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Introductlion

These notes tell two stories. The first is an overview of a general approach to
studying random walk on finite groups. This involves the character theory of the
group and the geometry of the group in various generating sets. The gsecond is the
life and times of a single example: random transpositions on the symmetric group.
This was the first example where sharp estimates were obtained. We will prove
it takes %nlﬁg n transpositions to mix up n cards. This example gives rise to a
rich comparison theory allowing general walks to be studied. Its history goes back
to Hurwitz's 1891 work on counting branched covers. There are generalizations
to finite groups of Lie type, various deformations (Jack symmetric functions and
Hecke algebras) and applications to diffusion, phylogeny and coagulation processes
in chemistry.

Let us begin with a definition. Let G be a finite group. Let {Q(g)} g, be a
probability distribution on G. Thus Q(g) > 0 and }_ Q(g) = 1. This is the hasic

g

data. Define conveolution by
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Thus @+C)(g) is the chance that a random walk on G generated by picking elements
repeatedly with weight @(g) and multiplying is at g after two steps; some element
h must have been chosen first, followed by gh™!. Similarly, Q**(g) is the chance
that the walk is at g after & steps. All walks start at the identity.

Under a mild restriction (the support of ¢) is not contained in a coset of a
subgroup) the random walk converges to the uniform distribution u(g) — 1/|G|.
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The question is how fast? We will measure convergence by the total variation
distance
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We thus arrive at a well-posed math problem:
Given a finite group C, a probability measure @(g) and ¢ > 0, how large should
k be so that
1Q** || = ¢?
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For group theorists, this may be rephrased as follows. Identify @ with an element
g = >,9Q(g) of the group algebra. ''he coefficient of g in ¢* is Q**(g). High
g

powers of g converge to Elr[ 3" g. We are asking for the speed of convergence in the
g

¢* norm.
Here is our leading example, said more carefully.

Example (Random transpositions). Imagine a deck of n playing cards face down in
an ordered row with card 1 at the left, card n at the right. The cards are repeatedly
mixed by the following operation. The left hand touches a random card. The right
hand touches a random card (so left = right with probability 1/n). These cards
are lransposed (nothing is done if left = right). It is intuitively clear that after
many switches the row of cards is all mixed up.

More mathemalically, ou Lhe synmunetric group S, let

1/nifr=1d
Q(m) =< 2/n? if 7 is a transposition (0.2)
0 otherwise

Repeated switches are modeled by Q**(7). The following theorem was proved in
joint work with Shahshahani [26].

Theorem A For the random walk generated by (0.2) on the symmetric group S,
if b = én{lﬂg n + ¢) for c > 0, then

1Q** —u|] < 6e~¢ (0-3)

conversely, if k = n(logn — ¢) there is € > 0 such that ||Q™* — ul| > € for all n.

Rcemarks

1. When n = 52, inlogn=103; to make the distance in (0.3) smaller than 1,100,
requires k=270 switches.

2. The theorem shows that convergence to stationarity has a cutoff or threshold
at %nlﬂg n. The transition from order to chaos happens as ¢ varies. This
often happens for random walk on non-commutative groups. See [9], [65] for
further discussion; it is one of the important open problems of this subject
to understand the cutoff phenomenon.

3. The original motivation for studying random franspositinons is worth mention-
ing. In the course of a large scale study ol opliwal siralegies in experiments
with feedback ([13]), a Monte Carlo study involving hundreds of millions
of random permutations in Ss2 was carried oul. The [ual resulls “looked
funny.” In the course of checking the programming, the method of gener-
ating the permutations came under scrutiny. The usual way of generating
a random permutation on a computer is to put numbers 1,2,....7n into n-
registers. Then choose a random number [; uniformly [rom vue Lo 7 and
transpose registers 1 and I;. Next, choose [» randomly from two to n and
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trauspose registers 2 and I;. Continuing n — | steps gives a pertectly ran.
dom permutation This is the subgroup algorithm [27]. The programmer had
thoughl this “too fussy” and instead carried out 60 random transpositions (as
in (0.2)). The mathematicians involved complained and asked that the simu-
lation be redone (three hours of computer time on a powerful processor). 'The
programmer {and her boss) complained, but in the end, the simulation was
redone using Lhe proper algorithm and satisfactory results were obtained. Al
of this left me wanting to know how many random transpositions are required
to mix up 52 cards.

Section 1 introduces a basic upper bonund on the distance between Q*F and
the uniform distribution. The bound is wosl useful for class functions (Q(s ts) =
(J(t)) and involves a detailed knowledge of characters. This is illustrated for random
walks on the symmetric group using random Lranspositions and for the Drunkard’s
walk on the circle. Section 2 introduces varions norms and quadratic form used to
bound eigenvalues via the minimax characterization. The basic bounds on distance
to uniform using eigenvalues are set ont. Then, comparison theorems are developed
which allow analysis of a randow walk based on one generating set (usually a small
or messy set) in terms of a walk based on a nice generating set. The analysis
mvolves relating the geometry of the (wu Cayley graphs. This is illustrated by
giving a sharp analysis of the walk on the symmetric group using a transposition
and an n-cycle.

In Section 3, developments of the random transpositions result are outlined.
These go back to Hurwitz work on coverings of the sphere aud deforin Lo interesting
walks on Hecke algebras with application to the Metropolis algorithm of statistical
physics. The final section sets out sowe vpen problems.

Who cares about this stuff?

Of course, one can take the high road and answer that mathematics should be
Judged by its own intcrnal naturalness and beauty. It is resoundingly Lrue thal
mathematics developed ‘just because it was there’ has a remarkable record of turn-
ing out usetul. For example, Frobenius’s development of character theory was based
on the strange question of understanding why the determinants of cirenlant matri-
ces are a product of lincar formo in the entrics. The random transposition 1esulls
that are the basis of the present paper are completely derivative of Frobenius’s
development.

Of course, certain random walks arise in daily life when people shuffle cards. I
have written a survey of this subject in [10]. Ordinary random walk on R? is a
mainstay of parts of biology, chemistry, physics, and finance. It is natural to seek
appropriate generalization to morc general groups. Hughes [41, 42] and Saloll-Cosle
[66] show how natural these questions can be, even for mathematics.

A wvery satisfactory answer comes from problems gencrated from within E10up
theory. Modern algorithms to manipulate and study large finite groups need a
source of random elements. These are generated by a varicty of random walk
algorithms. One of the most popular is the product replacement algorithm. The
mathematics in the present paper can be used to study these algorithms. Igor
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Pak has done wonderful work along these lines. His survey Pak [59] contains
an extensive review. On different lines, the mathematical questions that arise in
studying random walk on groups are often guite different than classical questions.
They have led to some interesting new group theory. '

Perhaps the most compelling current motivation ia the ‘Markov chain Monte
Carlo revolution’. Sclentists in every walk of life are computing quantities of interest
by running generalized random walks called Markov Chains. Liu [52] gives a nice
mtroduction to this subject. Random walks on groups are special cases of Markov
chains and the extra group structurc along with years of hard work by group
theorists can allow sharp results. 'l'he comparison theory explained below allows
transfer to more general chains. Morec basically, tcchniques developed for groups
can sometimes be extended to general Markov chains; again, the comparison theory
is a good example. (See Diaconis and Saloff Coste [18].)
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1 Random walk and representation theory

Let G be a finite group. A representation
p:G— GLg,(V)

assigns matrices to group elements in such a way that p(st) = p(s)p(t). Here
the dimension of V is denoted d,. Background in represcntation theory and the
probabilistic developments discussed here may be found in my book [8].

If Q(s) is a probability distribution on G, the Fourier transform of @ at p is
defined as

Qp) = Q(s)a(s).

As nsual, Fourier transforms turn convolution into products

Q=2 (p) = ('@(ﬂ])g*
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Further, for irreducible representations, the uniform distribution u(s) = 1/|G]| is

characterized by its Fourier transform

i = 1 if p is the trivial representation
WP = oif g is non-trivial irreducible.

Repeated convolutions may be shown to converge to the uniform distribution by

o i
showing that (Q{p}) — 0 for p non-trivial irreducible. A quantitative version of
this follows from the Fourier inversion and Planchenel theorems.

Theorem 1.1 Let f be a complexr funetion defined on . Then
1 = =
) 1) = G dotr (FE)p (™))
|
o

S %deilf”(p)llz (trace norm).
o

Proof For (a), both sides are linear in f. Take f(s) = §;(s). Then f{p) = p(t) and
(a) asserts

() = 17 2 dpxp(ot ™)
fol

This assertion holds as the right hand sum is the character of the regular represen-
tation which is |G| or zero as st~! is the identity or not.
For (b), we show

~ 1 e s el
(f1.2) = 30 11(9)Fals) = 157 2o bt (AP F(0)")
2
Again, both sides are linear in fu. Taking fo = d;, we must show

1 3 *
filr) = Tell ?d,&“‘ (flfﬂ)ﬂ ':TJ') -

This follows from (a) since without loss of generality, p* is unitary so p*(7) =

1

p(T ) O
The basic upper bound lemma was developed to study random transpositions in

joint work with Shahshahani.

Lemma 1.2 (Upper bound lemma) Let (Q be a probability on the finite group
G. Then, for the distance defined in (0.1),

4)1Q** —ull® < >~ d[IQ(W)IIP*.
71
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Proof Fram the definitions

2
@™ —ull? = ( Q™ () —u(s)\) < 16| 3 |@*(s) — u(s)]
= Y dtr Q) (o)) <3 d

pr-1 Pl

¥

I'here, the first inequality is from Cauchy-Schwarz, the second equality is from
Plancherel, the last inequality is ||AB|| < [|A]l || B]]- O

Example 1.3 (Drunkard’s walk) Let C, be the integers modulo n, and let
Q(x1) = 3 with Q(j) — 0 otherwise. Thus @**(4) is thec chance that a simple
random w:ﬂk is at 7 after k steps. To avoid periodicity problems, suppose n is odd.
The irreducible representations are one-dimensional and given by px(j) — alERIRIT
Here Q(h) = f""’"‘”-’“’““ + 2e 2™/ = cos(2mh/n). 'Lhe upper bound lemma gives

Ti=—1 (n—1)/2
4|EQ*E—uH‘E{Zm5 (?Wh) — Z COS (2 h)

=1
This last sum must be bounded by calculus arguments. One way to proceed i3 to

use cos(z) < e~ ~2 for 0 <z < % /2. Thus

(n—1)/2

12 i
HQ*E_H'HE < = E r S 2420 [
=g
- X1
< iﬁ_.:rzf'fnj Z —T2 (% —1)2/n?
2 ;
=]
i - Lk :
- = w2t n? z o—3m2il/n?

o a i nt

1 — 'EI-'JTE-F!J."I‘?I-E 2

o | 1=

ey
It £ ﬂzj [E (1 — E_EWEH'”EH << 1 and we conclude

=
e

£ 0
1Q* — || < e72 =2 for n odd with £ > n”.

The result shows that a multiple of n? steps suffice to drive the distance to zero
exponentially fast. Whilc not developed here, this result is sharp—for £ small with
respect to n? the distance to uniformity is close to its maximum value of 1 (See [8]
pg. 29).

It is instructive to view the bounding process in the light of representation theory.
The sum is dominated by the chresentatmns close to the frivial representation.
Thus when i = 1, Q(h] =cos(Z)=1—3+4+0 ( ) This must be raised to the
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power of n? or more to make it small. For more general groups, it also secms to |

hold that the representatious close to the trivial representation control the rate of
convergence. Problem 5 in Section 4 has more on this.
The next example is ceutral Lo present developments.

Example 1.4 (Random transpositions) Let 5, be the symmetric group. The
pI‘Dbablllt}T measure (J(w) defined at (0.2) is invariant under conjugation Q{w) =
Q(v~'ww). Thus its Fourier transform satisfies plv T}Q{ p(v) = [,ﬂ] For irre-
ducible p, Schurs lemma implies that Q(p) is a constant 'ITl'IT]TII']]P of the identity:

Q{p] — cf. Take the Lrace of both sides to see that ¢ = L + 21 x*:;;_ﬂ with x,(7)

i

the character of p at a transposition and d, the d1men5mn Thus the upper bound

: 41Q"* —ul i?dﬂ( L2 1 ))

) dp

1o make further progress, we must get our hands dirty and come to Leris wilh
the character ratio. Fortunately, Frobenius did most of the work. The irreducible
representations of S, are indexed by partitions A of n. If A — (A1, A2, ,..., A) with
AMZ A= > >0and A +... L A\ = n, Frobenius showed that

:{A(T} TR
— 1) A;.
o n*l} E Af — (22 )} A

To see what is involved in the bounding, take the representation closest to the
trivial representalion—the n — 1 dimensional ‘permutation’ representation. '1'his
corresponds to (n — 1,1) and the term to be bounded is

9 2k
(i — 1) (1—5) :

Using 1 —z =< ¢~ wc sce that this is smaller than e~ [or k = 2?1 logn +cn. This
lead term danunatew and determines the rate of convergence stated in Theorem
A of the Introduction. The details lean on years of work by group theorists and

combinatorialists (‘lableaux Combinatorics). See [8] pg. 36-47 for a detailed proof

which is a streamlined version of the original. ]

Other walks and conjugacy classes

There have been a number of further careful studies of random walks on EroNps
which are constant on conjugacy classes. Onc of the earliest is random walk ou
Lhe hypercube CF. This can be recast as a successtul analysis of the Ehrenfest Urn
model of statistical physics [8] pg. 19. Of course, any walk on an abelian group is
constant on conjugacy classes.

Hildehrand [39] gave a careful complete analysis of a random transvections walk
on 3Ly (Fy) using character theory. Roughly, he showed that for fixed g and n
large, n + ¢ steps are necessary and sufficient. A sweeping generalization was
wake by Gluck [34]. He studied random walks on finite groups of Lie type with
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probability distribution (J supported on small generating conjugacy classes. In
close to complete generality, he proves that order rank () steps are necessary and
suffice. Gluck uses the upper bound lemma and must thus bound character ratios
of the form x(c)/x(id). As opposed to earlier efforts which used hairy but cxplicit
formulae for character ratios, Gluck proved that the ratios are uniformly bounded
above by terms of form q_x{“ﬂﬂ for e.g. 8 = 1/10. Thesc proofs work by induction
and make careful use of the structure of Lie type groups. The argument is so
powerful that it is worthwhile trying to abstract it; Cluck (personal communication)
reports that this did not seem easy to do for the symmetric group. In a different
development, Gluck [35] applied his character ratio bounds to get sharp results on
first return times for these random walks.

Character ratios figure in the analysis of many other applications of group theory.
some of these are explained in Gluck [34]. His results described above omit some
groups “in the corners” and have some restrictions on the size of the generaling
conjugacy class. An elegant rounding out and natural completion of Gluck’s results
was carried out by Liebeck-Shalev [52, 51]. As will appear later, these constant
on conjugacy class walks are a backbone of the approach outlined here to studying
general walks. We thus have a very solid base to build on—a comprehensive theory
for the finite simple groups of Lie tvpe. |

There is one striking open problem here. Hildebrand’s work proves a sharp cutoff
(n+c steps necessary and suffice, the transition to randomness happens as ¢ varies).
The work on other Lie type walks results in statements such as ‘fewer than rank
((7) steps are not enongh and there is a comatant 4 ~ 1 gn that A . rank () 4 e
steps suffice’. One thus does ot have a sharp cutoff. There are good reasons to
conjecture that the lead terms in the npper and lower hounds of any walk constant
on conjugacy classes match up [or a sequence of Lie type groups of growing rank.
This is carefully explained in [9] ar [65] which give surveys of this cutoff phenomena.

Turning to walks on the symmetric group, Rousell [64] has proved sharp bounds
on random walk generated by small conjugacy classes such as three-cyeles or prod-
ucts of two transpositions. Her results are of the following form: let ¢ be a conjugacy
class in S, with f(¢) fixed points. Then % steps are necessary and suffice
to achieve randomness (as ¢ varies). At the other end, Lulov-Pak [56] treat walks
generated by a single large conjugacy class. Ilere is one of their results. Let @ be
a probability supported on the conjugacy class of an f-cycle, with £ > n/2. Then
the walk generated by @ has a cut off at k = logn/log(n/(n — €)). This is closely
related to earlier work of Roichman [61] who derived useful bounds on character
ratios for large conjugacy classcs in §,,. Alas his work has not been pushed through
to give sharp bounds in probability problems. This is a hard but potentially fruit-
ful area of study. Onc striking result along these lines has been proved by Lulov
59] and Fomin-Lulov [32]. Fix h and take n a multiple of . Consider the walk
generated by the conjugacy clacs which is o product of n/k h-cycles. This random
walk gets random after two steps (and one step will not do). Lulov and Pak [56]
give a more comprehensive survey, several conjectures and many further results.

A nice development of the character theoretic approach to random walk on the
hyperoctahedral group B, appears iu Schoolfield [67]. He gives careful bounds for
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the walk on a small generating conjugacy class and applies the result to a problem
that arose in gene shuffling. I find it easiest to state their inal resull in the language
of playing cards. Imagine a row of face down playing cards in order on the tahle.
To start, card one is at left, ..., card n is at the right. Pick a randow block of &
cards and turn them over, both end for end and face up. How many times should
this be repeated to mix both the order and face up—face down pattern?
Character theory methods ean alsa he applied to compact groups such as the
urbhogonal group Oy, or SL,(Z,). Following work of Rosenthal [62] and FPorod [60).
I have worked on such prohlems in [25]. This last, joint work with Tanrent Salofi-
Cosle, allacks a 50 year old math/physics problemn posed by Mark Kac. This may
he rephrased as an analysis of the walk on (), generated hy picking a random pair
of coordinates and theu rotating by a random angle in Lhat 2-space (random Givens
rotations). It has been wonderfully developed and completed in work of Carlin et
al. [7], Janvresse [47] and Maslin [57]. The nalural conjecture: “order 1 log 1 steps
are necessary and suffice and there is a cutoff in total variation” is still open.
Random walks that are constant on conjugacy classes can be seen as a special case
of hi-invariant walks on a Gelfand pair This is specified by a subgroup H <  and
a probability @ so that Q(y) = @(h1yhs). Then the tools of spherical functions can

he nsefully employved Surveys of random wallkks on (Gelfand pairs appear in Tetae
148, 49], Diacouis [8] aud Belsley [4]. Taking G € G x G, the spherical [unclions
are the characters of (v. I have not found this connection particularly illnminating.
The two languages have their own thyllhun and classes of examples. In particular, 1
have never been able to use any of the classical (zelfand pairs as a nseful comparison
for less syuunelric walks.

Other techniques

Tou couclude this seclion let me mention that Lhere are many other ways of
studying random walks on groups that do not inveolve character theory. A survey
of analytical approaches can be found in Diaconis and Saloff-Coste [20]. These
meliuded Poincaré, Nash, Sobolev, and Log Sobolev inequalities. There are tech-
niques for lifting walks to covering walks, volume growth considerations and much
plse.

One striking result may be mentioned here as an example of what a comprehen-
sive theory might give. Let G be a finite p-group of bounded derived length and
Frattini rank. For any random walk based on a symmetric minimal generating set,
the squared diameter of the group in this generating set is necessary and sufficient
to achieve randomness. For the easiest example, the simple +1 random walk on
the integers (mod p) has diameter of order p in these generators and the example
above shows that order p” steps are necessary and sufficient to achieve uniformity.
For the next simplest example, consider one of the extra special groups of order
p>. Any set of two generators has diameter of order p and again order p* steps
are necessary and suffice. There are three proofs of the general (diam)? result and
many applications; in [19] it is proved using moderate geometric growth. In [22] it
is proved using Nash inequalities. In [20] it is proved using coverings and Harnack
inequalities.
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In addition to the analytic techmigques above, there are purely probabilistic
techniques- coupling and strong stationary times which give eloquent definitive
results in special cases. ‘L'he forthcoming book of Aldous and Fill [3] treals Lhese.
I have given a trcatment in [8] and in joint work with Fill [12]. Tgor Pak (58], has
developed strong stationary times in marvelous ways.

There are also a variety of mixing schemes studied by methods not captured
above. Chief among these are walks on S, associated to riffle shuffling cards. After
LLie original work of Baycr-Diaconis showing seven ordinary riffle shnffles suffice,
Bidigare-Hanlon-Rockmore followed by Diaconis and Brown extended Lhings to
walks on the chambers of a hyperplane arrangement. This includes all finite reflex-
jon groups. Then, Ken Brown extended things to walks on idempotent seint groups.
This includes walks on spherical buildings. These shuffling walks have many con-
nections with group theory and symmetric function theory. I have wrillen a recent
survey of these devclopments [10]. Finally, marvelous results which may be 1n-
terpreted in the language of random walk on finite groups have been proved in
studying expander graphs. These make deep contact with modern mathematics,
drawing on work of Deligne and Selberg. I will not try to paint this piclure here
but refer to Lubotzky [54] for extensive pointers to the literature.

2 Analytic geometry

I'his section sets out the analytic tools converning eigenvalues that allow geometric
methods (paths between elements, diametfer, covering numbers, volume growth) to
be used to bound rates of convergence of raudom walk. Throughout, ¢ is a finite
group, Q(s) = Q(s') a symmetric probability distribution. Often Q(s) = 1/|5]
o zero as s € S or not with § = §~! a symmetric sel of generators. Associated to
Q is a graph with vertex set G and an edge from s to ¢ if Q(st™1) > 0. Geometry
refers to the geometry of this graph. It is also helpful to associate a G| = |C|
matrix, the transition matrix with M, = )(ts~1). This gives the chance of going
from s to t in one step of the walk. The malrix M is symmetric and doubly
stochastic. It thus has real eigenvalues m; and the Perron-Frobenius theorem says
that | =7 =2 M ... 2 Mg—1 = —1. Just to warm up, here is an easy (and uscful)
bound for the smallest eigenwvalue

Lemma 2.1 For G and Q above, the smallest eigennalue satisfies

Proof If Q(id) = 0 this is certainly true. If Q(id) > 0, let Q(s) = Q()/(1 —
Q{u:i}] for s & id, Q(id) = 0. 'This is symmetric with eigenvalues 7; = —1. Thus
T:E%ET (i‘r|[,=|_1 Q{id}) = -1. This gives the result. O

Remark It is nol necessary to have Q(id) > 0 to bound necgative eigenvalues (see
Diaconis and Saloff-Closte [22]). This s the most commonly occurring special case.
The main bound on convergence to uniformity using eigenvalues is
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Lemma 2.2 For G and () as above,

1G] =1

s * : 1
41 ~ ull” < (611" ~ ulf = 16] (@) ~ = ) = > 2

2

1

Proof From the definition of total variation distance in the Introduction,
Al
Gl e =

2
it =ulf = (oo -ig]) <@1x G
= |G| (Z (Q*k(sj)z o |é| + |é,|) = |G|Q*?*(id) — 1.

g

|Gl-1
From the matrix interpretation, |G|Q***(id) = tr (M2%*) — 3 #x2%. This com-
=0
pletes the proof. O
Corollary 2.3 For G and ©Q as above
4||Q™ — u||® < |Gl 2, Ty = max (71, [Tig-1]) -

Remark The bound in Lemma 2.2 has been shown to be quite sharp in many
examples. There is usually a reasonably close matching lower bound. The bound
i the corollary is looser and usually off by factors of log |G]. It is sometimes all
that is available.

How to bound eigenvalues Define an inner product on real valued functions
on G by (filfe) — > fi(s)f2(s). The linear space of all functions (the group

i3
algebra) is denvled L?(G). A symmetric probability @ defines a Laplace operator
(I —Q)f(s) = f(s) =X f(£)Q(#s71). This has eigenvalues 1 — 7;. The associated
quadratic form is called the Dirichlet Form in probabilistic circles:

EFIF) ={I-Q)f. f) = Z(f(s — f(st))? Q(2).

As usual, we may bound eigenvalues by the minimax principle: let V' be a real
linear space, T a symmetric linear map on V with eigenvalues g < q¢1 < .
For a subspace W, set M(W) = max(Twv,v}/||v]|*, v € W, v #% 0. Then ¢, =
min { M (W) : dim(W ) =i + 1}. See Horn and Johnson [40] for a nice development.
The minmimax charactcrization implies

Corollary 2.4 Tet Q. rf;i he symmetric probabilities on & with eigenvalues my, 7
and associuled forms £,€. If for some constant A > 0, £ < AE then for all i,
i1l —=(1—m;)/A

Several applications of this result are given later in this section. Usually, Q is
a walk about which we know everything and @ is a walk we want to study. The
main use of Corollary 2 is the following basic upper bound.
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Theorem 2.5 Let ), é be symmetric probabilities on G. If £ < AE then

1Q** — w3 < miy

Imin

-

Proof I'rom Lemma 2, [|Q”"‘FE - 3| % Z ko« liﬁn o l_é_l . Z U ?T.?k.
T T
Now use the calculus bounds 1 —rx<e f”._ I=2> e = dor 2z % '1'hus
L — 1l 2k
> 0 gives w2k < (11 f}) ce i e 2

Theorem 1 gives bounds on a probability of interest in terms otf a known probability
in the presence of a comparison between forms.
How to compare forms (and first examples).

If S5 is a symmetric generating set of ¢ let || = mkin : § = gyeeagi. (2d] = 0.

For such a representation of ¢, let N(s,t) = # (times & appears). Fix a minimal
representation for each t.

Theorem 2.6 Lel Qlﬁ be syrmelric probabilities on G. Let § be a symmeiric
generating set with Q(s) > 0 for s € §. Then

E< AE for A= mﬁm;mﬁ{s B0,

Proof For z,f in G, write t = 81 ... s as above. Then, for any funclion [,

flz) = f=t) = (f(z) — flza1))+ fzs1) ~ flasisa)+. . .+ (f(msr .. se1) — flat)).

Squaring both sides and using the Cauchy-Schwarz inequality gives

(f@) — F@)? < 1 { (@) — Flar)? + ..+ (Flzs1 - s11) — F@))*} -

Summing in T

(@) = J@)? < U (@) = f(@)* Nis,t).

Multiply both sides by Q(t)/2 and sum in £ The left side is ?(ﬂf} The right side

is
330 (@) - £9) G SN G, 030 < 21

O

The first time one looks at Theoremn 2.6, things lovk hopeless. As will elnerge, il s
often possible to get nseful honnds an 4. This is illustrated in a series of examples
below.

First examples We begin with a very bhasic example which ‘works’ for all walks
on all groups. This is then specialized Lo the walk oo the symmetric group based
on the generating set of a transposition and an n-cycle.
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3 Other appearances of random transpositions

When Shahshahani and I completed our analysis of random transpositions it seemed
very delicate; the method of proof breaks down if the generating set is not a union
of conjugacy classes. ''he last example of section 3 shows that transpositions plus
comparison can handle examples with no relation to conjugacy. In joint work wilh
Saloff-Coste [17] we treated many further examples: consider a connected graph on
11,2,...,nj, take a transposition for each edge. This gives a generating set. If the
graph 15 a path, we get the usual Coxeter generators. If the graph is a star, the walk
becomes ‘transpose random with one’. Of course, for the complete graph, we get
random transpositions. The comparison theory is easy and we derived reasonably
sharp answers for this general set of problems. Tor a path the answer is order
n® logn. This had been done earlier by Aldous |1] using coupling. The lower bound
for this case was only done recently by Wilson [75]. It introduces a powerful lower
bound technique that seems very useful. For a star, n(logn-+c¢) steps are necessary
and suffice. Again, the example had been done earlier by Ilatto-Odlyzko-Wales
using the fact that the restriction of an irreducible representation of S, restricts
Sn—1 in a multiplicity free way. All other graphs give new examples, handled by
a uniform method. The paper with Saloff-Coste treats overhand shuffles, an open
problem of Borel-Levy (choose a random packet from the center of the deck and
cut it to the top.).

While I will not expand on it here, the comparison approach is not restricted
to symmetric tandom walk (Q(w) = Q(w™!)). This is developed in great detail
in Diacouis aud 3alol-Cusie [22]. In particular, for n odd, the generating set
{(1,2),(1,2,...,n)} (no identity, no inverses) yields a random walk that equilibri-
ates in 17 log n steps. Another technical improvement developed in joint work with
Saloff-Coste [22] uses averages over random paths.

I've been very pleased to see two applications in biology: DNA sequences evolve
by a variety of transmutations (substitutions, insertions, deletions). There are also
‘translocations’, exchanging genetic material between chromosomes. This can be
studied by picturing a row of eymbols, picking o pair (¢, j) from some distribution,
and reversing the order ¢ <= 7 4+ 1+ 73— 1,.... Fill and Schoolfield studied this
(keeping track of face up and face down symbols which have a biological mean-
ing) using the analog of random transpositions on the hyperoctahedral group 5,,.
Durrett [31] studied the process on the symmetric group and includes a serious
comparison between data and model. A very difterent application, to phylogenetic
trees, 1s also based on random transpositions; scc Diaconis and Holmes [15] which
also contains pointers to coagulation processes in chemistry.

All of this development leans on Trobenius’s neat character formula of example
L.4. 1 was surprised to see an earlier application of this formula in work of Rothaus-
Thompson [63]. They were studying perfect codes on the symmetric group. This
18 a set of permutations wy, we, ..., ws such that the balls of radius h in the metric
based on transpositions exactly partition the group. The problem can be phrased
as convolution with the random transpositions measure and the character formula
(and some clever number theory) yields some partial results. There is much left
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open as well.

The earliest Application A most surprising discovery was made by Basil Gor-
don (personal commuunication). The Basic random transposifion model appeared
in work of Hurwitz [43, 44]. Hurwitz was counting the number of n shected covers
of the Riemann sphere with «-simple branch points. Riemanns existence theorem
says that such covers are in one to one correspondence with ways of writing the
identity permutation in S, as a product of d transpositions. Here the individ-
ual transpositions specify how to glie the covering sheets over the various branch
pomnts. Transpositions occur because of the (assumed) square root singularities.
Up fo multiplying by a factor of (g’)d this number of ways equals @*%(id). Using
the Fourier inversion formula

Q(id) = 3" (JE;[:])&

Al

Now Frobenius’s formula gives an explicit result.

In fact, Hurwitz wanted to count irreducible covers. In group theory terms this
means thal he requires that the transpositions that appear must generate S5,. He
originally solved this problem by a form of exclusion-inclusion (if the transpositions
don’t geuerale S, they generate a subgroup). His version of this is one of the
earliest appearances of what is now called the exponential formula of enumerative
combinatorics (see Stanley [70], Chapter 6)). By looking at examples computed in
this way for small n, Hurwitz guessed that all the mess clears away and the final
answer is simple. Hurwitz made the conjecture:

Let ¢ have cycle lengths ki ks, ..., k,. The number of factorizations

Tl . Tj-]_i_ﬂ—'?_' — |::F

of the permutation o into a product of transposilions Ty WRETE (T s s Trhpt ) = 5
o ki1
a o el
(a4 pg—9nP 2 g =2
p==T R"tr

The full result was proved by Goulden and Jackson [36] . In fact, Hurwitz outlined
a proof which was completed by Strehl [72].

The enumerative theory of surfaces and their covers and triangulations has a rich
development. Useful surveys are given by Jones [46], Zvonkin [76] aud iu the article
by Condor that appears in this volume. There are amazing recent connections to
modern theoretical physics through Cromov-Witten invariants. See Lhe article
by Goulden-Jackson-Vakil [37] for pointers. I have no doubt that some of these
developments can be turned into shuffling thecorems but this lies in the [uture.
Delormations My most recent encounter with random transpositions comes
through joint work with Arun Ram on analysis of ‘Systemic scan Metropuolis algo-
ritluus’. This involves a deformation mnto the lwahori-Hecke algebra. In the end,
the familiar analysis hased on Frobenius’s character formula allowed sharp esti-
mates. I thiuk there is much further work to be done here and will include a high
level overview.
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The Metropolis algorithm is a mainstay of scientific computing. It is used in
physics, chemistry, biology, statistics and business applications. Billera and Di-
aconis [6] and Diaconis and Saloff-Coste [24] are surveys with extensive pointers
to the literature. The present example involves comparing two variants (random
versus systematic scan). The problem is to draw repeated random samples from a
non-uniform distribution on S,. Fix 0 < 8 < 1. Let

m(w) = 0~ /P(6~") where P(97) =) 74

18 the normalizing constant. Ilere £{w) is the lengih of the permutation w in the
usual generating set s; = (1,t+1), 1 <1 < n—1. Of course, for # = 1 this becomes
the uniform distribution but, for e.g. § — %: this concentrales on permulations with
larger lengths. These non-uniform distributions are known as Mallows maodels and
are widely applied.

A standard way to sample from «(w) involves a random walk on S, which
may be called the flandom Scan Metropolis Algoritlin. I is simple Lo state. The
wallk starts at some fixed permutation (say id) and proceeds by making random
pairwise adjacent transpositions according to the following schewme. Suppose the
walk 1s currently at w. Choose ¢ uniformly in 1 <7 < n — 1. If £(s;w) > #(w) the
walk moves to syw. If £(s5;w) < £{w), flip a coin with probability of heads @. If Lhis
coin comes up heads, move to s;w. If the coin comes up tails. the walks stays at .
This generates a random sequence wy — id, wy, ws,.... Simple theory shows Lthal
the probability of (wr = w) — 7w(w) as k — oo.

In our sccond variant, the walk proceeds as above but instead of choosing Lhe
proposal transpositions at random. things proceed systematically; first try 51 then
&2,..., then sp_; then s5_1,5,-9,..., then s;. Al each stage one compares the
length and makes an auxiliary coin toss if needed. Call the resnlt of one pass
through (based on 2(n — 1) steps) the systematic scun Metropolis algorithm. Such
systematic scans are widely employed in applications to Tsing-like models in physics
and image analysis. Again, simple theory shows that they converge to m(w).

It 1s natural to ask how long each of the algorithms takes to converge and which
or when one is better. The problems are largely vpen [or the usual applications
ot the Metropolis algorithm. For the special permutation case discussed here, the
analysis can be pushed through. Roughly stated, tle systemalic scan procedure
takes order n passes (and so order n* steps). This is stated more carefully below.
In very recent work, Benjamini, et al. [5] have shown Lhal Lhe random scan version
also takes order n? steps to converge. This seems surprising, since the systematic
procedurc builds in some extra structure. This is the first and only example where
such a comparison has been made. The paper with Ram [16] carries this ant for
general finite reflection groups with similar findings.

The reason for mentioning the subject here is that the analysis rests on a novel
probabilistic intcrpretation of multiplication in the Hecke algebra. Let W be a
finite Coxeter group generated by simple reflections si1,...,5,. These define a
length function with £(id) = 0,-£(s;) — 1 and £(s;w) = €(w) £ 1. The Iwahori-
Hecke algebra H corresponding to W is the vector space with basis T, for m & W
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and multiplication given by

G 15 if £(s;w) = £(w) + 1
U @ OTw+ gl I £(siw) = L) —1

where T; = T,.. We have TE = (g—=1)T; +q or equivalently (1; — g)(7; + 1) = 0.

I have always found this multiplication intriguing and tried to find a stochastic

mnterpretation. In the work with Ram we proved

Theorem 3.1 et W be a finite Cozeter group as above. Set
= < |
¢4=0", Ti=T/s, To=q""T, forwew i
|

Then the systematic scan Metropolis chain ;’SymbEIiEQHy E—lifg o KnKy . K3) has
the same transition matrir as multiplication by ThTs . .. InTh ... Ty in the Twahori-
Hecke algebra with busis T:.

Central to our work is the fact due to Breiskorn and Deligne that the long sys-
tematic scan (K K5 ... K, K, ... K1)+ (K1 K3K9 K7 )(K1 K1) corresponds o il
tiplying by an element in the center of H. This ic the ‘g analog’, or deforwation of
the fact that the sum of all trans pusitions is in the center of the group algebra. The
action by this element can be explicitly diagonalized. The eigenvalues are clusely
related to Frobenius’s formula and it was possible to push through a successfil
analysis. Let me end this sea of exposition with a clear mathematical resull from
my work with Ram.

Theorem 3.2 Let K be the transition matric Jur one pass of the short systematic
scan algorithm on S,. For £ = n/2 — (log n/logf) +c with e > 0, for all n

4”};5‘{ =, ﬂ,”:z < (EQEG‘H e niH-.-.FfS-—n'[ﬂgﬂf]mg t5'+5'1[c—|—1|f-“-1jr

Comversely, for £ < n/4, for fired 7, ]|J|!'-':'{J — m|| tends to 1 as n — oo.

I must not leave this part of the world without mentioning that Diaconis and
Hanlon [14] analyzed the Metropolis deformation of the random transpositions
chain ou 5, with stationary distribution o(w) = Z718" where |w| is the length if
ail transpositions are used. This deformation led to Lthe Jack symmetric functions.
It is an intriguing problem to see if the two parameter Macdonald polynomials can
be obtained in this way.
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4 Some open problems

There are an infinite variety of open problems. These range from specific to fairly
general Specific problems can be helpful in pointing to the need for new tools and
understanding.

2

b

IL is well known (Suzuki [73]) that for p a prime, SL,(F,) is generated by
elementary row operations, adding or subtracting one row from another. Let
Ei; be the n x n malrix with ones down the diagonal and a one in position
(¢,4) (for fixed i # j). Then these elementary transvections generate. It
is natural tv ask [ur Lthe speed of convergence. This problem appears in a
variety of gnises; Diaconis and Saloff-Coste [23] relate it to a particle system
and Lo a special case of the product replacement algorithm. Using the method
outlined in section three they were able to show that order n*(log p)? steps
sullice. The best lower bound available is of order n° logp. This is a natural
enongh problem that an answer should be sought. The approach taken in
23] is Lo use comparison with the walk generated by random transvections
(the whole conjugacy class) Hildebrand [39] analyzed this walk by character
Lhieory. Kal Magaard showed us that any transvection can be written as a
product of at most An elementary transvections so we were off and running.
Igor Pak has oblained some improvements and extensions but the general
problem of determining the right rate (and perhaps showing there is a cut
off) remains vpen.

Steinberg [71] showed that any finite group of Lie type can be generated by
two generators. This offers a list of problems: pick your favorite group (or
onc you'd like to get fo know), figure out what Steinberg’s generators are
and get to work. 1o make things easier, you might begin with p = 2. Glucks
bounds and some basic geometry should suffice to show that order a small
polynomial in rank((s) steps suffice. Even this would require honest work.
Finding the right anower would be a major achievement. Ilere is a specific
case which I find interesting. 'lake SL,(F,). A Singer cycle is an element
of maximal order. It can bec explicitly constructed as the n x n companion
matrix of a primitive polynomial. Let A be a Singer cyvcle and B = Ei»
(elementary transvection). These two matrices generate SLn(TFp). They are
the appropriate analogs of n-cycle and transposition in S,.. Bound the rate
of convergence of this random walk.

Towards generality; all finite simple groups are generated by almost all pairs
of elements. For the alternating group, this is a theorem of Dixon. It has
been improved extended and refined by a generation of group theorists. See
Shalev [68] for the latest results. This suggests a class of problems: pick two
elements of such a group at random and study the expected relaxation time
for the raudom walk. T conjecture that it is bounded by a small polynomial
in Rank((z). In the case of the alternating group, I conjecture it is bounded
by n? log .. The best that is known rigorously is order e“v™ (Babai). Sticking
to A,, it is possihle that there are a bounded number of generators such that
the relaxation lime is of order nlogn; a tantalizing conjecture of Lubotzky
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says Llhis can’l happen see Gamburd-Pak [33] for more on this.

. The question of understanding the cutoff phenomenon is perhaps more ab-

stract. If an, b, are two sequences tending to infinity with b, /a, tending to
zcro and kn, = |an |+ ¢by| then a sequence of probabilities @, on groups G,
satisfies a cut off if there are real functions f(e¢), glc) = 0 such that glec) — 0.
f(e) — 1 and

fleo) = 1@ — | < g(eo).

A variety.of our examples above satisfy this; for random transpositions, one
may take a,, = 5 logn, b, = n. The fact that the phenomena was discovered
at all suggest that it is generic. There may be some soft way to prove this
along the lines of concentration phenomena in modern combinatorics. Failing
this, one can try to establish it for sets of examples along the lines of Rousell
[64], Lulov-Pak [56]. In [19] we show that Nilpotent groups of low derived
length with small generating sets do not satisfy cutoffs. Random walks on
groups like C7 for n large do satisfy cutoffs. What’s going on? It is tempting
to try to relate these cutoffs to other types of phase transitions as in Dubais
et al. [30].

. In many examples there is a natural ordering on the irreducible representa-

tions p such that for “simple” probability measures @), ||@[p}|| is monotone
decreasing as p moves away from the trivial representation. For example, for

G = C, with n odd and Q(1) = Q(~1) = 1/2, |@(h)| = |cos( 2 )| this is
one when h = 0 and decreases for increasing h,0 < h < n/2. For random
transpositions (ﬁ{p;&] = (% - %-%’) I. In [8| the character ratio was shown
to be monotone in the usual partial order on partitions. This gquestion can
be asked in purely group theoretic terms. To be specific, let G be a finite
simple group. Let ¢ be a conjugacy class not in the center. Show that the
character ratio |z,(c)|/®,(id) is monotone decreasing in the dimension z,(1d).
Put this precisely the conjecture may be false but since many special cases
have been found, some mild weakening must hold. The Riemann-Lebesgue

lemma 1s actually an asymptotic version of this: let G be a compact group.
Let f: G — C be in L' then, f(p) tends to zero as dim(p) tends to infinity.

One of the exciting developments of group theory is the modern theory of p-
groups. At long last a theory of these monsters is beginning to emerge. This
is summarized in recent books by Dixon et al. [29]. The theory focuses on
groups of size p™ with large class. One may study random walk on these. For
example, the groups of maximal class are all generated by two generators.
Pick a group and a generating set and start working. To be specific, the
Nottingham group may be represented as polynomials f(z) = r4asx°+...+
a,x", with a; in F,,, taken mod 2™, These form a group under composition.
A generating set is 7, £ + £°. What is the rate of convergence as a function
of p and n7 Here is one further specific example. Let G = CpwrC,. This is
a group of order p¥'!. It appeared early in Philip Hall’s study of regular p-
groups (G is a “smallest” example of a non-regular group) if G is represented

B
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as Cp acting on Cf by cyclic shift then a generator of Cp and any non-zero
vector in CF generate. Uyemura-Reyes [74] gives upper and lower bounds of
order p° and p®logp respectively but the right answer is unknown. Reyes
shows how random walk on such wreath products arise in card shuffling and
relates thesze questions to recent work on the lamplighter group along with
work of Grigorchuk et al. [38] who used the eigenvalues of such walks to
disprove a question of Atiyah.

7. It is very natural to study Markov Chains on finite rings. The meat ax falls
inbw Lhis class. Here is one simple, completely open example. In Fy, consider
the walk which moves from « to + 1 or 2 with probability 1/2. I'm morally
certain that this takes order log p steps. At present, I don’t even have a rough
description of the stationary distribution (it is certainly not uniform)

Further questions are in [24]. T am pleased to repart that almost all the questions
I posed in my book [8] have been usefully settled. The most annoying open one is
Thorp’s model of shaffling cards []] pg. 90

Added in proof. A very recent application of random transpositions occurs in
Diaconis, P., Mayer-Wolf, F._, Zeitouni, O, and Zerner. M. (2002). Uniqueness of
invarianl measures [or split-mmerge transformalions and the Poissou-Dirichilel Law.
To appear, Ann. Probab. They prove a conjecture of Vershik on the stationary dis-
tribution of a coagulation-fragmentation process occurring in chemistry by showing
that it redueces to following the cycle structure under random transpositions.
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