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Abstract

We apply a method of Bender [6] to determine the order of a group
G of J3-type. Moreover, we determine the local p-structure of G for
every prime p dividing the order of G. The results of this paper are
obtained by exploiting the action of G on its geometry [4] and by
sophisticated use of elementary group theory.

1 Introduction.

A finite simple group G is said to be of J3-type provided that all involutions
of G are conjugate and the centralizer of an involution is a split extension of
an extraspecial group of order 32 by Alt(5). Z. Janko calculated the order
of a group of J3-type using character theory [11]. There is the Thompson
Order Formula which determines the order of a simple group with more
than one conjugacy class of involutions by counting involutions, see [1, 45.6].
H. Bender introduced a method of counting involutions which can sometimes
be applied to determine the order of a group with just one conjugacy class
of involutions, see [6].

In this paper we use this method to prove

Theorem 1 Let G be a group of J3-type. Then |G| = 27 · 35 · 5 · 17 · 19.
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The method of Bender, which will be introduced in the next section,
uses only local information of the group.

Beside the order of a group of J3-type, we show

Theorem 2 Let G be a group of J3-type and p a prime dividing the order
of G. Then the local p-structure is as described in Sections 3 and 5.

In a forthcoming paper we aim to use Theorem 1 and the results of [4]
to show the uniqueness of a group of J3-type, as announced in [3]. For
other existence or uniqueness proofs see [5, 9, 12, 8, 2]. There is also a new
computer based existence proof by Bradley and Curtis [7].

Let G be a group of J3-type. In [4] the author showed that G is the
completion of an amalgam of J3-type, i.e. that there are subgroups G1, G2

and G3 in G such that

(i) G1 ' L2(16) : 2, G2 ' 24 : GL2(4), G3 ' 3 : PGL2(9).

(ii) G1 ∩ G2 ' 24 : (3 × D10), G2 ∩ G3 ' GL2(4) ' 3 × Alt(5), G1 ∩
G3 ' Sym(3)×D10.

(iii) G1 ∩G2 ∩G3 ' 3×D10.

(iv) G = 〈G1, G2, G3〉.

In Section 3 we heavily use the fact that G is a completion of such
an amalgam. In Subsections 3.1, 3.5 and 3.2 we determine the local 5,
2-structure and to some extent the local 3-structure of G, respectively.

The local 3-structure of a group of J3-type is fairly complicated, see for
instance [11]. Notice, that Aschbacher used the local 3-structure of a group
of J3-type to embed and recognize groups of J3-type in E6 [2]. In order to
bound the size of a Sylow 3-subgroup of G, we bound the order of G, see
Subsection 3.3.

In the penultimate section we prove Theorem 1. Once we know |G|,
we are able to complete the determination of the local 3-structure of G,
which is done in the last section. There we also describe the local 17 and
19-structures of G. The results of this paper are obtained by exploiting the
action of G on its geometry and by sophisticated use of elementary group
theory.

Acknowledgement I would like to thank Chris Parker as well as the referee
for pointing out a gap in an earlier version of the paper. Moreover, I am
grateful to the referee and to Chris Parker for their careful reading of the
manuscript and for their comments.
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2 The Method of Bender

Bender considers a group G, the set of involutions I of G and a subgroup
H of G such that |I| > |G : H|. He introduces the following notation.

In = set of u in I \H such that |Hu ∩ I| = n.

bn = number of cosets Hg 6= H with |Hg ∩ I| = n.

c = number of u in I1 such that CH(u) 6= 1.

f = |I|/|G : H| − 1.

Notice that |In| = n · bn and, as |I| > |G : H|, that f > 0. Bender made
the following observation.

Lemma 2.1 [6]

(i) |I| = |I ∩H|+ b1 + 2b2 + 3b3 + . . ..

(ii) b1 = c + m|H| for some integer m ≥ 0.

(iii) b1 < f−1(|I ∩H|+ b2 + 2b3 + 3b4 + . . .)− 1− b2 − b3 − b4 − . . ..

The idea for determining the order of G is to calculate bi for i > 1 and
then to use the lemma to determine b1 and the number of involutions |I| of
G. In order to calculate bi for i > 1 it is helpful to use the following fact.
Let u be an involution in In, that is Hu contains precisely n involutions.
Notice, if a = hu, with h ∈ H, is an involution, then u inverts h. Thus the
number of involutions in Hu equals the number of elements in H which are
inverted by u.

3 More about the structure of a group of J3-type.

In this section we provide the information needed to apply the method of
Bender.

Notation Throughout the paper we are using the notation which has been
established in the introduction. So G is a group of J3-type and G1

∼= L2(16) :
2, G2

∼= 24 : GL2(4) and G3
∼= 3 : PGL2(9) ∼= (3× Alt(6)) : 2 are subgroups

of G such that G = 〈G1, G2, G3〉.
For n a natural number and r a prime, we denote by nr the r-part of n.
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For g ∈ G let Cg := CG(g) and Ng := NG(〈g〉). For i ∈ G an involution,
set Qi := O2(Ci) and let Ti be a complement to Qi in Ci. In most of our
notation we follow [1]. For instance, for G a group we denote by G# the set
G \ {1} and by G∞ the intersection of the commutator subgroups G(i), see
[1, p. 27].

If we have a group G which is isomorphic to an extension A·B and we
want to specify the action of B on A only to some extent, then we write
G ' A·B.

3.1 The 5-structure of G.

Lemma 3.1 Let S be a Sylow 5-subgroup of G. Then

(i) S is of order 5 and

(ii) NG(S) ∼= Sym(3)×D10.

In particular, if w is an element of order 5 in Ns, then Nw is a subgroup of
Ns.

Proof. Assume that w ∈ Ns. Then it follows NNs(〈w〉) ∼= D10 × Sym(3).
Let 〈i, j〉 ∼= 22 be a subgroup of NNs(〈w〉) such that i centralizes w. In
Ci we see that 〈i〉 is a Sylow 2-subgroup of Cw. Therefore, Cw has a 2-
complement R. As i inverts R/〈w〉, the group R/〈w〉 is abelian. Moreover,
R = 〈CR(x) | x ∈ {i, j, ij}〉. Without loss of generality we may assume that
CR(j) = 〈s〉. It remains to determine CR(ij). Assume that CR(ij) 6= 1.
Then either |R| = 5 · 32 or 52 · 3. In both cases we would obtain the
contradiction that CR(s) > 〈w〉 × 〈s〉 = Cs ∩ Cw. Hence R ≤ NNs(〈w〉).
In Ci we see that Nw induces only a subgroup of order 2 on 〈w〉, which
implies the assertion in that case.

As, for w ∈ Ns, the order of the normalizer of w in G is only divisible by
5, every Sylow 5-subgroup of G is of size 5. Therefore, the previous para-
graph also proves (i) and (ii). 2

3.2 The 3-structure of G, part I.

In [4] we also showed the following:

Lemma 3.2 [4, 2.3, 2.4] G3 = NG(O3(G3)) and G2 = NG(O2(G2)).
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Hence, if 〈s〉 is a Sylow 3-subgroup of the centralizer of an involution,
then

Ns
∼= 3 : PGL2(9), N ′

s
∼= 3× Alt(6) and N∞

s
∼= Alt(6).

In what follows we assume that G3 = Ns.
Let W be a Sylow 3-subgroup of G3. Then W is elementary abelian of

order 27. Let T = W ∩ N∞
s . Then T is elementary abelian of order 9 and

NNs(W ) = W : K, where K is cyclic of order 8 which acts regularly on T#.
In the next two lemmas we study the embedding of W in G.

Lemma 3.3 (i) All the elements of order 3 in Ns \N∞
s are conjugate to

s in G.

(ii) All the elements of order 3 in N∞
s are in the same conjugacy class C

of G.

(iii) C does not contain s.

Proof. The fact that K acts regularly on T# implies that all the elements
of order 3 in N∞

s are in the same conjugacy class, which is statement (ii).
In the proof of Lemma 2.4 in [4] it was shown that s is not conjugate to any
element in N∞

s proving (iii).
We have G2 ∩ G3

∼= 3 × Alt(5) ∼= GL2(4) and, as G2
∼= 24 : GL2(4),

there is a subgroup of order 3 in (G2 ∩ G3) \ Z(G2 ∩G3) which centralizes
an involution in O2(G2). Hence 〈s〉 is conjugate to a subgroup in W \ 〈s〉.
As there is an element in Ns which inverts s, the latter element is conjugate
to its inverse. This together with the fact that K is transitive on T# yields
(i). 2

Lemma 3.4 The following hold.

(i) NG(W ) = Q : K with Q a group of order 35 and K cyclic of order 8.

(ii) Z(Q) is the subgroup T of W and is elementary abelian of order 9.

(iii) K acts regularly on Z(Q)#.

(iv) NG(W )/W is isomorphic to Frob(32 : 8) and acts faithfully on W .
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Proof. By Lemma 3.3 every element v in W \ T is conjugate to s. Since
W is a Sylow 3-subgroup of Cs as well as of Cv, the elements s and v
are conjugate in NG(W ). Hence NG(W ) induces two orbits on the set of
subgroups of order 3 of W , which are of length 9 and 4, respectively. So,

9 = |〈s〉NG(W )| = |NG(W ) : NG(W ) ∩Ns| = |NG(W ) : (WK)|,

which implies that |NG(W )| = 35 · 8. Hence K is a Sylow 2-subgroup of
NG(W ). In the centralizer of the unique involution of K in G, we see that K
is self-normalizing in NG(W ). Therefore, Burnside’s Normal p-complement
Theorem [1, 39.1] yields that NG(W ) has a 2-complement Q of order 35.
This proves (i).

Let t ∈ T#. As 4 = |〈t〉NG(W )|, it follows that t ∈ Z(Q) and therefore
T ≤ Z(Q). Now CG(W ) = W implies Z(Q) ≤ T , so T = Z(Q). This shows
(ii) and (iii).

We have shown that N := NG(W )/CG(W ) = NG(W )/W is a subgroup
of Aut(W ) which fixes the subgroup T = Z(Q). Moreover, K fixes the
subgroups T and 〈s〉 in W and O3(N) fixes T pointwise. This shows that
N ∼= Frob(32 : 8). As |〈s〉N | = 9, the subgroup O3(N) acts faithfully on W ,
which implies (iv). 2

3.3 A bound on the order of groups of J3-type.

Let G be a group of J3-type. We provide an upper bound for |G| which
turns out to be rather good.

As mentionned in the introduction the author showed in [4] that G is the
completion of an amalgam A of J3-type. Therefore G acts flag-transitively
on a rank three geometry Γ, called DEQ (dual extended quadrangle), con-
sisting of points, lines and quads, which are the cosets of G1, G2 and G3 in
G, respectively, see [4, 1.1]. In [5] the author constructed a DEQ ΓK and a
completion K of an amalgam of J3-type which is a non-split extension 3·J3

of a group of J3-type and which acts flag-transitively on ΓK .
We are able to deduce from [5] an upper and a lower bound for |K|.

Notice that the upper bound is very good!

Lemma 3.5 (i) |K| ≤ 212 · 36 · 5 · 19.

(ii) |K| ≥ 28 · 36 · 52 · 17.
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Proof. We follow the notation of [5] and let V be a 9-dimensional GF (4)-
space equipped with a unitary form and X ∼= GU9(2) the group of isometries
of V . It has been shown that Z(K) = Z(X) ∼= ZZ 3 [5, 7.11]. Let X̂ =
X/Z(X). Then K̂3 is the stabilizer K̂e in K̂ of a 1-space 〈e〉 in V where e
is a non-isotropic vector [5, 8.1].

As |X̂| ≥ |X̂eK̂| = |X̂e||K̂|/|Ke| it follows that |X̂ : X̂e| ≥ |K̂ : K̂e|. We
have X̂e

∼= U8(2) and |X̂ : X̂e| = 28 · 32 · 19. As K̂e = K̂3
∼= 3 : PGL2(9), it

follows that

|K̂| ≤ |K̂e||X̂ : X̂e| = 24 · 33 · 5 · 28 · 32 · 19 = 212 · 35 · 5 · 19,

which implies |K| ≤ 212 · 36 · 5 · 19.
In order to prove (ii) we need to study the geometry ΓK more closely.

Let Γ̂K be the quotient of ΓK where we identify the points, lines and planes
which are in a common Z(K)-orbit, respectively. Then Γ̂K is a DEQ with
K̂ acting flag-transitively.

We claim that Γ̂K has at least 1+85+680+2 ·1360 points. We consider
the collinearity graph G of Γ̂K (its vertices and edges are the points and
pairs of collinear points, respectively). In our DEQ Γ̂K every two points at
distance 2 are on precisely one quad, every quad is a 6 × 6-grid and every
point is contained in 17 lines, see [5]. Therefore, a point p has 85 neighbours
in G. Let Q be a quad containing p. Then the stabilizer S of p and Q in K̂
is isomorphic to 3 : 2 × 5 : 2 and O3(S) fixes the grid pointwise. Let f be
an involution in S with [O3(S), f ] = 1. Then f fixes precisley one point q
on Q at distance two from p and the stabilizer in K̂ of p and this point is
isomorphic to 3 : 2× 2. Hence,

|qK̂p | = |K̂p : K̂p ∩ K̂q| = |L2(16) : 2|/|3 : 2× 2| = 680.

Notice that five of the points of Q are contained in this orbit. The
remaining 20 points at distance two from p in Q, fall into two orbits under
the action of S, each of size 10. This shows that there are two more K̂p-orbits
in G and that they are of size |L2(16) : 2|/6 = 1360.

Thus we have shown that Γ̂K and ΓK have at least 1+85+680+2·1360 =
3486 and 3 · 3486 points, respectively. Hence,

|K| ≥ 3 · 3486 · |Kp| ≥ 28 · 36 · 52 · 17,

as claimed. 2

With [4, 1.1] we conclude
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Proposition 3.6 The universal completion G̃ of A acts flag-transitively on
the universal cover Γ̃ of Γ. The groups G as well as K are quotients of G̃
and the stabilizer G̃1 of a point in Γ̃ is isomorphic to the stabilizer G1 of a
point in Γ.

Further we know

Lemma 3.7 [5, 2.2] Γ̃ has at most 617 points.

Proposition 3.8 Let G be a group of J3-type. Then |G| ≤ (214 · 312)/5.

Proof. By 3.6(i) K and G are composition factors of G̃. If K/O3(K) ∼= G,
then by 3.5

|G| = |K/O3(K)| ≤ 212 · 35 · 5 · 19

and the assertion holds.
Assume that K/O3(K) 6∼= G. Then G̃ is divisible by |G||K|. Moreover,

3.6 and 3.7 yield that |G̃ : G̃1| ≤ 617. As G̃1
∼= G1

∼= L2(16) : 2 and
|K| ≥ 28 · 36 · 52 · 17 (see 3.6(ii)), we get the assertion. 2

Corollary 3.9 Let G be a group of J3-type. Then |G|3 ≤ 310.

Proof. We know that G is divisible by 27 · 5 · 17. Now Proposition 3.8
implies the assertion. 2

3.4 The 3-structure of G, part II.

In what follows we are using the notation introduced in Lemma 3.4.

Lemma 3.10 Let S be a Sylow 3-subgroup of NG(T ). Then S is of order
35, 37 or 39 and |NG(T )| = 8 · |S|.

Proof. We may assume that Q is a subgroup of S. In the following we use
the fact that NG(Q)/Q acts faithfully on Q/T . We know that Q = Q/T is
of order 33 and that it is either extraspecial with Z(Q) = 〈s〉T/T or abelian.
If Q = S, then the assertion follows from 3.4 and the subgroup structure of
GL3(3).

Assume that Q is a proper subgroup of S. Then Q is a proper subgroup of
S and M := NS(Q) > Q. Hence, W is not normal in NS(Q) and therefore Q
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is abelian. Notice, as T = Z(Q), it follows that [NG(Q), T ] ≤ T . Therefore
M := NS(Q) is a Sylow 3-subgroup of NG(Q) and NG(Q) contains by 3.4(i)
a cyclic group K of order 8.

Let i be an involution in K. Then every element in T as well as every
element in Q/W is inverted by i and [s, i] = 1. This shows that sT is not
a third power in Q/T . Therefore, Q is elementary abelian. By 3.4(iv) the
orbits of K on the set of 3-subgroups in Q are of length 1, 4 and 8.

Hence, the orbits of M are of length 5 and 8 or 9 and 4 or M is transitive.
In the latter case we get M ∼= 33 : GL3(3) and the order of M s is divisible
by 36, which contradicts Ns

∼= 3 : PGL2(9). Assume that the orbits are of
length 5 and 8. As |Ns ∩ NG(Q)|/|W | = 8, it follows that |NG(Q)| = 5 · 8.
This is impossible as 5 does not divide |GL3(3)|.

Therefore, the orbits are of length 9 and 4 and therefore,

|NG(Q) : NG(W )| = 32.

As NG(Q)/Q acts faithfully on Q/T , we see in GL3(3) that NG(Q)/Q ∼=
32 : ZZ 8. Thus, it follows that NG(Q) = M : K.

Moreover, the center U := Z(NS(Q)) is of order 32. Let U be the
preimage of U in S. Then M/U is of order 33 and either extraspecial with
Z(M/U) = Q/U or abelian. If M/U is abelian, then we get by the same
argument as for Q that it is elementary abelian.

Set P := NS(M). Clearly, Z(M) = T . Thus, [P, T ] ≤ T and P also acts
on Z(M/T ) = U , on U and on Z(M/U). Clearly, if P = M , then M = S
and NG(T ) = M : K.

If M/U is extraspecial, then Z(M/U) = Q/U . Thus, in that case P
acts on Q, which implies P ≤ NS(Q) = M and therefore M = S and
NG(T ) = M : K.

Assume that P 6= M . Then M/U is elementary abelian and P : K acts
as a subgroup of GL3(3) on M/U . By the same argument as above it follows
that NG(M)/M ∼= 32 : ZZ 8 and that NG(M) = P : K. Thus P is of order
39.

Then Z(P/U) is of order 9. Let V be the preimage of Z(P/U). Then
P/V is of order 33 and, as before, either elementary abelian or extraspecial.

If NS(P ) > P , then as before NG(P )/P ∼= 32 : ZZ 8 and |G|3 ≥ 311 in
contradiction with Corollary 3.9. Hence NS(P ) = P and S = P , which
completes the proof of the lemma. 2
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Corollary 3.11 Let R be a Sylow 3-subgroup of G. Then |R| = 3i where
i ∈ {5, 7, 9}.

Proof. Let S be a Sylow 3-subgroup of NG(T ) and assume S ≤ R. If S is
a proper subgroup of R, then NR(S) > S and, as T = Z(S) char S, we get
the contradiction NR(S) ≤ NG(T ). 2

Lemma 3.12 (i) Every element of order 8 in G is self centralizing.

(ii) Let L be a Sylow 2-subgroup of NG(T ). Then L is cyclic of order 8.

(iii) Let t ∈ T#. Then every Sylow 2-subgroup of NG(〈t〉) is of order 2.

Proof. The structure of the centralizer of an involution implies (i). L is of
order 8 by 3.10 and cyclic by 3.4. Statement (iii) follows immediately from
(ii) and Lemma 3.4(iii). 2

3.5 The 2-structure of G.

Next we consider the 2-strucure of G and recall some facts which follow
directly from Lemma 2.1 in [4]. We continue to use the notation introduced
in the beginning of Section 3.

Lemma 3.13 Let i be an involution in G. Then the following holds

(i) Qi
∼= D8 ∗Q8.

(ii) Qi/〈i〉 is the even part of the permutation module for Ti
∼= Alt(5).

(iii) Let a ∈ Qi\{i} be an involution. Then NTi(〈i, a〉) = CTi(〈i, a〉) ∼= Alt(4).

(iv) Let b ∈ Ti be an involution. Then CQi(〈b〉) is elementary abelian of
order 4.

(v) All the involutions in Qi \ {i} as well as all the involutions in Ci \Qi

are conjugate in Ci.

Remark 3.14 In the following and specially in Section 4 we calculate in
the centralizer Ci of an involution i of G again and again. Therefore, it is
helpful to visulize Ci.
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According to 3.13(ii) Qi/〈i〉 is the even part of the permutation module
for Ti

∼= Alt(5). In Qi \ {i} there are 20 and 10 elements of order 4 and
2, respectively. Their images in Qi/〈i〉 are ei + ej, 1 ≤ i < j ≤ 5 and∑

i6=j ei with 1 ≤ j ≤ 5, respectively, where {e1, e2, . . . , e5} is a basis of the
permutation module on which Ti acts by permuting the indices.

Lemma 3.15 Let i be an involution in G and a ∈ Qi of order 4. Then

(i) NCi(〈a〉) = Qi : X, where X ∼= Sym(3).

(ii) 〈a〉 together with all the involutions in Qi inverting the element a form
a dihedral group Y of order 8.

(iii) [Y, X] ≤ Y

Proof. 3.13(ii) implies (i) and (iii). (ii) follows from 3.13(i). 2

We introduce further notation. Let a, b ≥ 2 be natural numbers and A
a group. Then 2a+b : A denotes a 2-group of order 2a+b extended by the
group A such that the 2-group has two A-composition factors, which are
elementary abelian of order 2a and 2b, respectively.

Lemma 3.16 There are precisely two classes of elementary abelian sub-
groups of order 4 in G. Let i, a and b be involutions in G such that a ∈ Qi

and b ∈ Ci \Qi. Then we have:

(i) NG(〈i, a〉) ' 22+4 : (3× Sym(3)).

(ii) NG(〈i, b〉) ' 22+2 : Sym(3).

Proof. The first statement is a consequence of 3.13(v).
By (ii) of 3.13 we have Ci ∩ NG(〈i, a〉) = Qi : A with A ∼= Alt(4) and

CG(〈i, a〉) is a subgroup of index 2 in Qi : A. Let V := 〈i, a〉O2(A). Then
NG(V ) ∼= 24 : GL2(4) [4] and the normaliser of 〈i, a〉 in NG(V ) is isomorphic
to 22+2 : (3× Alt(4)). Hence NG(〈i, a〉) is transitive on 〈i, a〉# and NG(〈i, a〉)
induces the full symmetric group Sym(3) on 〈i, a〉.

We may assume that s is in CG(〈i, a〉). In Ns
∼= 3 : PGL2(9) we see that

NG(〈i, a〉)/O2(NG(〈i, a〉)) ∼= 3× Sym(3). As NG(〈i, a〉) does not normalize
V , we get (i).

In Ci we see using 3.13(iv) that CG(〈i, b〉) is elementary abelian of order
16. As CG(〈i, b〉) is of index 2 in Ci ∩ NG(〈i, b〉), there is an involution in
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NG(〈i, b〉) ∩ Ci interchanging ib and b. As i ∈ Cb \ Qb, we can interchange
the roles of i and b and it follows that NG(〈i, b〉) induces the full symmetric
group on 〈i, b〉, which proves assertion (ii). 2

Corollary 3.17 Let U = 〈i, a〉 be a subgroup as in (i) of 3.16. Then the
3-elements in NG(U)′ are not conjugate to s.

Proof. The center of NG(U)/O2(U) acts trivially on U and is therefore
conjugate to 〈s〉. Hence we may assume that it is 〈s〉. The normalizer of U
in Ns is isomorphic to 3× Sym(4). Therefore, all the 3-elements in NG(U)′

are in N∞
s and Lemma 3.3 (ii) and (iii) yield the assertion. 2

4 The order of a group of J3-type.

We continue to use the notation introduced so far. So, let G be a group of
J3-type and let s be an element of 3 in the centralizer of an involution. Set

H := Ns.

So H ∼= 3 : PGL2(9) and |H| = 24 · 33 · 5. Thus we have

f = (|G : Ci|/|G : H|)−1 = (|H|/|Ci|)−1 = (24·33·5)/(27·3·5)−1 = 1/8 > 0.

We need one further piece of notation. For u an involution in In let S(u)
be the set of elements of H inverted by u and set

H(u) := 〈S(u)〉.

Then H(u) is a subgroup of H which is normalized by L := H(u) : 〈u〉. As
explained in Section 2 the number of involutions in Hu equals the size of
S(u). Notice also, that H(u) ≤ H ∩ Hu, as xu = x−1 ∈ Hu ∩ H for all
x ∈ S(u).

4.1 The subgroups H(u).

Next we determine the subgroups H(u). We show:

(A) If In 6= ∅, then n ∈ {1, 2, 3, 4, 6, 9}.
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(B) If |Hu ∩ I| = n, then H(u) is as listed in Table 1 at the beginning of
the next subsection. Distinct rows of Table 1 correspond to distinct
conjugacy classes H(u)H . The normalizers of H(u) in H and in G as
well as the length of the conjugacy class |H(u)H | which is the index
of NH(H(u)) in H are as listed in Table 1.

To prove this it is helpful to know the properties (?) and (??) which are
listed below. Notice, that (?) follows from the fact that H = NG(O3(H)),
see Lemma 3.2. Assume that there is a subgroup S in H(u) which is of
order 5. Then the Frattini Argument yields L = H(u)NL(S), which is not
possible as NG(S) is contained in H by Lemma 3.1. This shows (??).

(?) O3(H) is not a characteristic subgroup of H(u).

(??) The order of H(u) is not divisible by 5.

Now we go through the list of subgroups of H. Recall that L is the
extension of H(u) by u, so H(u) is a subgroup of L of index 2.

Lemma 4.1 H(u) is not isomorphic to one of the following groups:

32 : 2, 32 : 4, 32 : 8, Sym(3), ZZ 4, ZZ 8, Alt(4), Sym(4), D16

and |H(u)| is not divisible by 5.

Proof. Assume that H(u) ∼= 32 : 2, 32 : 4 or 32 : 8. Then L contains an
elementary abelian subgroup 〈a, u〉 of order 4 and O3(H(u)) is generated by
the centralizers of a, u and au in O3(H(u)) in contradiction to 3.3(iii).

Assume H(u) ∼= Sym(3). Then L again contains an elementary abelian
subgroup of order 4 which yields that O3(H(u)) is conjugate to 〈s〉. As
H(u) ∼= Sym(3), in fact O3(H(u)) = 〈s〉 in contradiction to (?).

Further H(u) 6∼= Sym(4), as there is no subgroup in G isomorphic to
2× Sym(4).

As elements of order 8 are self-centralizing, H(u) is neither isomorphic to
D16 nor to ZZ 8.

Assume H(u) ∼= Alt(4). Then NH(O2(H(u))) ∼= 3 × Sym(4). By Corol-
lary 3.17 every element t of order 3 of H(u) which is inverted by u is an
element of H∞. Therefore, Nt ∩NG(O2(H(u))) ∼= 3× Sym(3) is contained
in H. Thus u is in H, which is a contradiction to our assumption.
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Notice, all the elements of order 4 in H are contained in H ′ and in particu-
lar in a subgroup isomorphic to D8 which is not lying in H ′. Assume that
H(u) is cyclic of order 4. Then u inverts every element in H(u). Moreover
NH(H(u)) ∼= 3·D16 and NG(H(u)) ∼= (D8∗Q8) : Sym(3) by 3.15(i). Let i be
the involution in H(u). Then, as NH(H(u))∩Qi

∼= D8, Lemma 3.15(ii) im-
plies that u is an involution in Ci\Qi. By 3.15 u normalizes NH(H(u))∩Qi.
It then follows that u commutes with an involution in (Ci∩NH(H(u)))\{i}.
Hence |H(u) ∩ I| ≥ 6 and H(u) is not cyclic of order 4. 2

Lemma 4.2 If H(u) is a subgroup of H∞ ∼= Alt(6), then H(u) is neither
cyclic nor a dihedral group of order 8.

Proof. If H(u) is cyclic, then H(u) is of order 2 or 3 by Lemma 4.1 and
(??).

Assume |H(u)| = 2 and let H(u) = 〈i〉. Then CH(i) ∼= (3 × D8) : 2 ∼=
D8 : Sym(3).

If u ∈ Qi, then, as Qi
∼= D8∗Q8, the involution u centralizes an involution

in CH(i) \Qi in contradiction to our assumption.
Thus u 6∈ Qi. Let Ti be a complement to Qi in Ci and let u = cy with

c in Qi and y in Ti. There are five Sylow 2-subgroups in Ti. Two of them
centralize an elementary abelian subgroup of order 4 in H ∩ Qi. If y is
contained in one of these two, then c is inside H ∩Qi or an element of order
4 which centralizes CQi(u). Thus, in this case H(u) is at least of order 4.
Therefore, y is in one of the remaining three Sylow 2-subgroups in Ti. In
each of those there is an involution j of H ∩Ti, which yields that u is not in
Ti. But then there is an element x ∈ H ∩ Qi such that x and u commute.
Again we get that |H(u)| ≥ 4 in contradiction to our assumption. Thus
H(u) is not of order 2.

If H(u) is of order 3, then every involution which inverts H(u), also
inverts

CH′(H(u)) ∼= 32.

So in fact H(u) is elementary abelian of order 9, which is a contradiction.
Finally assume H(u) ∼= D8. The fact that H(u) ≤ H∞ yields that

H(u) = H ∩ Qi, where i is the central involution in H(u). Therefore,
CG(H(u)) ∼= Q8 : ZZ 3 and NG(H(u)) ∼= (D8∗Q8) : Sym(3). If [H(u), u] = 1,
then u is in Qi and therefore u = i ∈ H, a contradiction. Thus [H(u), u] 6= 1.
Therefore, as H(u) is generated by the elements in H which are inverted
by u, the involution u inverts every element of order 4 in H(u) and fixes a
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non-central involution in H(u). But there does not exist such an involution
in Ci \Qi, see 3.13(ii), nor in Qi, see 3.15(ii). This shows the statement of
the lemma. 2

Lemma 4.3 If H(u) is a subgroup of H∞ ∼= Alt(6), then H(u) ∼= 22, 32

and NK(H(u)) and n are as listed in Table 1 for K ∈ {G, H}.

Proof. By Lemmas 4.1, 4.2 and by the list of subgroups of Alt(6), see [10,
II (8.27)], H(u) is elementary abelian of order 4 or 9.

Let U = 〈i, a〉 ∼= 22 be a subgroup of H∞. Then NH(U) ∼= 3× Sym(4)
and by 3.16 NG(U) ' 22+4 : (3 × Sym(3)). Moreover, C := CQi(U) ∼=
ZZ 2 ×Q8. Let v be an element of order 4 in C. Then there is an involution
b in CTi(U) which inverts v. Set u = vb. Then u is an involution and, as by
the last paragraph H(u) is of order 4 or 9, it follows that H(u) = U . As u
inverts every element in U , in this case we have n = 4.

Now let U ∼= 32 be a subgroup of H∞. Then NH(U) ∼= (3×32) : ZZ 8 and
NG(U) is of order 3i · 8 with i ∈ {5, 7, 9} by Lemma 3.10. Hence we find an
involution u in NG(U) which maps s onto some element in (〈s〉 × U) \ 〈s〉.
This involution inverts every element in U and therefore H(u) = U and
n = 9. 2

Lemma 4.4 If H(u) is not a subgroup of H∞ ∼= Alt(6), then H(u) is
isomorphic to one of the following groups:

ZZ 2,ZZ 3, 22, D8.

Proof. Let M be a maximal subgroup of H which contains H(u). Then M
is isomorphic to one of the following groups:

3 : D20, (3× 32) : 8, 3 : D16, 3× Alt(6) or PGL2(9).

By (??) H(u) 6∼= PGL2(9).
Moreover, notice the following: In Ns

∼= 3 : PGL2(9) there is no involu-
tion which at the same time inverts s and a 3-element in N∞

s . Therefore,
|H(u)| 6= 9, 27.

Now we consider the maximal subgroups M case by case.
If M ∼= PGL2(9), then H(u) is also contained in one of the other maximal

subgroups of H.
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Assume M ∼= 3× Alt(6). Then because of (?) and (??) H(u) ∼= ZZ 3 or
32. As Ns

∼= 3 : PGL2(q), the latter case is not possible.
Next assume M ∼= 3 : D16. Then (?) implies that O3(H) is not the Sylow

3-subgroup of H(u) and that therefore H(u) is isomorphic to ZZ 2, 22 or D8,
see Lemma 4.1.

If M ∼= 3 : D20, then (?) and (??) imply H(u) ∼= ZZ 2 or 22.
Finally assume M ∼= (3× 32) : 8. by the second paragraph |H(u)| 6= 27.

Then (?) yields |H(u)| = 3 or 9. As |H(u)| = 9 is not possible, see above,
we get |H(u)| = 3. This shows the assertion. 2

Lemma 4.5 If H(u) is not a subgroup of H∞, then H(u), NK(H(u)) and
n are as listed in Table 1 for K ∈ {G, H}.

Proof. By Lemma 4.4 we need only to study the subgroups U of H \H∞

which are isomorphic to ZZ 2,ZZ 3, 22 or D8. Notice, that in all these cases
there is only one conjugacy class of subgroups of the respective type. One
by one we consider these four classes.

|H(u)| = 2. Let U = 〈b〉 with b an outer involution of H. Then NH(U) ∼=
D20

∼= (2 × 5) : 2 and NG(U) = Cb. Notice, that there are five involutions
in NH(U) which are contained in H ′, but not in Qb = O2(Cb). Denote one
of those by i.

We next search for an involution u ∈ Cb which does not centralize any
involution in NH(U) \ {b}. There are

|Cb : Ci ∩ Cb| = 27 · 3 · 5/24 = 23 · 3 · 5

involutions in Cb \ Qb, see 3.13(iii). On the other hand the number of
involutions in Cb \Qb which centralize an involution in NH(U) \ {b} equals

22 · 3 · 5,

as there is precisely one involution in NH(U) from every Sylow 2-subgroup
of

Cb/Qb
∼= Alt(5)

and as each of these involutions centralizes precisely 4 elements in Qb. Thus
we are able to choose an involution u in Cb which does not centralize any
involution in NH(U) \ {b}.

As b is an outer involution of H, it is not a square in H. Therefore, by
our choice of u, U is a Sylow 2-subgroup of H(u). Thus, it follows with 4.4
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that H(u) = U . Here, u inverts two elements in H(u), so n = 2.

|H(u)| = 3. Next let U be a subgroup of H \H∞ of order 3. Then U = 〈st〉
with t ∈ H∞ an element of order 3 and NH(U) is a Sylow 3-subgroup of
H. By 3.3 U is conjugate to O3(H) = 〈s〉. Therefore NG(U) = Nst

∼=
3 : PGL2(9). Let u be an involution in Nst which inverts st. Then by
Lemma 4.4 U = H(u). Clearly, u inverts the 3-elements in H(u), so n = 3.

|H(u)| = 4. Now let U be a subgroup of H \H ′ which is elementary abelian
of order 4. Then U = 〈i, b〉 with i in H∞ and b 6∈ H∞, which implies that b
is not in Qi. By 3.13(v) we may assume that b is contained in Ti. Further
NH(U) ∼= D8 and N := NG(U) ' 24 : Sym(3), see 3.16.

Let u be an involution in O2(N)\U which is contained in Ti. Then clearly,
U is a subgroup of H(u). Now Lemma 4.4 implies that either H(u) = U or
H(u) ∼= D8. As elements of order 4 of H are contained in H ′, the latter case
would yield a contradiction to 3.15(i). This shows that U = H(u). In that
case u centralizes and inverts every element in H(u), so n = 4.

H(u) ∼= D8. Finally let U be a subgroup of H \ H ′ isomorphic to D8.
Then NH(U) ∼= D16, NG(U) ' (Q8 × 2) : 2, CH(U) = Z(U) and CG(U)
is elementary abelian of order 4. Further notice, if H(u) ∼= D8, then ei-
ther [H(u), u] = 1 or u inverts every element of order 4 and centralizes an
elementary abelian subgroup of order 4 in H(u).

Let u be an involution in CG(U) \ Z(U). Then U ≤ H(u) and, by 4.4
we have U = H(u). In that case, u inverts six elements in H(u), so n = 6.

Now let u be an involution in NG(U) \ U which inverts the elements
of order 4 and centralizes an elementary abelian subgroup of order 4 in U .
Then u 6∈ H and U ≤ H(u). So by 4.4 U = H(u). Here, u inverts six
elements again, so n = 6. 2

4.2 The order of a group of J3-type

Next we calculate In by counting all the involutions outside H which invert
precisely n elements in H. According to Table 1, n is in {9, 6, 4, 3, 2, 1}.
We start with n = 9 and end at n = 1.

n = 9. Then H(u) ∼= 32 and u inverts every element in H(u). If v is an
involution in NG(H(u))\NH(H(u)), then Table 1 implies that H(v) = H(u).
Hence
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Figure 1: Table 1.

n H(u) NH(H(u)) NG(H(u)) |H(u)H |

9 32 ≤ H′ 33 : 8 [3i] : 8, i ∈ {5, 7, 9} 2 · 5

6 D8 6≤ H′ D16 (Q8 × 2) : 2 33 · 5

4 22, H(u) ≤ H′ 3× Sym(4) 22+4 : (3× Sym(3)) 2 · 3 · 5

4 22, H(u) 6≤ H′ D8 24 : Sym(3) 2 · 33 · 5

3 3, H(u) 6≤ H∞ 33 3 : PGL2(9) 24 · 5

2 2, H(u) 6≤ H′ D20 21+4 : Alt(5) 22 · 33

|I9| = (|{involutions in NG(H(u))}| − |{involutions in NH(H(u))}|) ·
|{subgroups H(u) in H with |Hu ∩ I| = 9}| = (3i−1 − 32) · 2 · 5 with
i ∈ {5, 7, 9}, see 3.10. Hence we distinguish the three cases.

i = 5. |I9| = 32 · 24 · 5 = 720.

i = 7. |I9| = 32 · 25 · 52 = 7200.

i = 9. |I9| = 32 · 24 · 5 · 7 · 13 = 65520.

n = 6. Calculating the order of I6 we have to consider the subgroups H(u)
such that H(u) ∼= D8. Here again v ∈ NG(H(u)) \NH(H(u)) yields H(v) =
H(u) (see Table 1). We have to distinguish the two cases [H(u), u] = 1 and
[H(u), u] 6= 1.

I6(1). Let I6(1) consist of the elements u ∈ I6 with [H(u), u] = 1.
Then CG(H(u)) ∼= 22 and |CH(H(u))| = 2. Hence

|I6(1)| = 2 · 33 · 5.

I6(2). Let I6(2) consist of the elements u ∈ I6 with [H(u), u] 6= 1.
As u ∈ I6, the involution u induces an inner automorphism on H(u). Since
CG(H(u)) ∼= D8 : 2, there are four such involutions in H \H(u) so
|I6(2)| = 22 · 33 · 5. Thus

|I6| = |I6(1)|+ |I6(2)| = 2 · 34 · 5 = 810.

n = 4. To obtain I4 we have to consider H(u) to be an elementary abelian
group of order 4. Clearly, u centralizes H(u). We have to consider the two
cases H(u) ≤ H ′ and H(u) 6≤ H ′.
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I4(i). Let I4(i) consist of the elements u ∈ I4 with H(u) ≤ H ′.
We have CH(H(u)) ∼= 3× 22 and CG(H(u)) ∼= 22+4 : 3 ∼= (2×Q8) : Alt(4)
by Lemma 3.16. Hence there are 27 involutions in CG(H(u)). Since the
subgroups of H isomorphic to D8 considered in the case n = 6 intersect H ′ in
a cyclic group of order 4, the subgroups considered here are not contained in
such a subgroup isomorphic to D8. Hence Table 1 yields, if v is an involution
in CG(H(u)) \H(u), then H(v) = H(u). Therefore,

|I4(i)| = (27− 3) · 2 · 3 · 5 = 24 · 32 · 5.

I4(o). Let I4(o) consist of the elements u ∈ I4 with H(u) 6≤ H ′.
Then CH(H(u)) and CG(H(u)) are elementary abelian of order 22 and 24,
respectively. Every H(u) lies in exactly one group K ∼= D8 as considered in
case n = 6. There are two conjugates of H(u) under of the action of H in
K. Notice, that every involution in I6(1) centralizes these two conjugates of
H(u) and every involution in I6(2) centralizes exactly one subgroup H(u).
Hence

I4(o) = (|{involutions in CG(H(u))}| − |{involutions in CH(H(u))}|) ·
|{subgroups H(u) in H \ H ′ with |Hu ∩ I| = 4}| − 2I6(1) − I6(2) = (15 −
3) · 2 · 33 · 5− 23 · 33 · 5 = 24 · 33 · 5.

Thus
|I4| = |I4(i)|+ |I4(o)| = 26 · 32 · 5 = 2880.

n = 3. Next, we calculate I3, so H(u) is cyclic of order 3 and not contained
in H ′. By Table 1 NG(H(u)) ∼= 3 : PGL2(9) and NH(H(u)) is elementary
abelian of order 33 which implies
|I3| = 108 · 24 · 5 = 26 · 33 · 5 = 8640.

n = 2. Here H(u) is a cyclic group of order 2 which is not contained in H ′.
Every involution in I6(1) (resp. I6(2) or I4(o)) centralizes 4 (resp. 2 or 2)
conjugates of H(u) in H. Hence, as there are 1+10+120 = 131 involutions
in CG(H(u))

|I2| = (131− 11) · 22 · 33 − 4|I6(1)| − 2|I6(2)| − 2|I4(o)| = 24 · 34 · 5 = 6480.

It remains to determine b1. We first calculate the number c. Recall that
c is the number of u in I1 such that CH(u) 6= 1. If CH(u) 6= 1, but u is
in I1, then by 3.1 CH(u) is cyclic of order 3; moreover C := CG(CH(u)) ∼=
3× Alt(6) and CH(CH(u)) ∼= 33. There are 9 involutions in C which invert
CH(CH(u))∩H∞. Clearly, these 9 involutions are contained in I9. Moreover,
CH(u) is contained in three subgroups isomorphic to Alt(4) in H. Every
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such Alt(4) is centralized by an elementary abelian group of order 4. Hence
there are 9 further involutions in C which are contained in I4. This yields
c = (45− 18) · 80 = 24 · 33 · 5 = 2160. Moreover,

|I ∩H| = 3 · 15 + (3 · 24 · 32 · 5)/20 = 3(15 + 36) = 32 · 17.

To determine b1 we use the Lemma of Bender. Up to now we calculated:

f = 1/8, b2 = 23 · 34 · 5 = 3240, b3 = 26 · 32 · 5 = 2880, b4 = 24 · 32 · 5 = 720,

b6 = 33 · 5 = 135 and b9 = 24 · 5 = 80.

Then (ii) and (iii) of Lemma 2.1 imply that

c+m|H| = b1 < f−1(|I∩H|+b2+2b3+3b4+5b6+8b9)−1−b2−b3−b4−b6−b9

= 8|I ∩H|+ 7 · b2 + 15 · b3 + 23 · b4 + 39 · b6 + 63 · b9 − 1.

Thus

24 ·33 ·5(1+m) < 8·(32 ·17)+7·(23 ·34 ·5)+15·(26 ·32 ·5)+23·(24 ·32 ·5)+

39 · (33 · 5) + 63 · (x)− 1,

where
x = 2 · 5 or 25 · 52 or 2 · 5 · 7 · 13.

Hence
1 + m <

17
2 · 3 · 5

+
7 · 3
2

+ 22 · 5 +
23
3

+
39
24

+
y

3
− 1

c
,

where
y = 7 or 2 · 5 · 7 or 72 · 13

and m is at most 43, 67 or 255, respectively.
As 17 divides the order of G, but not the order of the centralizer of an

involution, it has to divide |I|. Moreover, as 35 divides the order of G and
every Sylow 3-subgroup of the centralizer of an involution is of order 3, it
follows that 34 divides |I|. Therefore the following equation is helpful to
determine b1, respectively m:

|I| − b1 = |H ∩ I|+ |I2|+ |I3|+ |I4|+ |I6|+ |I9|

In all cases, |I| − b1 ≡ 0 (34), which implies that b1 = 24 · 33 · 5 · (1 + m)
is divisibe by 34 and m + 1 by 3. Let us consider the three different cases:
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|G|3 = 37.
Here x = 25 · 52, m ≤ 67 and |I| is divisible by 36. Further, |I| − b1 ≡ 0 (17)
which yields m ≡ 16 (17). As m ≡ 2 (3) and because of m ≤ 67, in
fact m = 50. Thus b1 = 24 · 33 · 5 · 51 ≡ 81 (36) which yields that
|I| − b1 ≡ 0− 81 ≡ −81 (36) in contradiction to |I| − b1 ≡ 648 (36).

|G|3 = 39.
Here x = 2 · 5 · 7 · 13, m ≤ 255 and |I| is divisible by 38. Further, |I| − b1 ≡
10 (17) and therefore m ≡ 6 (17). Hence m ≡ 23 (51) and, as m ≤ 255, we
get m = 23 + k · 51 with k in {1, · · · , 5}. Using the numbers we determined
we calculate that |I| − b1 ≡ 5751 (38), but this does not hold for any k in
{1, · · · , 5}.

Thus, we get that

|G|3 = 35.
Then x = 2 · 5 and m ≤ 43. As |H| = c ≡ 1 (17) and |I| − b1 ≡ 14 (17) it
follows that m ≡ 2 (17). As 1 + m is divisible by 3 we get m ≡ 2 (51). Now
m ≤ 43 yields m = 2. Hence |I| = 34 · 17 · 19 and |G| = 27 · 35 · 5 · 17 · 19,
which proves the theorem.

5 The 3, 17 and 19-Structure of G

Corollary 5.1 Let Q and K be as introduced in 3.4.

(i) Q is a Sylow 3-subgroup of G.

(ii) NG(Z(Q)) = NG(Q) = Q : K.

(iii) NG(t) = Q : 〈x4〉 with 〈x〉 = K for all t in Z(Q)#.

Proof. (i) is a consequence of the main Theorem, (ii) follows from 3.4 and
3.10.

It remains to show (iii). Because of the order of the centralizer of an
involution and the order of the normalizer of a Sylow 5-subgroup, CG(t) is
a {3, 17, 19}-group for every t ∈ Z(Q)#. Further, Q is a Sylow 3-subgroup
of CG(t) and (ii) implies that Q is self-normalizing in CG(t). Sylow‘s The-
orem yields that |CG(t)| = 35 or 35 · 19. Assume the latter. Then the
Theorem of Sylow forces X := O19(CG(t)) to be a Sylow 19-subgroup of G.
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As NG(X)/CG(X) is a cyclic group of order 3i · 2j with i ∈ {0, 1, 2} and
j ∈ {0, 1}, it follows that |G : NG(X)| = 2a · 5 · 17b with a in {6, 7} and b
in {0, 1}, which contradicts Sylow‘s Theorem. Thus |CG(t)| = 35 and (iii)
holds. 2

According to Theorem 1 every Sylow 19-subgroup of G is of order 19.
Next we determine the structure of the centralizer and the normalizer of a
Sylow 19-subgroup of G.

Corollary 5.2 Let X be a Sylow 19-subgroup of G. Then CG(X) = X and
NG(X)/X is cyclic of order 9.

Proof. As X is of order 19, NG(X)/CG(X) is a cyclic group of order 3i · 2j

with i ∈ {0, 1, 2} and j ∈ {0, 1}. Moreover, the order of an involution
centralizer and 3.1 yield that |CG(X)/X| is not divisible by 2 or 5. Assume
that it is divisible by 3.

Then, applying 1 and 3.2 we see that there is an element u of order 3 in
CG(X) whose centralizer is a {3, 17, 19}-group. Assume that 17 divides the
centralizer. Then by Burnside Normal p-complement Theorem CG(u) has a
17-complement [1, 39.1].

So, in any case CG(u) has a subgroup C which contains a subgroup of
order 19 and the center T of a Sylow 3-subgroup of G. More precisely,
|C| = 3a · 19 with a in {3, 4}. Then X is normal in C which contradicts
5.1(iii). Thus |CG(X)/X| ∈ {1, 17} and |G : NG(X)| = 2i · 3j · 5 · 17k with
i ∈ {6, 7}, j ∈ {3, 4, 5} and k ∈ {0, 1}. Sylow‘s Theorem yields the assertion.

2

Corollary 5.3 Let X be a Sylow 17-subgroup of G. Then CG(X) = X and
NG(X)/X is cyclic of order 8.

Proof. Because of the local p-structure of G for p 6= 17 a prime dividing |G|,
we have CG(X) = X. The fact that NG(X)/CG(X) is a cyclic group of or-
der 2i for some i ∈ {2, 3, 4} and the Theorem of Sylow yield the assertion. 2

Corollary 5.4 Q/Z(Q) is extraspecial of order 33.

Proof. Assume that Q/Z(Q) is not extraspecial. Then it is abelian. Let s
be an element of order 3 in Q whose centralizer has even order. By 3.4(iv)
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and as, sZ(Q) is not a third power, see the proof of 3.10, it follows that
Q/Z(Q) is elementary abelian. Let i be an involution in CG(s) ∩ NG(Q).
Then

Q/Z(Q) = [Q/Z(Q), i]⊕ CQ/Z(Q)(i).

Let U be the preimage of [Q/Z(Q), i] in Q. Then Q = U : 〈s〉. As there
are [NG(Q) : (Ci ∩ NG(Q))] = 34 involutions in NG(Q), there are at least
as many elements of order 3 in Q \ U . This implies that U is elementary
abelian. Therefore Q is of exponent 3 in contradiction to 5.2. 2
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