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We cite from [9]: “Near subgroups of finite groups were introduced by
Feder and Vardi [11] as a tool to study the computational complexity of
constraint satisfaction problems.” Their main motivation was the question
whether every problem in the class CSP is either polynomial or NP-complete.
Feder and Vardi showed that the class of problems whose constraints are
defined by subgroups and their cosets in a given abelian group is polynomially
solvable [11]. There it is also proven that every additional constraint type
that is not a coset of a subgroup makes the problem NP-complete.

The subgroup-and-their-cosets problem remains polynomial even if the
group is not abelian. For non abelian groups additional constraints that are
not cosets of subgroups resist attempts at showing NP-completeness with the
exception: If for a contraint type the group has an abelian section where a
coset of the constraint containing the identity 1 does not define a subgroup,
then the problem is NP-complete by the result on abelian groups [10]. A near
subgroup of a group is a set containing 1 whose every coset containing 1, when
restricted to an abelian section, defines a subgroup. Thus sets that are not
cosets of near subgroups make the problem for a given group NP-complete,
see [10].

Bulatov [7,8] has shown that Mal’tsev constraints have a polynomial time
algorithm. In between Aschbacher [2] addressed some questions raised in
[11] and showed that near subgroups possess much structure. More recently,
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Feder [10] showed that near subgroups do indeed characterize the polynomial
time solvable cases of group theoretic constraint satisfaction problems, using
new structural results for near subgroups obtained by Aschbacher [2,3]. More
precisely Feder proved that subgroups, near subgroups, and their cosets are
Mal’tsev constraints [10].

The aim of this paper is to exhibit some of the influence of computer
science on group theory. In particular, I would like to present the develop-
ment in group theory which was initiated by Feder and Vardi [11] and its
surprising consequences (see also [10, p.3]).

Every near subgroup of a group is a twisted subgroup and for odd order
groups the two concepts coincide. A subset K of a group G is a twisted
subgroup of G if K contains the identity 1 of G and if for all x, y ∈ K it
follows that xyx is in K, see [2] or [9].

First of all notice that there is a one-to-one correspondence between
twisted subgroups and Bol loops, see for instance [6,4]. Bol loops are groups
satisfying only a weak axiom of associativity. They are also of importance
in physics where they are called gyrogroups [17]. If in a twisted subgroup K
all the elements different from the identity are involutions, i.e. applied twice
are the identity, then the related Bol loop is even a Bruck loop (in physics
called gyrocommutative gyrogroup [17]).

Recall that a transversal T to a subgroup U in G is a set of representatives
of the set of right cosets of U in G, that is T has precisly one element from
every right coset of U in G. If the twisted subgroup consists beside the
identity of involutions, then G has a subgroup U such that T = K is a
transversal to U in G, which satifies the following two conditions.

(1) 1 ∈ T
(2) T is closed under conjugation by G (that is T G = {g−1tg | g ∈ G, t ∈

T } = T ),

see [6] or [4].
Bruck loops have been studied by Glauberman [12, 14]. He generalized

the Feit-Thompson Theorem stating that every finite group of odd order is
soluble to finite Bruck loops of odd order. In order to do so he proved his
famous Z? Theorem [13] which became a basic tool in the classification of
the finite simple groups.
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It was a long standing open question whether, as for finite groups, Bruck
loops where K consists beside the identity only of involutions are soluble.
Aschbacher answered some questions of Feder and Vardi on near subgroups
in [2]. This led him to work on this long standing open question on twisted
subgroups just mentionned. He could reduce the problem to a problem on
linear groups and their modules. Using these results of Aschbacher Stein and
the author answered the question negatively by giving a counter example [6],
see also [16]. This surprising answer - almost everybody expected that the
Bruck loops would be soluble - revealed that Bruck loops as well as Bol loops
of even order are not at all understood up to now.

If we replace (2) above by

(2’) T is closed under conjugation by U ,

then we obtain a gyrodecomposition of G, which were also studied by Feder
[9].

In the following we show that the concept of a twisted subgroup can be
used to produce a complement to a subgroup in a group. We study the
groups satisfying (1) and (2’). If (G,U) satisfies the condition (2’), then we
say that G admits a U-invariant transversal in G.

Notation In the following the reader is directed to [1] for notation and
terminology. Nevertheless we like to recall some definitions.

Let G be a finite group and let |G| = pa1
1 · · · pan

n be the prime factorisation
of the order of G. Then every subgroup of G of order pai

i is a Sylow p-subgroup
of G. If the group G is the direct product of its Sylow p-subgroups, then G
is called nilpotent. The group G is soluble, if there are normal subgroups
G1 = G,G2, . . . , Gn = 1 of G (i.e. subgroups Gi such that g−1Gig = Gi for
every g in G) such that Gi/Gi+1 is abelian for 1 ≤ i ≤ n− 1.

As usual we denote by π(G) the set of primes which divide the order of G.
If π = π(G), then we say that G is a π-group. For π ⊆ π(G), we denote by
Oπ(G) the smallest normal subgroup of G such that G/Oπ(G) is a π-group.
If π = {p} consists of a single prime then we omit the brackets.

Gil Kaplan could characterize the groups satisfying (1) and (2’) under
the further assumption that U is a Sylow p-subgroup of G. He showed the
following.
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Theorem 1 [15] Let G be a group, p be a prime and U a Sylow p-subgroup
of G. Assume that U has a transversal T in G which is normalized by U .
Then U has a normal p-complement (that is a normal subgroup N such that
G = NU and N ∩ U = 1).

Recall that U is a Hall subgroup of a group G if gcd(|U |, |G|/|U |) = 1. In
particular, every Sylow p-subgroup of G is a Hall subgroup of G. If π = π(U),
then we say that U is a π-Hall subgroup.

In [5] we generalized the result of Kaplan to:

Theorem 2 Let U be a nilpotent Hall subgroup of G which admits a U-
invariant transversal in G. Then U has a normal complement in G.

It is a natural question to ask what is happening if U is not nilpotent, but
soluble? The following example shows that a soluble Hall subgroup U which
has a by U normalized transversal does not have a normal complement in
general:

Example 1 Let G = S5, the group of permutations of the set {1, . . . , 5},
and let U be the stabilizer of 5 in G. Set

T = {id, (15), (25), (35), (45)},

where (ij) is the transposition interchanging i and j. Then U ∼= S4 is a
soluble Hall subgroup of G and T an U -invariant transversal to U in G.
Clearly, U does not have a normal complement in G.

Assume that U is a π-Hall subgroup of G which admits a normal complement
N . Then N is a U -invariant transversal to U in G. Moreover, U ∼= G/N is
a π-group and N is not divisible by any prime in π. This shows that N is
contained in Oπ(G).

We prove that this necessary condition is already sufficient.

Theorem 3 Let U be a soluble Hall subgroup of G. Then G has a normal
complement to U if and only if U admits a transversal T ⊆ Oπ(G) with
T U = T .

Example 1 is not a counterexample to this theorem, as in the example
U is a {2, 3}-Hall subgroup of G, O{2,3}(G) = A5, the subgroup of even
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permutations of S5, and there is no U -invariant transversal to U in G which
is contained in A5.

Clearly, the immediat question arises: what can be said if U is an ar-
bitrary Hall subgroup which has a U -invariant transversal, but none of the
normalized transversals is contained in Oπ(G)? In a forthcoming paper we
further investigate these groups.

The condition that gcd(|U |, |T |) = 1 is really needed - else we get counter
examples, see [5].

In the next section we provide some general facts which are necessary to
prove Theorem 3. The last section includes the proof of Theorem 3.

1 General properties

The first lemma is an easy exercise in group theory.

Lemma 1.1 Let G be a group and π ⊆ π(G). Then

(a) Oπ(G) ≤ ∩p∈πOp(G)

(b) Oπ(Op(G)) = Oπ(G) for all p ∈ π.

Proof. The first part follows directly from the definition and the second
from the facts that on the one hand if Op(G)/A is a π-group, then also G/A
and on the other hand that Oπ(G) is a subgroup of Op(G) and Op(G)/Oπ(G)
a π-group. 2

Now let us focus on groups which have a subgroup U admitting a U -
invariant transversal.

Lemma 1.2 Let U be a subgroup of G which has a transversal T such that
T U = T . Then the following holds.

(a) There is precisely one element u0 in U ∩ T .

(b) Let u0 be as in (a). Then u0 commutes with U , i.e. u0u = uu0 for all
u0 in U .
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(c) U controls fusion of its p-elements, i.e. if u is an element of U whose
order is a power of p, then uG ∩ U = uU .

Proof. As T is a transversal for U in G, there is precisely one element u0 in
U ∩ T , which is (a). Now T U = T implies (b).

Let u be a p-element of U such that ut ∈ U for some t ∈ T . Then
t−1utu−1 ∈ U . As utu−1 is in T and as T is a transversal for U in G, it
follows that utu−1 = t and therefore ut = tu. The fact that G = UT implies
now uG ∩ U = uU , which is the assertion (c). 2

2 Proof of Theorem 3

In the following we need to distinguish between the prime divisors of |G|
which divide the order of U and which don’t. Set

π := π(U).

Moreover, recall the definition of the commutator subgroup

G′ := 〈g−1h−1gh | g, h ∈ G〉

of G.

Lemma 2.1 Let U be a subgroup of G such that G admits a U-invariant
transversal in G. If Op(U)U ′ < U for a prime p in π, then Op(G)G′ < G.

Proof. As U controls fusion of its p-elements by Lemma 1.2(c), it follows
that

(Op(G)G′) ∩ U = Op(U)U ′ for all p ∈ π,

see [1, 37.5]. If Op(G)G′ = G, then we get the contradiction

U = G ∩ U = (Op(G)G′) ∩ U = Op(U)U ′ < U.

2
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Proposition 2.2 Let U be a subgroup of G such that G admits a U-invariant
transversal in G. If Op(G)G′ = G for all prime p in π, then U is a perfect
group, i.e. U = U ′.

Proof. Assume that U is not perfect. Then U ′ < U . Let p be a prime which
divides the order of U/U ′. Then Op(U)U ′ is a proper subgroup of U . Thus,
we get a contradiction to Lemma 2.1. 2

Corollary 2.3 Let U be a Hall subgroup of a perfect group G such that G
admits a U-invariant transversal in G. Then U is a perfect group.

Proof. As G is perfect, we get Op(G)G′ = G for all p in π, and therefore
Proposition 2.2 yields the assertion. 2

Proof of Theorem 3.
Suppose that U has a normal complement N . Then N is a π′-group and
therefore it is is a transversal which is normalized by U and which is contained
in Oπ(G).

Now assume that there is a transversal T ⊆ Oπ(G) with T U = T . Then
in particular, T is contained in Op(G) for all p in π, see Lemma 1.1(a). Let
p be a prime dividing the order of U/U ′. Then Op(G) < G by Lemma 2.1.
Clearly, Op(G) = T (U ∩ Op(G)). As moreover T ⊆ Oπ(G) = Oπ(Op(G))
by Lemma 1.1(b) we can use induction and get that there is a normal π-
complement N to U ∩Op(G) in Op(G). Thus, N is a characteristic subgroup
of Op(G) and therefore it is normal in G. Further,

G = Op(G)U = N(U ∩Op(G))U = NU

and N ∩ U ≤ N ∩Op(G) ∩ U = 1. 2
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