A method of Bender applied to groups of J_{3}-type.

Barbara Baumeister
Fachbereich Mathematik und Informatik
Freie Universität Berlin
Arnimallee 3
D-14195 Berlin
Germany
baumeist@math.fu-berlin.de

December 18, 2007

Abstract

We apply a method of Bender [6] to determine the order of a group G of J_{3}-type. Moreover, we determine the local p-structure of G for every prime p dividing the order of G. The results of this paper are obtained by exploiting the action of G on its geometry [4] and by sophisticated use of elementary group theory.

1 Introduction.

A finite simple group G is said to be of J_{3}-type provided that all involutions of G are conjugate and the centralizer of an involution is a split extension of an extraspecial group of order 32 by $\operatorname{Alt}(5)$. Z. Janko calculated the order of a group of J_{3}-type using character theory [11]. There is the Thompson Order Formula which determines the order of a simple group with more than one conjugacy class of involutions by counting involutions, see [1, 45.6]. H . Bender introduced a method of counting involutions which can sometimes be applied to determine the order of a group with just one conjugacy class of involutions, see [6].

In this paper we use this method to prove
Theorem 1 Let G be a group of J_{3}-type. Then $|G|=2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$.

The method of Bender, which will be introduced in the next section, uses only local information of the group.

Beside the order of a group of J_{3}-type, we show
Theorem 2 Let G be a group of J_{3}-type and p a prime dividing the order of G. Then the local p-structure is as described in Sections 3 and 5 .

In a forthcoming paper we aim to use Theorem 1 and the results of [4] to show the uniqueness of a group of J_{3}-type, as announced in [3]. For other existence or uniqueness proofs see $[5,9,12,8,2]$. There is also a new computer based existence proof by Bradley and Curtis [7].

Let G be a group of J_{3}-type. In [4] the author showed that G is the completion of an amalgam of J_{3}-type, i.e. that there are subgroups G_{1}, G_{2} and G_{3} in G such that
(i) $G_{1} \simeq L_{2}(16): 2, G_{2} \simeq 2^{4}: G L_{2}(4), G_{3} \simeq 3: P G L_{2}(9)$.
(ii) $G_{1} \cap G_{2} \simeq 2^{4}:\left(3 \times D_{10}\right), G_{2} \cap G_{3} \simeq G L_{2}(4) \simeq 3 \times \operatorname{Alt}(5), G_{1} \cap$ $G_{3} \simeq \operatorname{Sym}(3) \times D_{10}$.
(iii) $G_{1} \cap G_{2} \cap G_{3} \simeq 3 \times D_{10}$.
(iv) $G=\left\langle G_{1}, G_{2}, G_{3}\right\rangle$.

In Section 3 we heavily use the fact that G is a completion of such an amalgam. In Subsections 3.1, 3.5 and 3.2 we determine the local 5 , 2 -structure and to some extent the local 3 -structure of G, respectively.

The local 3 -structure of a group of J_{3}-type is fairly complicated, see for instance [11]. Notice, that Aschbacher used the local 3 -structure of a group of J_{3}-type to embed and recognize groups of J_{3}-type in $E_{6}[2]$. In order to bound the size of a Sylow 3 -subgroup of G, we bound the order of G, see Subsection 3.3.

In the penultimate section we prove Theorem 1. Once we know $|G|$, we are able to complete the determination of the local 3 -structure of G, which is done in the last section. There we also describe the local 17 and 19 -structures of G. The results of this paper are obtained by exploiting the action of G on its geometry and by sophisticated use of elementary group theory.

Acknowledgement I would like to thank Chris Parker as well as the referee for pointing out a gap in an earlier version of the paper. Moreover, I am grateful to the referee and to Chris Parker for their careful reading of the manuscript and for their comments.

2 The Method of Bender

Bender considers a group G, the set of involutions I of G and a subgroup H of G such that $|I|>|G: H|$. He introduces the following notation.
$I_{n}=$ set of u in $I \backslash H$ such that $|H u \cap I|=n$.
$b_{n}=$ number of cosets $H g \neq H$ with $|H g \cap I|=n$.
$c=$ number of u in I_{1} such that $C_{H}(u) \neq 1$.
$f=|I| /|G: H|-1$.
Notice that $\left|I_{n}\right|=n \cdot b_{n}$ and, as $|I|>|G: H|$, that $f>0$. Bender made the following observation.

Lemma 2.1 [6]
(i) $|I|=|I \cap H|+b_{1}+2 b_{2}+3 b_{3}+\ldots$.
(ii) $b_{1}=c+m|H|$ for some integer $m \geq 0$.
(iii) $b_{1}<f^{-1}\left(|I \cap H|+b_{2}+2 b_{3}+3 b_{4}+\ldots\right)-1-b_{2}-b_{3}-b_{4}-\ldots$

The idea for determining the order of G is to calculate b_{i} for $i>1$ and then to use the lemma to determine b_{1} and the number of involutions $|I|$ of G. In order to calculate b_{i} for $i>1$ it is helpful to use the following fact. Let u be an involution in I_{n}, that is $H u$ contains precisely n involutions. Notice, if $a=h u$, with $h \in H$, is an involution, then u inverts h. Thus the number of involutions in $H u$ equals the number of elements in H which are inverted by u.

3 More about the structure of a group of J_{3}-type.

In this section we provide the information needed to apply the method of Bender.

Notation Throughout the paper we are using the notation which has been established in the introduction. So G is a group of J_{3}-type and $G_{1} \cong L_{2}(16)$: $2, G_{2} \cong 2^{4}: G L_{2}(4)$ and $G_{3} \cong 3: P G L_{2}(9) \cong(3 \times$ Alt $(6)): 2$ are subgroups of G such that $G=\left\langle G_{1}, G_{2}, G_{3}\right\rangle$.

For n a natural number and r a prime, we denote by n_{r} the r-part of n.

For $g \in G$ let $C_{g}:=C_{G}(g)$ and $N_{g}:=N_{G}(\langle g\rangle)$. For $i \in G$ an involution, set $Q_{i}:=O_{2}\left(C_{i}\right)$ and let T_{i} be a complement to Q_{i} in C_{i}. In most of our notation we follow [1]. For instance, for G a group we denote by $G^{\#}$ the set $G \backslash\{1\}$ and by G^{∞} the intersection of the commutator subgroups $G^{(i)}$, see [1, p. 27].

If we have a group G which is isomorphic to an extension $A^{\cdot} B$ and we want to specify the action of B on A only to some extent, then we write $G \simeq A \cdot B$.

3.1 The 5 -structure of G.

Lemma 3.1 Let S be a Sylow 5-subgroup of G. Then
(i) S is of order 5 and
(ii) $N_{G}(S) \cong \operatorname{Sym}(3) \times D_{10}$.

In particular, if w is an element of order 5 in N_{s}, then N_{w} is a subgroup of N_{s}.

Proof. Assume that $w \in N_{s}$. Then it follows $N_{N_{s}}(\langle w\rangle) \cong D_{10} \times \operatorname{Sym}(3)$. Let $\langle i, j\rangle \cong 2^{2}$ be a subgroup of $N_{N_{s}}(\langle w\rangle)$ such that i centralizes w. In C_{i} we see that $\langle i\rangle$ is a Sylow 2-subgroup of C_{w}. Therefore, C_{w} has a 2complement R. As i inverts $R /\langle w\rangle$, the group $R /\langle w\rangle$ is abelian. Moreover, $R=\left\langle C_{R}(x) \mid x \in\{i, j, i j\}\right\rangle$. Without loss of generality we may assume that $C_{R}(j)=\langle s\rangle$. It remains to determine $C_{R}(i j)$. Assume that $C_{R}(i j) \neq 1$. Then either $|R|=5 \cdot 3^{2}$ or $5^{2} \cdot 3$. In both cases we would obtain the contradiction that $C_{R}(s)>\langle w\rangle \times\langle s\rangle=C_{s} \cap C_{w}$. Hence $R \leq N_{N_{s}}(\langle w\rangle)$. In C_{i} we see that N_{w} induces only a subgroup of order 2 on $\langle w\rangle$, which implies the assertion in that case.

As, for $w \in N_{s}$, the order of the normalizer of w in G is only divisible by 5 , every Sylow 5 -subgroup of G is of size 5 . Therefore, the previous paragraph also proves (i) and (ii).

3.2 The 3 -structure of G, part I.

In [4] we also showed the following:
Lemma 3.2 [4, 2.3, 2.4] $G_{3}=N_{G}\left(O_{3}\left(G_{3}\right)\right)$ and $G_{2}=N_{G}\left(O_{2}\left(G_{2}\right)\right)$.

Hence, if $\langle s\rangle$ is a Sylow 3-subgroup of the centralizer of an involution, then

$$
N_{s} \cong 3: P G L_{2}(9), N_{s}^{\prime} \cong 3 \times \operatorname{Alt}(6) \text { and } N_{s}^{\infty} \cong \operatorname{Alt}(6) .
$$

In what follows we assume that $G_{3}=N_{s}$.
Let W be a Sylow 3 -subgroup of G_{3}. Then W is elementary abelian of order 27. Let $T=W \cap N_{s}^{\infty}$. Then T is elementary abelian of order 9 and $N_{N_{s}}(W)=W: K$, where K is cyclic of order 8 which acts regularly on $T^{\#}$. In the next two lemmas we study the embedding of W in G.

Lemma 3.3 (i) All the elements of order 3 in $N_{s} \backslash N_{s}^{\infty}$ are conjugate to s in G.
(ii) All the elements of order 3 in N_{s}^{∞} are in the same conjugacy class \mathcal{C} of G.
(iii) \mathcal{C} does not contain s.

Proof. The fact that K acts regularly on $T^{\#}$ implies that all the elements of order 3 in N_{s}^{∞} are in the same conjugacy class, which is statement (ii). In the proof of Lemma 2.4 in [4] it was shown that s is not conjugate to any element in N_{s}^{∞} proving (iii).

We have $G_{2} \cap G_{3} \cong 3 \times \operatorname{Alt}(5) \cong G L_{2}(4)$ and, as $G_{2} \cong 2^{4}: G L_{2}(4)$, there is a subgroup of order 3 in $\left(G_{2} \cap G_{3}\right) \backslash Z\left(G_{2} \cap G_{3}\right)$ which centralizes an involution in $O_{2}\left(G_{2}\right)$. Hence $\langle s\rangle$ is conjugate to a subgroup in $W \backslash\langle s\rangle$. As there is an element in N_{s} which inverts s, the latter element is conjugate to its inverse. This together with the fact that K is transitive on $T^{\#}$ yields (i).

Lemma 3.4 The following hold.
(i) $N_{G}(W)=Q: K$ with Q a group of order 3^{5} and K cyclic of order 8 .
(ii) $Z(Q)$ is the subgroup T of W and is elementary abelian of order 9 .
(iii) K acts regularly on $Z(Q)^{\#}$.
(iv) $N_{G}(W) / W$ is isomorphic to $\operatorname{Frob}\left(3^{2}: 8\right)$ and acts faithfully on W.

Proof. By Lemma 3.3 every element v in $W \backslash T$ is conjugate to s. Since W is a Sylow 3-subgroup of C_{s} as well as of C_{v}, the elements s and v are conjugate in $N_{G}(W)$. Hence $N_{G}(W)$ induces two orbits on the set of subgroups of order 3 of W, which are of length 9 and 4 , respectively. So,

$$
9=\left|\langle s\rangle^{N_{G}(W)}\right|=\left|N_{G}(W): N_{G}(W) \cap N_{s}\right|=\left|N_{G}(W):(W K)\right|
$$

which implies that $\left|N_{G}(W)\right|=3^{5} \cdot 8$. Hence K is a Sylow 2-subgroup of $N_{G}(W)$. In the centralizer of the unique involution of K in G, we see that K is self-normalizing in $N_{G}(W)$. Therefore, Burnside's Normal p-complement Theorem $[1,39.1]$ yields that $N_{G}(W)$ has a 2 -complement Q of order 3^{5}. This proves (i).

Let $t \in T^{\#}$. As $4=\left|\langle t\rangle^{N_{G}(W)}\right|$, it follows that $t \in Z(Q)$ and therefore $T \leq Z(Q)$. Now $C_{G}(W)=W$ implies $Z(Q) \leq T$, so $T=Z(Q)$. This shows (ii) and (iii).

We have shown that $\bar{N}:=N_{G}(W) / C_{G}(W)=N_{G}(W) / W$ is a subgroup of $A u t(W)$ which fixes the subgroup $T=Z(Q)$. Moreover, \bar{K} fixes the subgroups T and $\langle s\rangle$ in W and $O_{3}(\bar{N})$ fixes T pointwise. This shows that $\bar{N} \cong \operatorname{Frob}\left(3^{2}: 8\right) . \operatorname{As}\left|\langle s\rangle^{\bar{N}}\right|=9$, the subgroup $O_{3}(\bar{N})$ acts faithfully on W, which implies (iv).

3.3 A bound on the order of groups of J_{3}-type.

Let G be a group of J_{3}-type. We provide an upper bound for $|G|$ which turns out to be rather good.

As mentionned in the introduction the author showed in [4] that G is the completion of an amalgam \mathcal{A} of J_{3}-type. Therefore G acts flag-transitively on a rank three geometry Γ, called DEQ (dual extended quadrangle), consisting of points, lines and quads, which are the cosets of G_{1}, G_{2} and G_{3} in G, respectively, see $[4,1.1]$. In [5] the author constructed a DEQ Γ_{K} and a completion K of an amalgam of J_{3}-type which is a non-split extension $3 \cdot J_{3}$ of a group of J_{3}-type and which acts flag-transitively on Γ_{K}.

We are able to deduce from [5] an upper and a lower bound for $|K|$. Notice that the upper bound is very good!

Lemma 3.5 (i) $|K| \leq 2^{12} \cdot 3^{6} \cdot 5 \cdot 19$.
(ii) $|K| \geq 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 17$.

Proof. We follow the notation of [5] and let V be a 9 -dimensional $G F$ (4)space equipped with a unitary form and $X \cong G U_{9}(2)$ the group of isometries of V. It has been shown that $Z(K)=Z(X) \cong \mathbb{Z}_{3}[5,7.11]$. Let $\hat{X}=$ $X / Z(X)$. Then \hat{K}_{3} is the stabilizer \hat{K}_{e} in \hat{K} of a 1 -space $\langle e\rangle$ in V where e is a non-isotropic vector [5, 8.1].

As $|\hat{X}| \geq\left|\hat{X}_{e} \hat{K}\right|=\left|\hat{X}_{e}\right||\hat{K}| /\left|K_{e}\right|$ it follows that $\left|\hat{X}: \hat{X}_{e}\right| \geq\left|\hat{K}: \hat{K}_{e}\right|$. We have $\hat{X}_{e} \cong U_{8}(2)$ and $\left|\hat{X}: \hat{X}_{e}\right|=2^{8} \cdot 3^{2} \cdot 19$. As $\hat{K}_{e}=\hat{K}_{3} \cong 3: P G L_{2}(9)$, it follows that

$$
|\hat{K}| \leq\left|\hat{K}_{e}\right|\left|\hat{X}: \hat{X}_{e}\right|=2^{4} \cdot 3^{3} \cdot 5 \cdot 2^{8} \cdot 3^{2} \cdot 19=2^{12} \cdot 3^{5} \cdot 5 \cdot 19,
$$

which implies $|K| \leq 2^{12} \cdot 3^{6} \cdot 5 \cdot 19$.
In order to prove (ii) we need to study the geometry Γ_{K} more closely. Let $\hat{\Gamma}_{K}$ be the quotient of Γ_{K} where we identify the points, lines and planes which are in a common $Z(K)$-orbit, respectively. Then $\hat{\Gamma}_{K}$ is a DEQ with \hat{K} acting flag-transitively.

We claim that $\hat{\Gamma}_{K}$ has at least $1+85+680+2 \cdot 1360$ points. We consider the collinearity graph \mathcal{G} of $\hat{\Gamma}_{K}$ (its vertices and edges are the points and pairs of collinear points, respectively). In our DEQ $\hat{\Gamma}_{K}$ every two points at distance 2 are on precisely one quad, every quad is a 6×6-grid and every point is contained in 17 lines, see [5]. Therefore, a point p has 85 neighbours in \mathcal{G}. Let Q be a quad containing p. Then the stabilizer S of p and Q in \hat{K} is isomorphic to $3: 2 \times 5: 2$ and $O_{3}(S)$ fixes the grid pointwise. Let f be an involution in S with $\left[O_{3}(S), f\right]=1$. Then f fixes precisley one point q on Q at distance two from p and the stabilizer in \hat{K} of p and this point is isomorphic to $3: 2 \times 2$. Hence,

$$
\left|q^{\hat{K}_{p}}\right|=\left|\hat{K}_{p}: \hat{K}_{p} \cap \hat{K}_{q}\right|=\left|L_{2}(16): 2\right| /|3: 2 \times 2|=680 .
$$

Notice that five of the points of Q are contained in this orbit. The remaining 20 points at distance two from p in Q, fall into two orbits under the action of S, each of size 10 . This shows that there are two more \hat{K}_{p}-orbits in \mathcal{G} and that they are of size $\left|L_{2}(16): 2\right| / 6=1360$.

Thus we have shown that $\hat{\Gamma}_{K}$ and Γ_{K} have at least $1+85+680+2 \cdot 1360=$ 3486 and $3 \cdot 3486$ points, respectively. Hence,

$$
|K| \geq 3 \cdot 3486 \cdot\left|K_{p}\right| \geq 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 17
$$

as claimed.
With [4, 1.1] we conclude

Proposition 3.6 The universal completion \tilde{G} of \mathcal{A} acts flag-transitively on the universal cover $\tilde{\Gamma}$ of Γ. The groups G as well as K are quotients of \tilde{G} and the stabilizer \tilde{G}_{1} of a point in $\tilde{\Gamma}$ is isomorphic to the stabilizer G_{1} of a point in Γ.

Further we know
Lemma 3.7 [5, 2.2] $\tilde{\Gamma}$ has at most 6^{17} points.
Proposition 3.8 Let G be a group of J_{3}-type. Then $|G| \leq\left(2^{14} \cdot 3^{12}\right) / 5$.
Proof. By 3.6(i) K and G are composition factors of \tilde{G}. If $K / O_{3}(K) \cong G$, then by 3.5

$$
|G|=\left|K / O_{3}(K)\right| \leq 2^{12} \cdot 3^{5} \cdot 5 \cdot 19
$$

and the assertion holds.
Assume that $K / O_{3}(K) \not \equiv G$. Then \tilde{G} is divisible by $|G||K|$. Moreover, 3.6 and 3.7 yield that $\left|\tilde{G}: \tilde{G}_{1}\right| \leq 6^{17}$. As $\tilde{G}_{1} \cong G_{1} \cong L_{2}(16): 2$ and $|K| \geq 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 17$ (see $3.6(\mathrm{ii})$), we get the assertion.

Corollary 3.9 Let G be a group of J_{3}-type. Then $|G|_{3} \leq 3^{10}$.
Proof. We know that G is divisible by $2^{7} \cdot 5 \cdot 17$. Now Proposition 3.8 implies the assertion.

3.4 The 3 -structure of G, part II.

In what follows we are using the notation introduced in Lemma 3.4.
Lemma 3.10 Let S be a Sylow 3-subgroup of $N_{G}(T)$. Then S is of order $3^{5}, 3^{7}$ or 3^{9} and $\left|N_{G}(T)\right|=8 \cdot|S|$.

Proof. We may assume that Q is a subgroup of S. In the following we use the fact that $N_{G}(Q) / Q$ acts faithfully on Q / T. We know that $\bar{Q}=Q / T$ is of order 3^{3} and that it is either extraspecial with $Z(\bar{Q})=\langle s\rangle T / T$ or abelian. If $Q=S$, then the assertion follows from 3.4 and the subgroup structure of $G L_{3}(3)$.

Assume that Q is a proper subgroup of S. Then \bar{Q} is a proper subgroup of \bar{S} and $\bar{M}:=N_{\bar{S}}(\bar{Q})>\bar{Q}$. Hence, W is not normal in $N_{S}(Q)$ and therefore \bar{Q}
is abelian. Notice, as $T=Z(Q)$, it follows that $\left[N_{G}(Q), T\right] \leq T$. Therefore $M:=N_{S}(Q)$ is a Sylow 3 -subgroup of $N_{G}(Q)$ and $N_{G}(Q)$ contains by 3.4(i) a cyclic group K of order 8 .

Let i be an involution in K. Then every element in T as well as every element in Q / W is inverted by i and $[s, i]=1$. This shows that $s T$ is not a third power in Q / T. Therefore, \bar{Q} is elementary abelian. By 3.4(iv) the orbits of K on the set of 3 -subgroups in \bar{Q} are of length 1,4 and 8 .

Hence, the orbits of M are of length 5 and 8 or 9 and 4 or M is transitive. In the latter case we get $\bar{M} \cong 3^{3}: G L_{3}(3)$ and the order of \bar{M}_{s} is divisible by 3^{6}, which contradicts $N_{s} \cong 3: P G L_{2}(9)$. Assume that the orbits are of length 5 and 8 . As $\left|N_{s} \cap N_{G}(Q)\right| /|W|=8$, it follows that $\left|N_{\bar{G}}(\bar{Q})\right|=5 \cdot 8$. This is impossible as 5 does not divide $\left|G L_{3}(3)\right|$.

Therefore, the orbits are of length 9 and 4 and therefore,

$$
\left|N_{\bar{G}}(\bar{Q}): N_{\bar{G}}(\bar{W})\right|=3^{2} .
$$

As $N_{G}(Q) / Q$ acts faithfully on Q / T, we see in $G L_{3}(3)$ that $N_{G}(Q) / Q \cong$ $3^{2}: \mathbb{Z}_{8}$. Thus, it follows that $N_{G}(Q)=M: K$.

Moreover, the center $\bar{U}:=Z\left(N_{\bar{S}}(\bar{Q})\right)$ is of order 3^{2}. Let U be the preimage of \bar{U} in S. Then M / U is of order 3^{3} and either extraspecial with $Z(M / U)=Q / U$ or abelian. If M / U is abelian, then we get by the same argument as for \bar{Q} that it is elementary abelian.

Set $P:=N_{S}(M)$. Clearly, $Z(M)=T$. Thus, $[P, T] \leq T$ and P also acts on $Z(M / T)=\bar{U}$, on U and on $Z(M / U)$. Clearly, if $P=M$, then $M=S$ and $N_{G}(T)=M: K$.

If M / U is extraspecial, then $Z(M / U)=Q / U$. Thus, in that case P acts on Q, which implies $P \leq N_{S}(Q)=M$ and therefore $M=S$ and $N_{G}(T)=M: K$.

Assume that $P \neq M$. Then M / U is elementary abelian and $P: K$ acts as a subgroup of $G L_{3}(3)$ on M / U. By the same argument as above it follows that $N_{G}(M) / M \cong 3^{2}: \mathbb{Z}_{8}$ and that $N_{G}(M)=P: K$. Thus P is of order 3^{9}.

Then $Z(P / U)$ is of order 9 . Let V be the preimage of $Z(P / U)$. Then P / V is of order 3^{3} and, as before, either elementary abelian or extraspecial.

If $N_{S}(P)>P$, then as before $N_{G}(P) / P \cong 3^{2}: \mathbb{Z}_{8}$ and $|G|_{3} \geq 3^{11}$ in contradiction with Corollary 3.9. Hence $N_{S}(P)=P$ and $S=P$, which completes the proof of the lemma.

Corollary 3.11 Let R be a Sylow 3-subgroup of G. Then $|R|=3^{i}$ where $i \in\{5,7,9\}$.

Proof. Let S be a Sylow 3-subgroup of $N_{G}(T)$ and assume $S \leq R$. If S is a proper subgroup of R, then $N_{R}(S)>S$ and, as $T=Z(S)$ char S, we get the contradiction $N_{R}(S) \leq N_{G}(T)$.

Lemma 3.12 (i) Every element of order 8 in G is self centralizing.
(ii) Let L be a Sylow 2-subgroup of $N_{G}(T)$. Then L is cyclic of order 8 .
(iii) Let $t \in T^{\#}$. Then every Sylow 2-subgroup of $N_{G}(\langle t\rangle)$ is of order 2 .

Proof. The structure of the centralizer of an involution implies (i). L is of order 8 by 3.10 and cyclic by 3.4. Statement (iii) follows immediately from (ii) and Lemma 3.4(iii).

3.5 The 2-structure of G.

Next we consider the 2 -strucure of G and recall some facts which follow directly from Lemma 2.1 in [4]. We continue to use the notation introduced in the beginning of Section 3.

Lemma 3.13 Let i be an involution in G. Then the following holds
(i) $Q_{i} \cong D_{8} * Q_{8}$.
(ii) $Q_{i} /\langle i\rangle$ is the even part of the permutation module for $T_{i} \cong \operatorname{Alt}(5)$.
(iii) Let $a \in Q_{i} \backslash\{i\}$ be an involution. Then $N_{T_{i}}(\langle i, a\rangle)=C_{T_{i}}(\langle i, a\rangle) \cong \operatorname{Alt}(4)$.
(iv) Let $b \in T_{i}$ be an involution. Then $C_{Q_{i}}(\langle b\rangle)$ is elementary abelian of order 4 .
(v) All the involutions in $Q_{i} \backslash\{i\}$ as well as all the involutions in $C_{i} \backslash Q_{i}$ are conjugate in C_{i}.

Remark 3.14 In the following and specially in Section 4 we calculate in the centralizer C_{i} of an involution i of G again and again. Therefore, it is helpful to visulize C_{i}.

According to 3.13(ii) $Q_{i} /\langle i\rangle$ is the even part of the permutation module for $T_{i} \cong \operatorname{Alt}(5)$. In $Q_{i} \backslash\{i\}$ there are 20 and 10 elements of order 4 and 2, respectively. Their images in $Q_{i} /\langle i\rangle$ are $e_{i}+e_{j}, 1 \leq i<j \leq 5$ and $\sum_{i \neq j} e_{i}$ with $1 \leq j \leq 5$, respectively, where $\left\{e_{1}, e_{2}, \ldots, e_{5}\right\}$ is a basis of the permutation module on which T_{i} acts by permuting the indices.

Lemma 3.15 Let i be an involution in G and $a \in Q_{i}$ of order 4. Then
(i) $N_{C_{i}}(\langle a\rangle)=Q_{i}: X$, where $X \cong \operatorname{Sym}(3)$.
(ii) $\langle a\rangle$ together with all the involutions in Q_{i} inverting the element a form a dihedral group Y of order 8.
(iii) $[Y, X] \leq Y$

Proof. 3.13(ii) implies (i) and (iii). (ii) follows from 3.13(i).

We introduce further notation. Let $a, b \geq 2$ be natural numbers and A a group. Then $2^{a+b}: A$ denotes a 2 -group of order 2^{a+b} extended by the group A such that the 2 -group has two A-composition factors, which are elementary abelian of order 2^{a} and 2^{b}, respectively.

Lemma 3.16 There are precisely two classes of elementary abelian subgroups of order 4 in G. Let i, a and b be involutions in G such that $a \in Q_{i}$ and $b \in C_{i} \backslash Q_{i}$. Then we have:
(i) $N_{G}(\langle i, a\rangle) \simeq 2^{2+4}:(3 \times \operatorname{Sym}(3))$.
(ii) $N_{G}(\langle i, b\rangle) \simeq 2^{2+2}: \operatorname{Sym}(3)$.

Proof. The first statement is a consequence of $3.13(\mathrm{v})$.
By (ii) of 3.13 we have $C_{i} \cap N_{G}(\langle i, a\rangle)=Q_{i}: A$ with $A \cong \operatorname{Alt(4)~and~}$ $C_{G}(\langle i, a\rangle)$ is a subgroup of index 2 in $Q_{i}: A$. Let $V:=\langle i, a\rangle O_{2}(A)$. Then $N_{G}(V) \cong 2^{4}: G L_{2}(4)[4]$ and the normaliser of $\langle i, a\rangle$ in $N_{G}(V)$ is isomorphic to $2^{2+2}:(3 \times \operatorname{Alt}(4))$. Hence $N_{G}(\langle i, a\rangle)$ is transitive on $\langle i, a\rangle^{\#}$ and $N_{G}(\langle i, a\rangle)$ induces the full symmetric group $\operatorname{Sym}(3)$ on $\langle i, a\rangle$.

We may assume that s is in $C_{G}(\langle i, a\rangle)$. In $N_{s} \cong 3: \mathrm{PGL}_{2}(9)$ we see that $N_{G}(\langle i, a\rangle) / O_{2}\left(N_{G}(\langle i, a\rangle)\right) \cong 3 \times \operatorname{Sym}(3)$. As $N_{G}(\langle i, a\rangle)$ does not normalize V, we get (i).

In C_{i} we see using 3.13 (iv) that $C_{G}(\langle i, b\rangle)$ is elementary abelian of order 16. As $C_{G}(\langle i, b\rangle)$ is of index 2 in $C_{i} \cap N_{G}(\langle i, b\rangle)$, there is an involution in
$N_{G}(\langle i, b\rangle) \cap C_{i}$ interchanging $i b$ and b. As $i \in C_{b} \backslash Q_{b}$, we can interchange the roles of i and b and it follows that $N_{G}(\langle i, b\rangle)$ induces the full symmetric group on $\langle i, b\rangle$, which proves assertion (ii).

Corollary 3.17 Let $U=\langle i, a\rangle$ be a subgroup as in (i) of 3.16. Then the 3-elements in $N_{G}(U)^{\prime}$ are not conjugate to s.

Proof. The center of $N_{G}(U) / O_{2}(U)$ acts trivially on U and is therefore conjugate to $\langle s\rangle$. Hence we may assume that it is $\langle s\rangle$. The normalizer of U in N_{s} is isomorphic to $3 \times \operatorname{Sym}(4)$. Therefore, all the 3 -elements in $N_{G}(U)^{\prime}$ are in N_{s}^{∞} and Lemma 3.3 (ii) and (iii) yield the assertion.

4 The order of a group of J_{3}-type.

We continue to use the notation introduced so far. So, let G be a group of J_{3}-type and let s be an element of 3 in the centralizer of an involution. Set

$$
H:=N_{s} .
$$

So $H \cong 3: P G L_{2}(9)$ and $|H|=2^{4} \cdot 3^{3} \cdot 5$. Thus we have
$f=\left(\left|G: C_{i}\right| /|G: H|\right)-1=\left(|H| /\left|C_{i}\right|\right)-1=\left(2^{4} \cdot 3^{3} \cdot 5\right) /\left(2^{7} \cdot 3 \cdot 5\right)-1=1 / 8>0$.
We need one further piece of notation. For u an involution in I_{n} let $S(u)$ be the set of elements of H inverted by u and set

$$
H(u):=\langle S(u)\rangle .
$$

Then $H(u)$ is a subgroup of H which is normalized by $L:=H(u):\langle u\rangle$. As explained in Section 2 the number of involutions in $H u$ equals the size of $S(u)$. Notice also, that $H(u) \leq H \cap H^{u}$, as $x^{u}=x^{-1} \in H^{u} \cap H$ for all $x \in S(u)$.

4.1 The subgroups $H(u)$.

Next we determine the subgroups $H(u)$. We show:
(A) If $I_{n} \neq \emptyset$, then $n \in\{1,2,3,4,6,9\}$.
(B) If $|H u \cap I|=n$, then $H(u)$ is as listed in Table 1 at the beginning of the next subsection. Distinct rows of Table 1 correspond to distinct conjugacy classes $H(u)^{H}$. The normalizers of $H(u)$ in H and in G as well as the length of the conjugacy class $\left|H(u)^{H}\right|$ which is the index of $N_{H}(H(u))$ in H are as listed in Table 1.

To prove this it is helpful to know the properties (\star) and $(\star \star)$ which are listed below. Notice, that (\star) follows from the fact that $H=N_{G}\left(O_{3}(H)\right)$, see Lemma 3.2. Assume that there is a subgroup S in $H(u)$ which is of order 5. Then the Frattini Argument yields $L=H(u) N_{L}(S)$, which is not possible as $N_{G}(S)$ is contained in H by Lemma 3.1. This shows $(\star \star)$.
$(\star) O_{3}(H)$ is not a characteristic subgroup of $H(u)$.
$(\star \star)$ The order of $H(u)$ is not divisible by 5 .
Now we go through the list of subgroups of H. Recall that L is the extension of $H(u)$ by u, so $H(u)$ is a subgroup of L of index 2 .

Lemma 4.1 $H(u)$ is not isomorphic to one of the following groups:

$$
3^{2}: 2,3^{2}: 4,3^{2}: 8, \operatorname{Sym}(3), \mathbb{Z}_{4}, \mathbb{Z}_{8}, \operatorname{Alt}(4), \operatorname{Sym}(4), D_{16}
$$

and $|H(u)|$ is not divisible by 5.
Proof. Assume that $H(u) \cong 3^{2}: 2,3^{2}: 4$ or $3^{2}: 8$. Then L contains an elementary abelian subgroup $\langle a, u\rangle$ of order 4 and $O_{3}(H(u))$ is generated by the centralizers of a, u and $a u$ in $O_{3}(H(u))$ in contradiction to 3.3(iii).
Assume $H(u) \cong \operatorname{Sym}(3)$. Then L again contains an elementary abelian subgroup of order 4 which yields that $O_{3}(H(u))$ is conjugate to $\langle s\rangle$. As $H(u) \cong \operatorname{Sym}(3)$, in fact $O_{3}(H(u))=\langle s\rangle$ in contradiction to (\star).

Further $H(u) \nsubseteq \operatorname{Sym}(4)$, as there is no subgroup in G isomorphic to $2 \times \operatorname{Sym}(4)$.

As elements of order 8 are self-centralizing, $H(u)$ is neither isomorphic to D_{16} nor to \mathbb{Z}_{8}.

Assume $H(u) \cong \operatorname{Alt}(4)$. Then $N_{H}\left(O_{2}(H(u))\right) \cong 3 \times \operatorname{Sym}(4)$. By Corollary 3.17 every element t of order 3 of $H(u)$ which is inverted by u is an element of H^{∞}. Therefore, $N_{t} \cap N_{G}\left(O_{2}(H(u))\right) \cong 3 \times \operatorname{Sym}(3)$ is contained in H. Thus u is in H, which is a contradiction to our assumption.

Notice, all the elements of order 4 in H are contained in H^{\prime} and in particular in a subgroup isomorphic to D_{8} which is not lying in H^{\prime}. Assume that $H(u)$ is cyclic of order 4 . Then u inverts every element in $H(u)$. Moreover $N_{H}(H(u)) \cong 3 \cdot D_{16}$ and $N_{G}(H(u)) \cong\left(D_{8} * Q_{8}\right): \operatorname{Sym}(3)$ by $3.15(\mathrm{i})$. Let i be the involution in $H(u)$. Then, as $N_{H}(H(u)) \cap Q_{i} \cong D_{8}$, Lemma 3.15(ii) implies that u is an involution in $C_{i} \backslash Q_{i}$. By $3.15 u$ normalizes $N_{H}(H(u)) \cap Q_{i}$. It then follows that u commutes with an involution in $\left(C_{i} \cap N_{H}(H(u))\right) \backslash\{i\}$. Hence $|H(u) \cap I| \geq 6$ and $H(u)$ is not cyclic of order 4 .

Lemma 4.2 If $H(u)$ is a subgroup of $H^{\infty} \cong \operatorname{Alt}(6)$, then $H(u)$ is neither cyclic nor a dihedral group of order 8 .

Proof. If $H(u)$ is cyclic, then $H(u)$ is of order 2 or 3 by Lemma 4.1 and (**).

Assume $|H(u)|=2$ and let $H(u)=\langle i\rangle$. Then $C_{H}(i) \cong\left(3 \times D_{8}\right): 2 \cong$ $D_{8}: \operatorname{Sym}(3)$.

If $u \in Q_{i}$, then, as $Q_{i} \cong D_{8} * Q_{8}$, the involution u centralizes an involution in $C_{H}(i) \backslash Q_{i}$ in contradiction to our assumption.

Thus $u \notin Q_{i}$. Let T_{i} be a complement to Q_{i} in C_{i} and let $u=c y$ with c in Q_{i} and y in T_{i}. There are five Sylow 2-subgroups in T_{i}. Two of them centralize an elementary abelian subgroup of order 4 in $H \cap Q_{i}$. If y is contained in one of these two, then c is inside $H \cap Q_{i}$ or an element of order 4 which centralizes $C_{Q_{i}}(u)$. Thus, in this case $H(u)$ is at least of order 4 . Therefore, y is in one of the remaining three Sylow 2-subgroups in T_{i}. In each of those there is an involution j of $H \cap T_{i}$, which yields that u is not in T_{i}. But then there is an element $x \in H \cap Q_{i}$ such that x and u commute. Again we get that $|H(u)| \geq 4$ in contradiction to our assumption. Thus $H(u)$ is not of order 2.

If $H(u)$ is of order 3 , then every involution which inverts $H(u)$, also inverts

$$
C_{H^{\prime}}(H(u)) \cong 3^{2}
$$

So in fact $H(u)$ is elementary abelian of order 9 , which is a contradiction.
Finally assume $H(u) \cong D_{8}$. The fact that $H(u) \leq H^{\infty}$ yields that $H(u)=H \cap Q_{i}$, where i is the central involution in $H(u)$. Therefore, $C_{G}(H(u)) \cong Q_{8}: \mathbb{Z}_{3}$ and $N_{G}(H(u)) \cong\left(D_{8} * Q_{8}\right): \operatorname{Sym}(3)$. If $[H(u), u]=1$, then u is in Q_{i} and therefore $u=i \in H$, a contradiction. Thus $[H(u), u] \neq 1$. Therefore, as $H(u)$ is generated by the elements in H which are inverted by u, the involution u inverts every element of order 4 in $H(u)$ and fixes a
non-central involution in $H(u)$. But there does not exist such an involution in $C_{i} \backslash Q_{i}$, see 3.13 (ii), nor in Q_{i}, see $3.15(\mathrm{ii})$. This shows the statement of the lemma.

Lemma 4.3 If $H(u)$ is a subgroup of $H^{\infty} \cong \operatorname{Alt}(6)$, then $H(u) \cong 2^{2}, 3^{2}$ and $N_{K}(H(u))$ and n are as listed in Table 1 for $K \in\{G, H\}$.

Proof. By Lemmas 4.1, 4.2 and by the list of subgroups of Alt(6), see [10, II (8.27)], $H(u)$ is elementary abelian of order 4 or 9 .

Let $U=\langle i, a\rangle \cong 2^{2}$ be a subgroup of H^{∞}. Then $N_{H}(U) \cong 3 \times \operatorname{Sym}(4)$ and by $3.16 N_{G}(U) \simeq 2^{2+4}:(3 \times \operatorname{Sym}(3))$. Moreover, $C:=C_{Q_{i}}(U) \cong$ $\mathbb{Z}_{2} \times Q_{8}$. Let v be an element of order 4 in C. Then there is an involution b in $C_{T_{i}}(U)$ which inverts v. Set $u=v b$. Then u is an involution and, as by the last paragraph $H(u)$ is of order 4 or 9 , it follows that $H(u)=U$. As u inverts every element in U, in this case we have $n=4$.

Now let $U \cong 3^{2}$ be a subgroup of H^{∞}. Then $N_{H}(U) \cong\left(3 \times 3^{2}\right): \mathbb{Z}_{8}$ and $N_{G}(U)$ is of order $3^{i} \cdot 8$ with $i \in\{5,7,9\}$ by Lemma 3.10 . Hence we find an involution u in $N_{G}(U)$ which maps s onto some element in $(\langle s\rangle \times U) \backslash\langle s\rangle$. This involution inverts every element in U and therefore $H(u)=U$ and $n=9$.

Lemma 4.4 If $H(u)$ is not a subgroup of $H^{\infty} \cong \operatorname{Alt}(6)$, then $H(u)$ is isomorphic to one of the following groups:

$$
\mathbb{Z}_{2}, \mathbb{Z}_{3}, 2^{2}, D_{8}
$$

Proof. Let M be a maximal subgroup of H which contains $H(u)$. Then M is isomorphic to one of the following groups:

$$
3: D_{20},\left(3 \times 3^{2}\right): 8,3: D_{16}, 3 \times \operatorname{Alt}(6) \text { or } P G L_{2}(9)
$$

By (**) $H(u) \not \approx P G L_{2}(9)$.
Moreover, notice the following: In $N_{s} \cong 3: P G L_{2}(9)$ there is no involution which at the same time inverts s and a 3 -element in N_{s}^{∞}. Therefore, $|H(u)| \neq 9,27$.

Now we consider the maximal subgroups M case by case.
If $M \cong P G L_{2}(9)$, then $H(u)$ is also contained in one of the other maximal subgroups of H.

Assume $M \cong 3 \times \operatorname{Alt}(6)$. Then because of (\star) and $(\star \star) H(u) \cong \mathbb{Z}_{3}$ or 3^{2}. As $N_{s} \cong 3: P G L_{2}(q)$, the latter case is not possible.

Next assume $M \cong 3: D_{16}$. Then (\star) implies that $O_{3}(H)$ is not the Sylow 3 -subgroup of $H(u)$ and that therefore $H(u)$ is isomorphic to $\mathbb{Z}_{2}, 2^{2}$ or D_{8}, see Lemma 4.1.

If $M \cong 3: D_{20}$, then (\star) and $(\star \star)$ imply $H(u) \cong \mathbb{Z}_{2}$ or 2^{2}.
Finally assume $M \cong\left(3 \times 3^{2}\right): 8$. by the second paragraph $|H(u)| \neq 27$. Then (\star) yields $|H(u)|=3$ or 9 . As $|H(u)|=9$ is not possible, see above, we get $|H(u)|=3$. This shows the assertion.

Lemma 4.5 If $H(u)$ is not a subgroup of H^{∞}, then $H(u), N_{K}(H(u))$ and n are as listed in Table 1 for $K \in\{G, H\}$.

Proof. By Lemma 4.4 we need only to study the subgroups U of $H \backslash H^{\infty}$ which are isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{3}, 2^{2}$ or D_{8}. Notice, that in all these cases there is only one conjugacy class of subgroups of the respective type. One by one we consider these four classes.
$|H(u)|=2$. Let $U=\langle b\rangle$ with b an outer involution of H. Then $N_{H}(U) \cong$ $D_{20} \cong(2 \times 5): 2$ and $N_{G}(U)=C_{b}$. Notice, that there are five involutions in $N_{H}(U)$ which are contained in H^{\prime}, but not in $Q_{b}=O_{2}\left(C_{b}\right)$. Denote one of those by i.

We next search for an involution $u \in C_{b}$ which does not centralize any involution in $N_{H}(U) \backslash\{b\}$. There are

$$
\left|C_{b}: C_{i} \cap C_{b}\right|=2^{7} \cdot 3 \cdot 5 / 2^{4}=2^{3} \cdot 3 \cdot 5
$$

involutions in $C_{b} \backslash Q_{b}$, see 3.13 (iii). On the other hand the number of involutions in $C_{b} \backslash Q_{b}$ which centralize an involution in $N_{H}(U) \backslash\{b\}$ equals

$$
2^{2} \cdot 3 \cdot 5
$$

as there is precisely one involution in $N_{H}(U)$ from every Sylow 2-subgroup of

$$
C_{b} / Q_{b} \cong \operatorname{Alt}(5)
$$

and as each of these involutions centralizes precisely 4 elements in Q_{b}. Thus we are able to choose an involution u in C_{b} which does not centralize any involution in $N_{H}(U) \backslash\{b\}$.

As b is an outer involution of H, it is not a square in H. Therefore, by our choice of u, U is a Sylow 2-subgroup of $H(u)$. Thus, it follows with 4.4
that $H(u)=U$. Here, u inverts two elements in $H(u)$, so $n=2$.
$|H(u)|=3$. Next let U be a subgroup of $H \backslash H^{\infty}$ of order 3 . Then $U=\langle s t\rangle$ with $t \in H^{\infty}$ an element of order 3 and $N_{H}(U)$ is a Sylow 3-subgroup of H. By $3.3 U$ is conjugate to $O_{3}(H)=\langle s\rangle$. Therefore $N_{G}(U)=N_{s t} \cong$ $3: P G L_{2}(9)$. Let u be an involution in $N_{s t}$ which inverts st. Then by Lemma 4.4 $U=H(u)$. Clearly, u inverts the 3 -elements in $H(u)$, so $n=3$.
$|H(u)|=4$. Now let U be a subgroup of $H \backslash H^{\prime}$ which is elementary abelian of order 4. Then $U=\langle i, b\rangle$ with i in H^{∞} and $b \notin H^{\infty}$, which implies that b is not in Q_{i}. By $3.13(\mathrm{v})$ we may assume that b is contained in T_{i}. Further $N_{H}(U) \cong D_{8}$ and $N:=N_{G}(U) \simeq 2^{4}: \operatorname{Sym}(3)$, see 3.16.

Let u be an involution in $O_{2}(N) \backslash U$ which is contained in T_{i}. Then clearly, U is a subgroup of $H(u)$. Now Lemma 4.4 implies that either $H(u)=U$ or $H(u) \cong D_{8}$. As elements of order 4 of H are contained in H^{\prime}, the latter case would yield a contradiction to $3.15(\mathrm{i})$. This shows that $U=H(u)$. In that case u centralizes and inverts every element in $H(u)$, so $n=4$.
$H(u) \cong D_{8}$. Finally let U be a subgroup of $H \backslash H^{\prime}$ isomorphic to D_{8}. Then $N_{H}(U) \cong D_{16}, N_{G}(U) \simeq\left(Q_{8} \times 2\right): 2, C_{H}(U)=Z(U)$ and $C_{G}(U)$ is elementary abelian of order 4 . Further notice, if $H(u) \cong D_{8}$, then either $[H(u), u]=1$ or u inverts every element of order 4 and centralizes an elementary abelian subgroup of order 4 in $H(u)$.

Let u be an involution in $C_{G}(U) \backslash Z(U)$. Then $U \leq H(u)$ and, by 4.4 we have $U=H(u)$. In that case, u inverts six elements in $H(u)$, so $n=6$.

Now let u be an involution in $N_{G}(U) \backslash U$ which inverts the elements of order 4 and centralizes an elementary abelian subgroup of order 4 in U. Then $u \notin H$ and $U \leq H(u)$. So by $4.4 U=H(u)$. Here, u inverts six elements again, so $n=6$.

4.2 The order of a group of J_{3}-type

Next we calculate I_{n} by counting all the involutions outside H which invert precisely n elements in H. According to Table $1, n$ is in $\{9,6,4,3,2,1\}$. We start with $n=9$ and end at $n=1$.
$n=9$. Then $H(u) \cong 3^{2}$ and u inverts every element in $H(u)$. If v is an involution in $N_{G}(H(u)) \backslash N_{H}(H(u))$, then Table 1 implies that $H(v)=H(u)$. Hence

Figure 1: Table 1.

n	$H(u)$	$N_{H}(H(u))$	$N_{G}(H(u))$	$\left\|H(u)^{H}\right\|$
9	$3^{2} \leq H^{\prime}$	$3^{3}: 8$	$\left[3^{i}\right]: 8, i \in\{5,7,9\}$	$2 \cdot 5$
6	$D_{8} \not \leq H^{\prime}$	D_{16}	$\left(Q_{8} \times 2\right): 2$	$3^{3} \cdot 5$
4	$2^{2}, H(u) \leq H^{\prime}$	$3 \times \operatorname{Sym}(4)$	$2^{2+4}:(3 \times \operatorname{Sym}(3))$	$2 \cdot 3 \cdot 5$
4	$2^{2}, H(u) \not \leq H^{\prime}$	D_{8}	$2^{4}: \operatorname{Sym}(3)$	$2 \cdot 3^{3} \cdot 5$
3	$3, H(u) \not \leq H^{\infty}$	3^{3}	$3: P G L_{2}(9)$	$2^{4} \cdot 5$
2	$2, H(u) \not \leq H^{\prime}$	D_{20}	$2^{1+4}: \operatorname{Alt}(5)$	$2^{2} \cdot 3^{3}$

$\left|I_{9}\right|=\left(\mid\left\{\right.\right.$ involutions in $\left.N_{G}(H(u))\right\}|-|\left\{\right.$ involutions in $\left.\left.N_{H}(H(u))\right\} \mid\right)$. $\mid\{$ subgroups $H(u)$ in H with $|H u \cap I|=9\} \mid=\left(3^{i-1}-3^{2}\right) \cdot 2 \cdot 5$ with $i \in\{5,7,9\}$, see 3.10. Hence we distinguish the three cases.
$i=5 .\left|I_{9}\right|=3^{2} \cdot 2^{4} \cdot 5=720$.
$i=7 .\left|I_{9}\right|=3^{2} \cdot 2^{5} \cdot 5^{2}=7200$.
$i=9 .\left|I_{9}\right|=3^{2} \cdot 2^{4} \cdot 5 \cdot 7 \cdot 13=65520$.
$n=6$. Calculating the order of I_{6} we have to consider the subgroups $H(u)$ such that $H(u) \cong D_{8}$. Here again $v \in N_{G}(H(u)) \backslash N_{H}(H(u))$ yields $H(v)=$ $H(u)$ (see Table 1). We have to distinguish the two cases $[H(u), u]=1$ and $[H(u), u] \neq 1$.
$I_{6}(1)$. Let $I_{6}(1)$ consist of the elements $u \in I_{6}$ with $[H(u), u]=1$.
Then $C_{G}(H(u)) \cong 2^{2}$ and $\left|C_{H}(H(u))\right|=2$. Hence

$$
\left|I_{6}(1)\right|=2 \cdot 3^{3} \cdot 5
$$

$I_{6}(2)$. Let $I_{6}(2)$ consist of the elements $u \in I_{6}$ with $[H(u), u] \neq 1$.
As $u \in I_{6}$, the involution u induces an inner automorphism on $H(u)$. Since $C_{G}(H(u)) \cong D_{8}: 2$, there are four such involutions in $H \backslash H(u)$ so $\left|I_{6}(2)\right|=2^{2} \cdot 3^{3} \cdot 5$. Thus

$$
\left|I_{6}\right|=\left|I_{6}(1)\right|+\left|I_{6}(2)\right|=2 \cdot 3^{4} \cdot 5=810
$$

$n=4$. To obtain I_{4} we have to consider $H(u)$ to be an elementary abelian group of order 4. Clearly, u centralizes $H(u)$. We have to consider the two cases $H(u) \leq H^{\prime}$ and $H(u) \not \leq H^{\prime}$.
$I_{4}(i)$. Let $I_{4}(i)$ consist of the elements $u \in I_{4}$ with $H(u) \leq H^{\prime}$.
We have $C_{H}(H(u)) \cong 3 \times 2^{2}$ and $C_{G}(H(u)) \cong 2^{2+4}: 3 \cong\left(2 \times Q_{8}\right): \operatorname{Alt}(4)$ by Lemma 3.16. Hence there are 27 involutions in $C_{G}(H(u))$. Since the subgroups of H isomorphic to D_{8} considered in the case $n=6$ intersect H^{\prime} in a cyclic group of order 4 , the subgroups considered here are not contained in such a subgroup isomorphic to D_{8}. Hence Table 1 yields, if v is an involution in $C_{G}(H(u)) \backslash H(u)$, then $H(v)=H(u)$. Therefore,

$$
\left|I_{4}(i)\right|=(27-3) \cdot 2 \cdot 3 \cdot 5=2^{4} \cdot 3^{2} \cdot 5
$$

$I_{4}(o)$. Let $I_{4}(o)$ consist of the elements $u \in I_{4}$ with $H(u) \not 又 H^{\prime}$. Then $C_{H}(H(u))$ and $C_{G}(H(u))$ are elementary abelian of order 2^{2} and 2^{4}, respectively. Every $H(u)$ lies in exactly one group $K \cong D_{8}$ as considered in case $n=6$. There are two conjugates of $H(u)$ under of the action of H in K. Notice, that every involution in $I_{6}(1)$ centralizes these two conjugates of $H(u)$ and every involution in $I_{6}(2)$ centralizes exactly one subgroup $H(u)$. Hence
$I_{4}(o)=\left(\mid\left\{\right.\right.$ involutions in $\left.C_{G}(H(u))\right\}|-|\left\{\right.$ involutions in $\left.\left.C_{H}(H(u))\right\} \mid\right)$. |\{subgroups $H(u)$ in $H \backslash H^{\prime}$ with $\left.|H u \cap I|=4\right\} \mid-2 I_{6}(1)-I_{6}(2)=(15-$ 3) $\cdot 2 \cdot 3^{3} \cdot 5-2^{3} \cdot 3^{3} \cdot 5=2^{4} \cdot 3^{3} \cdot 5$.

Thus

$$
\left|I_{4}\right|=\left|I_{4}(i)\right|+\left|I_{4}(o)\right|=2^{6} \cdot 3^{2} \cdot 5=2880 .
$$

$n=3$. Next, we calculate I_{3}, so $H(u)$ is cyclic of order 3 and not contained in H^{\prime}. By Table $1 N_{G}(H(u)) \cong 3: P G L_{2}(9)$ and $N_{H}(H(u))$ is elementary abelian of order 3^{3} which implies
$\left|I_{3}\right|=108 \cdot 2^{4} \cdot 5=2^{6} \cdot 3^{3} \cdot 5=8640$.
$n=2$. Here $H(u)$ is a cyclic group of order 2 which is not contained in H^{\prime}. Every involution in $I_{6}(1)\left(\right.$ resp. $I_{6}(2)$ or $\left.I_{4}(o)\right)$ centralizes 4 (resp. 2 or 2) conjugates of $H(u)$ in H. Hence, as there are $1+10+120=131$ involutions in $C_{G}(H(u))$

$$
\left|I_{2}\right|=(131-11) \cdot 2^{2} \cdot 3^{3}-4\left|I_{6}(1)\right|-2\left|I_{6}(2)\right|-2\left|I_{4}(o)\right|=2^{4} \cdot 3^{4} \cdot 5=6480 .
$$

It remains to determine b_{1}. We first calculate the number c. Recall that c is the number of u in I_{1} such that $C_{H}(u) \neq 1$. If $C_{H}(u) \neq 1$, but u is in I_{1}, then by $3.1 C_{H}(u)$ is cyclic of order 3 ; moreover $C:=C_{G}\left(C_{H}(u)\right) \cong$ $3 \times \operatorname{Alt}(6)$ and $C_{H}\left(C_{H}(u)\right) \cong 3^{3}$. There are 9 involutions in C which invert $C_{H}\left(C_{H}(u)\right) \cap H^{\infty}$. Clearly, these 9 involutions are contained in I_{9}. Moreover, $C_{H}(u)$ is contained in three subgroups isomorphic to Alt(4) in H. Every
such $\operatorname{Alt}(4)$ is centralized by an elementary abelian group of order 4. Hence there are 9 further involutions in C which are contained in I_{4}. This yields $c=(45-18) \cdot 80=2^{4} \cdot 3^{3} \cdot 5=2160$. Moreover,

$$
|I \cap H|=3 \cdot 15+\left(3 \cdot 2^{4} \cdot 3^{2} \cdot 5\right) / 20=3(15+36)=3^{2} \cdot 17
$$

To determine b_{1} we use the Lemma of Bender. Up to now we calculated:

$$
\begin{gathered}
f=1 / 8, b_{2}=2^{3} \cdot 3^{4} \cdot 5=3240, b_{3}=2^{6} \cdot 3^{2} \cdot 5=2880, b_{4}=2^{4} \cdot 3^{2} \cdot 5=720, \\
b_{6}=3^{3} \cdot 5=135 \text { and } b_{9}=2^{4} \cdot 5=80
\end{gathered}
$$

Then (ii) and (iii) of Lemma 2.1 imply that

$$
\begin{aligned}
c+m|H| & =b_{1}<f^{-1}\left(|I \cap H|+b_{2}+2 b_{3}+3 b_{4}+5 b_{6}+8 b_{9}\right)-1-b_{2}-b_{3}-b_{4}-b_{6}-b_{9} \\
& =8|I \cap H|+7 \cdot b_{2}+15 \cdot b_{3}+23 \cdot b_{4}+39 \cdot b_{6}+63 \cdot b_{9}-1 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2^{4} \cdot 3^{3} \cdot 5(1+m)<8 \cdot\left(3^{2} \cdot 17\right)+7 \cdot\left(2^{3} \cdot 3^{4} \cdot 5\right)+15 \cdot\left(2^{6} \cdot 3^{2} \cdot 5\right)+23 \cdot\left(2^{4} \cdot 3^{2} \cdot 5\right)+ \\
39 \cdot\left(3^{3} \cdot 5\right)+63 \cdot(x)-1
\end{gathered}
$$

where

$$
x=2 \cdot 5 \text { or } 2^{5} \cdot 5^{2} \text { or } 2 \cdot 5 \cdot 7 \cdot 13
$$

Hence

$$
1+m<\frac{17}{2 \cdot 3 \cdot 5}+\frac{7 \cdot 3}{2}+2^{2} \cdot 5+\frac{23}{3}+\frac{39}{2^{4}}+\frac{y}{3}-\frac{1}{c}
$$

where

$$
y=7 \text { or } 2 \cdot 5 \cdot 7 \text { or } 7^{2} \cdot 13
$$

and m is at most 43,67 or 255 , respectively.
As 17 divides the order of G, but not the order of the centralizer of an involution, it has to divide $|I|$. Moreover, as 3^{5} divides the order of G and every Sylow 3 -subgroup of the centralizer of an involution is of order 3, it follows that 3^{4} divides $|I|$. Therefore the following equation is helpful to determine b_{1}, respectively m :

$$
|I|-b_{1}=|H \cap I|+\left|I_{2}\right|+\left|I_{3}\right|+\left|I_{4}\right|+\left|I_{6}\right|+\left|I_{9}\right|
$$

In all cases, $|I|-b_{1} \equiv 0\left(3^{4}\right)$, which implies that $b_{1}=2^{4} \cdot 3^{3} \cdot 5 \cdot(1+m)$ is divisibe by 3^{4} and $m+1$ by 3 . Let us consider the three different cases:

$$
|G|_{3}=3^{7} .
$$

Here $x=2^{5} \cdot 5^{2}, m \leq 67$ and $|I|$ is divisible by 3^{6}. Further, $|I|-b_{1} \equiv 0$ (17) which yields $m \equiv 16$ (17). As $m \equiv 2$ (3) and because of $m \leq 67$, in fact $m=50$. Thus $b_{1}=2^{4} \cdot 3^{3} \cdot 5 \cdot 51 \equiv 81\left(3^{6}\right)$ which yields that $|I|-b_{1} \equiv 0-81 \equiv-81\left(3^{6}\right)$ in contradiction to $|I|-b_{1} \equiv 648\left(3^{6}\right)$.

$$
|G|_{3}=3^{9} .
$$

Here $x=2 \cdot 5 \cdot 7 \cdot 13, m \leq 255$ and $|I|$ is divisible by 3^{8}. Further, $|I|-b_{1} \equiv$ 10 (17) and therefore $m \equiv 6(17)$. Hence $m \equiv 23$ (51) and, as $m \leq 255$, we get $m=23+k \cdot 51$ with k in $\{1, \cdots, 5\}$. Using the numbers we determined we calculate that $|I|-b_{1} \equiv 5751\left(3^{8}\right)$, but this does not hold for any k in $\{1, \cdots, 5\}$.

Thus, we get that

$$
|G|_{3}=3^{5} .
$$

Then $x=2 \cdot 5$ and $m \leq 43$. As $|H|=c \equiv 1$ (17) and $|I|-b_{1} \equiv 14$ (17) it follows that $m \equiv 2$ (17). As $1+m$ is divisible by 3 we get $m \equiv 2$ (51). Now $m \leq 43$ yields $m=2$. Hence $|I|=3^{4} \cdot 17 \cdot 19$ and $|G|=2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$, which proves the theorem.

5 The 3, 17 and 19-Structure of G

Corollary 5.1 Let Q and K be as introduced in 3.4.
(i) Q is a Sylow 3-subgroup of G.
(ii) $N_{G}(Z(Q))=N_{G}(Q)=Q: K$.
(iii) $N_{G}(t)=Q:\left\langle x^{4}\right\rangle$ with $\langle x\rangle=K$ for all t in $Z(Q)^{\#}$.

Proof. (i) is a consequence of the main Theorem, (ii) follows from 3.4 and 3.10 .

It remains to show (iii). Because of the order of the centralizer of an involution and the order of the normalizer of a Sylow 5 -subgroup, $C_{G}(t)$ is a $\{3,17,19\}$-group for every $t \in Z(Q)^{\#}$. Further, Q is a Sylow 3 -subgroup of $C_{G}(t)$ and (ii) implies that Q is self-normalizing in $C_{G}(t)$. Sylow's Theorem yields that $\left|C_{G}(t)\right|=3^{5}$ or $3^{5} \cdot 19$. Assume the latter. Then the Theorem of Sylow forces $X:=O_{19}\left(C_{G}(t)\right)$ to be a Sylow 19-subgroup of G.

As $N_{G}(X) / C_{G}(X)$ is a cyclic group of order $3^{i} \cdot 2^{j}$ with $i \in\{0,1,2\}$ and $j \in\{0,1\}$, it follows that $\left|G: N_{G}(X)\right|=2^{a} \cdot 5 \cdot 17^{b}$ with a in $\{6,7\}$ and b in $\{0,1\}$, which contradicts Sylow's Theorem. Thus $\left|C_{G}(t)\right|=3^{5}$ and (iii) holds.

According to Theorem 1 every Sylow 19-subgroup of G is of order 19. Next we determine the structure of the centralizer and the normalizer of a Sylow 19-subgroup of G.

Corollary 5.2 Let X be a Sylow 19-subgroup of G. Then $C_{G}(X)=X$ and $N_{G}(X) / X$ is cyclic of order 9 .

Proof. As X is of order $19, N_{G}(X) / C_{G}(X)$ is a cyclic group of order $3^{i} \cdot 2^{j}$ with $i \in\{0,1,2\}$ and $j \in\{0,1\}$. Moreover, the order of an involution centralizer and 3.1 yield that $\left|C_{G}(X) / X\right|$ is not divisible by 2 or 5 . Assume that it is divisible by 3 .

Then, applying 1 and 3.2 we see that there is an element u of order 3 in $C_{G}(X)$ whose centralizer is a $\{3,17,19\}$-group. Assume that 17 divides the centralizer. Then by Burnside Normal p-complement Theorem $C_{G}(u)$ has a 17-complement [1, 39.1].

So, in any case $C_{G}(u)$ has a subgroup C which contains a subgroup of order 19 and the center T of a Sylow 3 -subgroup of G. More precisely, $|C|=3^{a} \cdot 19$ with a in $\{3,4\}$. Then X is normal in C which contradicts 5.1(iii). Thus $\left|C_{G}(X) / X\right| \in\{1,17\}$ and $\left|G: N_{G}(X)\right|=2^{i} \cdot 3^{j} \cdot 5 \cdot 17^{k}$ with $i \in\{6,7\}, j \in\{3,4,5\}$ and $k \in\{0,1\}$. Sylow's Theorem yields the assertion.

Corollary 5.3 Let X be a Sylow 17-subgroup of G. Then $C_{G}(X)=X$ and $N_{G}(X) / X$ is cyclic of order 8 .

Proof. Because of the local p-structure of G for $p \neq 17$ a prime dividing $|G|$, we have $C_{G}(X)=X$. The fact that $N_{G}(X) / C_{G}(X)$ is a cyclic group of order 2^{i} for some $i \in\{2,3,4\}$ and the Theorem of Sylow yield the assertion.

Corollary 5.4 $Q / Z(Q)$ is extraspecial of order 3^{3}.
Proof. Assume that $Q / Z(Q)$ is not extraspecial. Then it is abelian. Let s be an element of order 3 in Q whose centralizer has even order. By 3.4(iv)
and as, $s Z(Q)$ is not a third power, see the proof of 3.10 , it follows that $Q / Z(Q)$ is elementary abelian. Let i be an involution in $C_{G}(s) \cap N_{G}(Q)$. Then

$$
Q / Z(Q)=[Q / Z(Q), i] \oplus C_{Q / Z(Q)}(i)
$$

Let U be the preimage of $[Q / Z(Q), i]$ in Q. Then $Q=U:\langle s\rangle$. As there are $\left[N_{G}(Q):\left(C_{i} \cap N_{G}(Q)\right)\right]=3^{4}$ involutions in $N_{G}(Q)$, there are at least as many elements of order 3 in $Q \backslash U$. This implies that U is elementary abelian. Therefore Q is of exponent 3 in contradiction to 5.2 .

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge 1986.
[2] M. Aschbacher, The existence of J_{3} and its embeddings in E_{6}, Geom. Dedicata 35(1990) 143 - 154.
[3] M. Aschbacher, S. Smith, The classification of quasithin groups I,II, Mathematical Surveys and Monographs, vols. 111-112, American Mathematical Society, Providence, RI, 2004.
[4] B. Baumeister, A geometry for groups of J_{3}-type, to appear in Archiv der Mathematik.
[5] B. Baumeister, A computer free construction of the third group of Janko J. Algebra, 192(1997), $780-809$.
[6] H. Bender, Finite groups with large subgroups Illinois J. Math. 18(1974), 223-228.
[7] J.D. Bradley, R.T.Curtis, Symmetric generation and existence of J_{3} : 2, the automorphism group of the third Janko group, J. Algebra, 304(2006), 256 - 270.
[8] D. Frohardt, A trilinear form for the third Janko group, J. Algebra 83(1983), 349 - 379.
[9] G. Higman, J. McKay, On Janko's simple group of order 50,234,960, Bull. London Math. Soc. 1(1969), $89-94$.
[10] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, 1979.
[11] Z. Janko, Some new simple group of finite order I, Sym. Math. 1(1968), 25-64.
[12] R. Weiss, A geometric construction of Janko's group J_{3}, Math. Z. 179(1982). 91 - 95.

