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Abstract

c-Sections of maximal subgroups in a finite group and their relation to solvability

were extensively researched in recent years (see [SW], [W] and [LS]). In this paper we

prove (Theorem 1.1) that a finite group G is solvable if and only if every maximal sub-

group M of G satisfies |Sec(M)| < |G : M |β, where β = log(175560)/log(2624832) '
0.817. We show that β can not be replaced by a larger constant. If G is a finite group

in which every maximal subgroup M satisfies |Sec(M)| < |G : M |, then each compo-

sition factor of G is either cyclic or isomorphic to the O′Nan sporadic simple group

(Theorem 1.5).
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1 Introduction

Let M be a maximal subgroup of a group G and K/L be a chief factor of G such that L ≤ M

while K 6≤ M . According to [SW] we call the group M ∩ K/L a c-section of M . Shirong

and Wang proved that for a given maximal subgroup M of G all the c-sections of M are

isomorphic [SW, 1.1]. We denote the abstract group isomorphic to a c-section (and so to all

c-sections) of M by Sec(M).

In [W] it was proved (although not using this terminology) that a group is solvable if and

only if the c-sections of all its maximal subgroups are trivial. Further solvability conditions

were proved in [SW]. In particular, a group is solvable if and only if the c-sections of all its

maximal subgroups are 2-closed ([SW], Theorem 2.1), and if and only if the c-sections of all

its maximal subgroups are nilpotent ([SW], Theorem 2.2). The case when all the c-sections

are supersolvable was discussed in [LS].

In this paper we study further the notion of c-sections and its connection to solvability.

In particular, for a maximal subgroup M we consider the relation between the order of the

c-section |Sec(M)| and the index |G : M |. By the above, if G is solvable then obviously

|Sec(M)| < |G : M | for each maximal subgroup M of G. It turns out that the opposite

direction is not true, but the counterexamples can occure only for groups in which each

non-cyclic composition factor is isomorphic to the O′Nan sporadic simple group (Corollary

1.1 below). However, by a certain refinement, we get an equivalent condition for solvability

in Theorem 1.1 below.

In the sequel, a subgoup B of G is called large if |B| ≥ |G|1/2. We shall need the special

number β := log(175560)/log(2624832) ' 0, 817. Using the classification of finite simple

groups, we prove the following solvability criterion.

Theorem 1.1 Let G be a group. Then G is solvable if and only if |Sec(M)| < |G : M |β for

all maximal subgroups M of G.

We show in Proposition 3.2 that the non-solvable group G = Aut(O′Nan) is a group

satisfying |Sec(M)| ≤ |G : M |β for all maximal subgroups M of G. Thus β can not be

replaced by a larger constant in Theorem 1.1.
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In order to formulate conveniently our next result we define the following two conditions

on a group G.

Condition 1.1 |Sec(M)| < |G : M | for every maximal subgroup M of G.

Let G be a group and B ≤ K ≤ G. Then we say that the action of G on BG is controlled

by K, if every G-conjugate of B which is inside K is a K-conjugate of B. In this paper we

deal only with the case when K is normal in G.

Condition 1.2 Let K/L be a chief factor of G. For each proper large subgroup B/L of

K/L, the action of G/L on (B/L)G/L is not controlled by K/L.

Theorem 1.2 (a classification-free result) Condition 1.1 holds if and only of Condition 1.2

holds for all the non-abelian chief factors of G.

For proving Theorem 1.1 we shall need the following two propositions, which are of

independent interest.

Proposition 1.3 Let G be a simple non-abelian group such that G 6∼= O′Nan. Then G has

a proper large subgroup H such that the action of Aut(G) on HAut(G) is controlled by G.

Proposition 1.4 Every simple non-abelian group G has a proper subgroup H such that

|H| ≥ [G : H]β and the action of Aut(G) on HAut(G) is controlled by G.

We show that β can not be replaced by a larger constant in Proposition 1.4 (see Remark

2.6). The following result follows from Theorem 1.2 and Proposition 1.3.

Theorem 1.5 If Condition 1.1 holds for a group G then every composition factor of G is

either cyclic or isomorphic to O′Nan.

The proofs of Propositions 1.3 and 1.4 are given in Section 2. The proofs of Theorems

1.1, 1.2 and 1.5 are given in Section 3.
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2 Proofs of Propositions 1.3 and 1.4

We prove Proposition 1.3 separately for the sporadic simple groups, the simple groups of

Lie type and the alternating groups; see Proposition 2.1, Corollary 2.4 and Proposition 2.5,

respectively.

Proposition 2.1 Let G be a sporadic simple group which is not isomorphic to O’Nan. Then

G has a proper large subgroup H such that the action of Aut(G) on HAut(G) is controlled by

G.

Proof. It was proved in [L] that each simple non-abelian group G has a large maximal sub-

group. When Out(G) = 1 this large subgroup H certainly satisfies our control condition. In

Table 1 we give for each sporadic group G with Out(G) > 1, except O′Nan, a corresponding

large maximal subgroup H such that the action of Aut(G) on HAut(G) is controlled by G.

The information is based on [At]. This information completes the proof. 2

Table 1: Proper large subgroups with control

G H |H| |G : H|
M12 L2(11) 660 144

M22 L3(4) 20160 22

Suz G2(4) 251596800 1782

HS M22 443520 100

MCL U4(3) 3265920 275

He S4(4) : 2 1958400 2058

HN A12 239500800 1140000

J2 U3(3) 6048 100

J3 L2(16) : 2 8160 6156

Fi22 2 · U6(2) 18393661440 3510

Fi′24 Fi23 4089470473293004800 306936

Recall that a Borel subgroup of a group of Lie type G in characteristic p is the normalizer

of a Sylow p-subgroup of G.
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Proposition 2.2 Let G be a simple group of Lie type σLl(q) of rank l defined over the field

with q elements. If q > 2, then every Borel subgroup B of G is a large subgroup of G such

that the action of Aut(G) on BAut(G) is controlled by G.

Proof. Since B is a Sylow normalizer and all the Sylow p-subgroups of G are conjugate

in G, the control condition is satisfied. It is left to show that B is large in G. We deal

separately with the cases when G is twisted or not.

Case 1. G is a non-twisted group of Lie type.

Then according to [Ca, 9.4.10]

|G| = 1

d
qN(qd1 − 1) · · · (qdl − 1),

|B| = 1

d
qN(q − 1)l

and

|G : B| = (qd1 − 1) · · · (qdl − 1)/(q − 1)l,

where d is as in 9.4.10 of [Ca], N = |Φ+| is the number of positive roots of the root system

related to G and d1 + · · ·+ dl = N + l [Ca, 9.3.4].

By assumption q ≥ 3. Assume l = 1. Then even q ≥ 4, N = 1 and d1 = N + l = 2.

Hence

|G : B| = (q2 − 1)/(q − 1) = q + 1

and

|B| = q(q − 1)/(q − 1, 2).

As q(q − 1) ≥ 3q and 3q > 2(q + 1), the assertion follows.

Now let l ≥ 2. If l = 2 and q = 3, then either d = 1 and G ∼= L3(3) or G2(3)′, or d = 2

and G ∼= PSp4(3). In the first case |B| = 22 · 33 or 22 · 36 and |G : B| = 22 · 13 or 24 · 7 · 13,

respectively. Thus B is a large subgroup of G. If G ∼= PSp4(3) then |B| = 2 · 34 = 162 and

|G : B| = 25 · 5 = 160 and the assertion holds again.

From now on we assume l ≥ 3 if q = 3 and l ≥ 2 otherwise. We aim to show

(qd1 − 1) · · · (qdl − 1) <
1

d
qN(q − 1)2l.
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We have

(qd1 − 1) · · · (qdl − 1) < q
∑l

i=1
di = qN+l

and claim that

ql < (q − 1)2l−1,

which then yields the assertion.

First let q = 3. Then l ≥ 3, (4
3
)l > 2 and so 22l−1 > 3l as required. Now suppose q ≥ 4.

Then (q− 1)2l > (q2− 2q)l = ql(q− 2)l. Thus it remains to show that (q− 2)l ≥ q− 1. This

holds, as (q − 2)l ≥ (q − 2)2 = q2 − 4q + 4 and q2 ≥ 5(q − 1).

Case 2. G is a twisted group of Lie type.

We choose the notation as it is given in [Ca]. So G is isomorphic to one of the following

groups:
2Al(q

2), 2B2(q
2), 2Dl(q

2), 3D4(q
3), 2E6(q

2), 2F4(q
2), 2G2(q

2),

where q2 = 22m+1 (resp. q2 = 32m+1) if L is of type B2 or F2 (resp. of type G2).

Let B be a Borel subgroup of T . Then by [Ca, 14.1.2]

|B| = 1

d
qN(q − η1)(q − η2) · · · (q − ηl),

where N is the number of positive roots in the root system related to Ll(q), d will be indicated

in each case and η1, . . . , ηl are the eigenvalues of the isometry τ of the vector space spanned

by the roots which is related to the symmetry of the diagram for Ll(q). By [Ca, 14.1.3] and

[Ca, 14.3.1] we have

|G| = 1

d
qN(q − η1)(q − η2) · · · (q − ηl)

∑

w∈W 1

ql(w) =
1

d
qN(qd1− ∈1)(q

d2− ∈2) . . . (qdl− ∈l)

where W 1 is the Weyl group of G and di as well as ∈i are as in [Ca, Section 14.2]. Now we

discuss all the possibilities.

Let G ∼= 2Al(q
2) be a unitary group. We distinguish between the cases l even and l odd.
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l even. Then d = (q + 1, l + 1), N = l(l − 1)/2, η1 = . . . = ηl/2 = 1 and ηl/2+1 = . . . =

ηl = −1. So,

|B| = 1

d
ql(l−1)/2(q − 1)l/2(q + 1)l/2 and |G : B| =

l∏

i=1

(qi+1 − (−1)i+1)/(q − 1)l/2(q + 1)l/2.

Notice that (qm− 1)(qm+1 +1) < qm+m+1. Thus |G : B| < q2+3+···+(l+1)/(q− 1)l/2(q +1)l/2 =

ql(l−1)/2+l/(q − 1)l/2(q + 1)l/2. So it is enough to show that ql ≤ 1
d
(q − 1)l(q + 1)l, or q ≤

1
d1/l (q−1)(q+1). Since the “worst” case is d = q+1, it suffices to show q ≤ (q−1)(q+1)1−1/l.

Since even q ≤ (q − 1)(q + 1)1/2 holds for every q > 2, we are done.

l odd, l ≥ 3. Then d = (q + 1, l + 1), N = l(l − 1)/2, η1 = . . . = η(l+1)/2 = 1 and

η(l+1)/2+1 = . . . = ηl = −1. So,

|B| = 1

d
ql(l−1)/2(q − 1)(l+1)/2(q + 1)(l−1)/2 and

|G : B| =
l∏

i=1

(qi+1 − (−1)i+1)/(q − 1)(l+1)/2(q + 1)(l−1)/2.

Similarly to the previous case we obtain |G : B| < ql(l−1)/2+l/(q− 1)(l+1)/2(q +1)(l−1)/2. Thus

it is enough to show ql ≤ 1
d
(q− 1)l+1(q + 1)l−1. Again we take the worst case d = q + 1, so it

suffices to show ql ≤ (q− 1)l+1(q +1)l−2 , or q ≤ (q− 1)1+1/l(q +1)1−2/l = 1
((q+1)2/(q−1))1/l (q−

1)(q+1). Since q ≤ 1
((q+1)2/(q−1))1/3 (q−1)(q+1), holds for every q > 2, this case is completed

as well.

Let G ∼= 2B2(q
2) be a Suzuki group. Then d = 1, N = 4, η1 = 1 and η2 = −1. Thus

|B| = q4(q2 − 1), |G : B| = q4 + 1

and the assertion holds for every q (including q = 2).

Let G ∼= 2Dl(q
2) be an orthogonal group of minus type. Then d = (4, ql + 1), N =

l(l − 1), η1 = . . . = ηl−1 = 1 and ηl = −1. Thus

|B| = 1

d
ql(l−1)(q − 1)l−1(q + 1) and |G : B| = (ql + 1)(

l−1∏

i=1

(q2i − 1))/(q − 1)l−1(q + 1).
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Then |G : B| < ql−12l−1 ∏l−1
i=1 q2i−1 = 2l−1 ∏l−1

i=1 q2i = 2l−1ql(l−1). If q > 2, then the latter is at

most ql(l−1)(q − 1)l−1. Hence B is a large subgroup in that case.

Let G ∼= 3D4(q
3). Then d = 1, N = 12 and ηi = αi−1 with α 6= 1 a third root of unity,

for 1 ≤ i ≤ 3. Hence

|B| = q12(q − 1)(q − α)(q − α2) = q12(q3 − 1) and

|G : B| = (q8 + q4 + 1)(q3 + 1)(q2 − 1) < 2q13 < q12(q3 − 1),

and the assertion holds for every q (including q = 2).

Let G ∼= 2E6(q
2). Then d = (3, q + 1), N = 36, η1 = . . . = η4 = 1, η5 = η6 = −1,

|B| = 1

d
q36(q−1)4(q+1)2 and |G : B| = (q12−1)(q9+1)(q8−1)(q6−1)(q5+1)(q2−1)/(q−1)4(q+1)2.

If q = 2, then B is not a large subgroup of G. Let q ≥ 3. Then

|G : B| < 2q11q82q72q5(q5 + 1) = 23q31(q5 + 1)

and q5(q − 1)4(q + 1) > 23(q5 + 1), which shows the assertion.

Let G ∼= 2F4(q
2). Then d = 1, N = 24, η1 = η2 = 1 and η3 = η4 = −1. So

|B| = q24(q−1)2(q+1)2 = q24(q2−1)2 and |G : B| = (q12+1)(q8−1)(q6+1)(q2−1)/(q2−1)2.

If q2 = 2, then |B| = 212 < |G : B| = 65 · 15 · 9.

Now let r := q2 = 22m+1 > 2. Then |G : B| = (r6 + 1)(r3 + r2 + r + 1)(r3 + 1) ≤
(r6 + 1)2r3(r3 + 1) < r12(r − 1)2 = |B| and B is a large subgroup of G.

Let G ∼= 2G2(q
2). Then d = 1, N = 6, η1 = 1 and η2 = −1. Then

|B| = q6(q2 − 1) and |G : B| = (q6 + 1)

and the assertion holds in all cases. 2

We note that Proposition 2.2 is generally false in the case q = 2, but a Borel subgroup is

a large subgroup of G if G ∼= 2B2(2), 3D4(2) as was shown in the proof of Proposition 2.2.

We still need to consider the linear groups defined over GF (2). We have the following

more general result.
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Proposition 2.3 Let G be a special linear group of rank l ≥ 2 defined over the field with

q elements. Let V be the natural module for T and (V1, Vl) be two subspaces of dimension

1 and l, respectively, such that V1 ⊆ Vl. Let Pi be the stabilizer of Vi in T , for i = 1, l. If

(l, q) 6= (2, 2), then N := P1 ∩Pl is a large subgroup of G, such that the action of Aut(G) on

NAut(G) is controlled by G.

Proof. Recall that the field and diagonal automorphisms of G act on the set of maximal

parabolic subgroups of type i, for 1 ≤ i ≤ l [Ca] and that the graph automorphisms in-

terchange the sets of maximal parabolics of type 1 and l. As Pl acts transitively on the

1-dimensional subspaces of Vl, the action of Aut(G) on NAut(G) is controlled by G.

n := |G : N | is the number of flags (W1,Wl), where Wi an i-dimensional subspace of V

and W1 ⊆ Wl. We have n = (ql+1 − 1)(ql − 1)/(q − 1)2. As

|G| = 1

d
ql(l+1)/2(ql+1 − 1) · · · (q2 − 1),

where d = (q − 1, l + 1), we get

|N | = 1

d
ql(l+1)/2(ql−1 − 1) · · · (q2 − 1)(q − 1)2.

We have to show that |G : N | ≤ |N |. If l = 2 and q ≥ 3 then

|G : N | = (q3 − 1)(q2 − 1)/(q − 1)2 = (q2 + q + 1)(q + 1) <
1

q − 1
q3(q − 1)2 ≤ |N |.

If l = 3 then

|G : N | = (q4 − 1)(q3 − 1)/(q − 1)2 <
1

q − 1
q6(q2 − 1)(q − 1)2 ≤ |N |.

Finally, if l ≥ 4 then

|G : N | = (ql+1 − 1)(ql − 1)/(q − 1)2 < q2l+1 < ql(l+1)/2 < |N |,

completing the proof. 2

Notice that the assertion in Lemma 2.3 is false for G ∼= L3(2).
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Corollary 2.4 Let G be a simple group of Lie type. Then G has a proper large subgroup H

such that the action of Aut(G) on HAut(G) is controlled by G.

Proof. If G is not defined over GF (2) or if T ∼= 2B2(2), 3D4(2), then the assertion follows

by Proposition 2.2 and the remark after it. Therefore we may assume that G is defined over

GF (2).

If G is of type Al, l > 2, then the statement is a consequence of Proposition 2.3. If

G ∼= B2(2)′ ∼= A6
∼= L2(9), G ∼= A2(2) ∼= L3(2) ∼= L2(7) or G ∼= G2(2)′ ∼= U3(3), then

we obtain the assertion by Proposition 2.2. If G is as listed in Table 2, then H is a large

subgroup of G such that the action of Aut(G) on HAut(G) is controlled by G (the details are

taken from [At]).

Table 2: Proper large subgroups with control

G H |H| |G : H|

D4(2) 34 : 23.S4 15552 11200

F4(2) [220]A6.2 754974720 4385745

2F4(2)′ 2.[28] : 5 : 4 10240 1755

If G is one of the remaining groups of Lie type defined over GF (2), then it is easily

verified that the large subgroup of G given by Table II of [L] satisfies our control condition.

This completes the proof. 2

It remains to consider the alternating groups. The case G ∼= A6
∼= L2(9) has already

been handled in Proposition 2.2.

Proposition 2.5 Let G ∼= An, n ≥ 5, n 6= 6, and let H be a point stabilizer in G (with

respect to the action of G on the set {1, · · · , n}). Then H is a large subgroup of G such that

the action of Aut(G) on HAut(G) is controlled by G.
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Proof. Clearly H is large in G. The control condition is satisfied since Aut(An) = Sn for

n ≥ 5, n 6= 6. 2

Now Proposition 1.3 is a consequence of Proposition 2.1, Corollary 2.4 and Proposi-

tion 2.5.

Proof of Proposition 1.4. By Proposition 1.3 every simple non-abelian group G such that

G 6∼= O′Nan has a proper subgroup H such that |H| ≥ |G : H| and the action of Aut(G)

on HAut(G) is controlled by G. So the assertion certainly holds for every such group. It is

left to consider G = O′Nan. By [At] G has a (maximal) subgroup H ∼= J1, |H| = 175560,

|G : H| = 2624832 which satisfies our control condition. Since |H| = |G : H|β, we are done.

2

Remark 2.6 The number β can not be replaced by a larger constant in Proposition 1.4.

Indeed, let T := O′Nan and let A < T be such that the action of G := Aut(T ) on AG is

controlled by T . We show that |A| < |T : A|β. By Frattini’s argument Aut(T ) = TNG(A)

and so |T : A| ≥ |T : T ∩ NG(A)| = |G : NG(A)|. The list of maximal subgroups of

G = Aut(T ) ∼= O′Nan : 2 is determined in [Wi]. By this list S := J1 × 2 is the largest

maximal subgroup of Aut(T ) which is different from T . Thus |T : A| ≥ |G : S| = 2624832,

which implies |A| < |T : A|β as required.

3 Proofs of Theorems 1.1, 1.2 and 1.5

The following lemma is useful.

Lemma 3.1 Let N = Tm, where T is a simple non-abelian group, and let N ≤ G ≤
Aut(N) = Aut(T ) wr Sm. Suppose B ≤ T and the action of Aut(T ) on BAut(T ) is controlled

by T . Let A := Bm, A ≤ N . Then the action of G on AG is controlled by N .

Proof. Let g = (h1, ..., hm)s ∈ G, where hi ∈ Aut(T ), s ∈ Sm. Then Ag = (B × · · · ×B)g =

Bhs(1) × · · · × Bhs(m) . Since the action of Aut(T ) on BAut(T ) is controlled by T , there exist

fi ∈ T such that Bhs(i) = Bfi for all 1 ≤ i ≤ m. Let u = (f1, ..., fm) ∈ N , then we have
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Ag = Bf1 × · · · × Bfm = Au, which completes the proof. 2

Proof of Theorem 1.1. The only if part is known, as mentioned in the introduction. We

prove the if part. Let G be a minimal counterexample. Since the condition on the c-sections

of G is inherited by quotients of G, we have that G/N is solvable for each 1 < N £G. Hence

G has a unique minimal normal subgroup N , and N is non-abelian, N = Tm, where T is

a simple non-abelian group. Furthermore N = Tm ≤ G ≤ AutT wr Sm = Aut(N). By

Proposition 1.4 there exists a proper subgroup H of T such that |H| ≥ |G : H|β and the

action of Aut(T ) on HAut(T ) is controlled by T . Define A = Hm, A < N . Then it is easily

verified that |A| ≥ |N : A|β, and by Lemma 3.1 the action of G on AG is controlled by N .

By the argument of Frattini we get G = NNG(A). Notice that A < N forces that A is not

normal in G. Let M be a maximal subgroup of G containing NG(A). Then N 6≤ M and

since N is minimal normal we have Sec(M) ∼= M ∩ N . Now M ∩ N ≥ A, implying that

|M ∩N | ≥ |N : A|β ≥ |N : M ∩N |β. But since G = MN we have |N : M ∩N | = |G : M |,
hence |Sec(M)| ≥ |G : M |β, the desired contradiction. 2

As noted in the introduction, the following shows that Theorem 1.1 can not be improved

by replacing β by a larger constant.

Proposition 3.2 Let G = Aut(O′Nan). Then |Sec(M)| ≤ [G : M ]β for each maximal

subgroup M of G.

Proof. Denote T = Soc(G). Let M be a maximal subgroup of G. If M = T then clearly

Sec(M) = 1, so we may assume that M 6≥ T , hence M ∩ T < T and G = MT . For g ∈ G

there exist u ∈ M, t ∈ T such that g = ut and so (M ∩T )g = M g ∩T = M t ∩T = (M ∩T )t.

This shows that the action of G on M ∩ T is controlled by T , and thus by Remark 2.6

|M ∩ T | ≤ |T : M ∩ T |β = |MT : M |β = |G : M |β. T/1 is a chief factor of G such that

T 6≤ M , 1 ≤ M , and therefore Sec(M) ∼= M ∩ T , so by the above |Sec(M)| ≤ |G : M |β as

required. 2

Proof of Theorem 1.2. Suppose that Condition 1.2 is not satisfied by G with respect to

all the non-abelian chief factors of it. So let K/L be a non-abelian chief factor of G, and let
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B/L be a large proper subgroup of K/L such the action of G/L on (B/L)G/L is controlled by

K/L. We shall show that G/L has a maximal subgroup M/L such that |Sec(M)| ≥ |G : M |.
It is no loss here to assume that L = 1. By the argument of Frattini G = KNG(B). Since

B is not normal in G we can choose M , a maximal subgroup of G containing NG(B). Then

M 6≥ K and K is minimal normal, hence Sec(M) = M∩K. But M∩K ≥ B and B is a large

subgroup of K. Thus |M ∩K| ≥ |K : M ∩K| = |G : M |, which implies |Sec(M)| ≥ |G : M |.
In the other direction, suppose G has a maximal subgroup M with |Sec(M)| ≥ |G : M |.

Let K/L be a chief factor of G satisfying L ≤ M and K 6≤ M . Then G = KM implying

|G : M | = |K : M ∩K| and so |(M ∩K)/L| ≥ |K : M ∩K|. Thus (M ∩K)/L is a large

proper subgroup of K/L. It is left to show that the action of G/L on ((M ∩ K)/L)G/L is

controlled by K/L. It is no loss here to assume L = 1. Let g ∈ G, then g = mk, where

m ∈ M , k ∈ K. Thus (M ∩K)g = M g ∩K = Mmk ∩K = Mk ∩K = (M ∩K)k. The proof

is now completed. 2

Proof of Theorem 1.5 Let G be a group satisfying Condition 1.1. By Theorem 1.2,

Condition 1.2 must hold for each non-abelian chief factor of G. Suppose that the corollary

is not true, so there exists a chief factor K/L = Tm , T is a simple non-abelian group and

T 6∼= O′Nan. By Proposition 1.1 there exists a large proper subgroup B of T such that the

action of Aut(T ) on BAut(T ) is controlled by T . Let A = Bm, A < K/L. Then it is easily

verified that A is a large proper subgroup of K/L, and by Lemma 3.1 the action of G/L on

AG/L is controlled by K/L. Thus Condition 1.2 does not hold for K/L, a contradiction. 2
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