaneously.

- B - (B - (2) - (2) - 2 - 940

Moufang buildings

Let Δ be an irreducible spherical building of rank at least two.

Let α be a root of Δ .

The root group U_{α} is the pointwise stabilizer in $Aut(\Delta)$ of the set of all vertices adjacent to at least two chambers in α .

The root group U_{α} acts trivially on α .

 $\Delta \text{ is Moufang if for every root } \alpha, \text{ the root group } U_\alpha \text{ acts transitively on the set of apartments containing } \alpha.$

A local-to-global principle

Let $M=(m_{ij})_{i,j\in S}$ be an irreducible spherical Coxeter diagram of rank at least three.

Definition

For each vertex x of a building Δ of type M, let $E_2(x)$ be the subgraph spanned by all the irreducible rank 2 residues of Δ containing x.

Theorem

Let Δ and Δ' be two buildings of type M and let $x \in \Delta$ and $x' \in \Delta'$ be vertices. Then an isomorphism from $E_2(x)$ to $E_2(x')$ (if one exists) always extends to an isomorphism from Δ to Δ' .

A local-to-global principle

Let $M = (m_{ij})_{i,j \in S}$ be an irreducible spherical Coxeter diagram of rank at least three.

Corollary

A building of type M is uniquely determined by the irreducible rank 2 residues containing a fixed vertex.

Corollary

Every building of type M is Moufang, as is every irreducible residue of rank at least two of such a building.

*** Thus the irreducible rank 2 residues are Moufang polygons!

The classification of simply laced spherical buildings

Let Δ be a building of type M.

Suppose M = (m_{ij})_{i,j∈S} is simply laced.

Simply laced means that $m_{ij} \leq 3$ for all $i, j \in S$.

The classification of simply laced spherical buildings

Suppose $M = (m_{ij})_{i,i \in S}$ is simply laced.

- All irreducible rank 2 residues of Δ are Moufang triangles defined by the same field or skew field K.
- If the Coxeter diagram M has a vertex of degree 3, then K must be commutative.
- For each field or skew field (commutative if M has a vertex of degree 3), there exists a unique building whose residues are Moufang triangles defined over K.

The classification of spherical buildings

Suppose that M is not simply laced and let x be a vertex of Δ .

Then:

- There is a unique edge J = {i,j} of S such that the J-residue R of Δ containing x is a generalized quadrangle.
- ► The building ∆ is uniquely determined by this residue and its orientation.

The classification of spherical buildings

Suppose that M is of type B_{ℓ} for $\ell \ge 3$.

Let K be the field or skew field or octonion division algebra defining the residue of type $A_{\ell-1}$ containing a fixed chamber x.

Then Δ is uniquely determined by

- An anisotropic quadratic space (K, L, q) OR
- An involutory set (K, K₀, σ) OR
- An anisotropic pseudo-quadratic space (K, K₀, σ, L, q) OR
- An honorary involutory set (K, K₀, σ).

This last case can only occur if $\ell = 3$.

The classification of spherical buildings

An honorary involutory set is a triple (K, K_0, σ) , where

- K is an octonion division algebra
- K₀ is its center
- σ is its standard involution.

Buildings of type F₄

Buildings of type F_4 are classified by the following families of involutory sets (K, F, σ), both genuine and honorary:

- char(K) = 2, K is a purely inseparable extension of the field F of exponent 1 and σ = id.
- F = K and σ = id.
- K/F is a separable quadratic extension and σ is the non-trivial element in Gal(K/F).
- K is a quaternion division algebra, F is its center and σ is its standard involution.
- K is an octonion division algebra, F is its center and σ is its standard involution.

The field of definition

In every case the relevant algebraic structure is defined over a field or a skew field or (in a few cases) an octonion division algebra K. We call K the field of definition of the spherical building Δ . It is an invariant of Δ .

The algebraic structure itself is also an invariant, more or less. For example, two anisotropic quadratic spaces yield the same building of type B_{ℓ} if and only if they are similar.

Conclusion

There is a Moufang spherical building corresponding to every absolutely simple algebraic group of *F*-rank at least 2. Here *F* is the center Z(K) of the defining field *K* or, in the unitary case, $F = Z(K) \cap K^{\sigma}$.

The only Moufang spherical buildings which do not arise in this way are those that involve:

an infinite dimensional vector space,

Affine Coxeter matrices

- a skew field of infinite dimension over its center,
- a bilinear (or skew-hermitian form) that is degenerate or
- a purely inseparable field extension in characteristic 2 or 3.

Affine Buildings

The affine Coxeter diagrams are the Coxeter diagrams underlying the extended Dynkin diagrams.

They are all of the form \tilde{Q}_{ℓ} , where Q_{ℓ} is one of the spherical Coxeter diagrams $A_{\ell}, B_{\ell}, \dots, G_{\ell}$.

Affine buildings

An (irreducible) affine building is a building of type \tilde{Q}_{ℓ} for some affine Coxeter diagram \tilde{Q}_{ℓ} . Affine buildings are sometimes called Euclidean buildings.

The apartments of an affine building of type \tilde{Q}_{ℓ} have a canonical representation as a tesselation of Euclidean space of dimension ℓ .

Example

An apartment A of a building X of type \tilde{A}_2 looks like a Euclidean space of dimension 2 tesselated by regular hexagons, each subdivided into 6 equilateral triangles. These triangles are the chambers of A.

The building at infinity

Let X be a building of type \tilde{Q}_{ℓ} .

Apartments contain sectors. A sector of X is a sector in one of its apartments.

Two sectors are equivalent if their intersection is a sector.

The set of sector classes is the vertex set of a building X^{∞} of type Q_{ℓ} . The building X^{∞} is called the building at infinity of X. It is spherical and

 $A \mapsto A^{\infty}$

is a bijection from the set of apartments of X to the set of apartments of X^{∞} .

Bruhat-Tits buildings

Definition

A Bruhat-Tits building is an irreducible affine building whose building at infinity is Moufang.

The root groups of X^{∞}

Let X be a Bruhat-Tits building, let A be an apartment of X and let a be a "half-space" of A. Then the following hold:

- α = a[∞] is a root of the apartment A[∞].
- ► Every element g in the root group U^{*}_a of X[∞] is induced by a unique element ĝ ∈ Aut(X).
- The fixed point set of ĝ in A is a half-space of A contained in or containing the half-space a. This gives rise to a function φ_α: U^{*}_n → Z such that

 $\varphi_{\alpha}(g) = \varphi_{\alpha}(-g)$ and $\varphi_{\alpha}(g_1 + g_2) \ge \min\{\varphi_{\alpha}(g_1), \varphi_{\alpha}(g_2)\}.$

The map

 $d_{\alpha}(g_1, g_2) = 2^{-\varphi_{\alpha}(g_1 - g_2)}$

is a metric on U_{α} .

U_α is complete with respect to the metric d_α.

The classification of Bruhat-Tits buildings

Theorem

A Bruhat-Tits building is uniquely determined by its building at infinity.

(A Bruhat-Tits building is not, however, uniquely determined by its residues.)

The classification of Bruhat-Tits buildings

Theorem

Let Δ be a spherical building satisfying the Moufang condition and let K be its field of definition. Then Δ is the building at infinity of a Bruhat-Tits building iff

- K is complete with respect to a discrete valuation and
- for each root α, the root group U_α is complete with respect to a certain metric (which turns out to be the metric d_α).

Two final comments:

- ► The second condition follows from the first if ∆ is the spherical building associated with an absolutely simple algebraic group or if ∆ is simply laced.
- The proof of the Theorem is not finished: There is a family of Moufang quadrangles arising from certain groups of type E₈ for which the result has not yet been proved.

The End