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Abstract

The proof of the existence and of the uniqueness of groups of J3-type by G. Hig-
man and J. McKay is based on the fact that a group of J3-type is a faithful com-
pletion of an amalgam of J3-type, see [HiMc]. In this paper here, we provide a
reference for that fact. The proofs in this paper are elementary and we do not use
any character theory.

1 Introduction.

A finite simple group G is said to be of J3-type provided that all involutions of G are
conjugate and the centralizer of an involution is a split extension of an extraspecial
group of order 32 by Alt(5). Janko presented the inital evidence of a group of J3-type
[Ja], G. Higman and J. McKay showed the existence and the uniqueness of groups of
J3-type [HiMc]. Their proof is computer-based and uses, moreover, the fact that a
group of J3-type is a faithful completion of an amalgam of J3-type.

An amalgam of rank n is a family

A = (αJ,K : PJ → PK | ∅ 6= K ⊂ J ⊆ I),

where I = {1, . . . , n}, of group homomorphisms such that for all L ⊂ K ⊂ J ⊆ I

αJ,KαK,L = αJ,L.

To shorten notation we will simply write A = (PJ | ∅ 6= J ⊆ I). A completion
β : A → G for A is a family β = (βJ : PJ → G) of group homomorphisms such that
G = 〈P βJ

J | J ⊂ I〉 and for all K ⊂ J ⊂ I it holds αJ,KβK = βJ . A completion is
said to be faithful if each βJ is an injection and a faithful completion γ : A → G(A) is
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universal if for every completion β : A → G there is a group homomorphism ϕ of G(A)
onto G such that γJϕ = βJ for all J ⊆ I. These definitions are taken from [Asch3]. In
the following we omit brackets in G{i,j} by writing Gij .

An amalgam of J3-type is an amalgam A = {G1, G2, G3, G12, G13, G23, G123} of rank
3 satisfying the following conditions, where B := G123.

(i) G1
∼= L2(16) : 2, G2

∼= 24 : GL2(4), G3
∼= 3 : PGL2(9);

(ii) G12
∼= 24 : (3×D10), G23

∼= GL2(4) ∼= 3× Alt(5), G13
∼= Sym(3)×D10;

(iii) B ∼= 3×D10,

It was shown by J. G. Thompson that a group of J3-type has a subgroup isomorphic
to L2(16) : 2, but this result was never published.

Meanwhile, there are also existence proofs of a group of J3-type which are not
computer dependant [Wei, Asch2, Ba1] and there is a computer-free uniqueness proof
due to D. Frohardt [Fro].

In this paper we provide a reference for the fact that a group of J3-type is a faithful
completion of an amalgam of J3-type. We show

Theorem 1 Let G be a group of J3-type. Then G is a completion of an amalgam of
J3-type.

The hope is that we can use Theorem 1 to give a more simple uniqueness proof
for groups of J3-type because of the following facts. A completion of an amalgam of
J3-type acts flag-transitively on a Buekenhout geometry, namely on a dual extended
quadrangle DEQ (see [Ba2]) which is a geometry consisting of points, lines and quads
such that

(res(p)) For a point p the lines and the quads which are incident with p form a complete
graph whose vertices are the lines and whose edges are the quads;

(res(l)) Any point on a line l is incident to any quad which is incident with l;

(res(q)) For a quad q the points and the lines which are incident to q form a generalized
quadrangle.

See [Bue] or [Pa] for an introduction to diagram geometries.
Let A be an amalgam of J3-type and let G be a faithful completion of A. Then

the coset geometry Γ = Γ(G, (G1, G2, G3)), a rank three geometry consisting of points,
lines and quads, which are the cosets of Gi for i = 1, 2, 3 in G, respectively, such that
two elements of the geometry are incident if and only if the respective cosets intersect
non-trivially, is a DEQ and G acts flag-transitively on Γ. In [Ba1] it was shown that
there is up to isomorphism only one amalgam of J3-type. This shows that there is at
most one universal completion of an amalgam of J3-type. By Lemma 2.2 of [Ba1] the
latter group is finite. Moreover, in the same paper a DEQ, Γ̂ has been constructed
which admits a group of J3-type as flag-transitive group of automorphisms.

The two latter facts and Theorem 1 imply the following.
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Corollary 1.1 Let G be a group of J3-type. Then G acts flag-transitively on a DEQ
which is a quotient of the universal cover of Γ̂. In particular, G is a quotient of the
universal completion of A.

To show that there is only one group of J3-type up to isomorphism it remains to
determine the universal cover of the geometry Γ̂ and to study their quotients. Until
now, this has been done only with the aid of a computer, see for instance [Ba2].

Theorem 2 [Ba2] The universal cover of Γ̂ is a triple cover of Γ̂.

The previous theorem implies that the completion of an amalgam of J3-type is either
a group of J3-type or a triple cover of a groups of J3-type and that there is exactly one
group of J3-type up to isomorphism.

The proof of Theorem 1 is almost self-contained. We only quote some standard
group theory and the result of Bender which states that a group whose involution
centralizers are dihedral groups of order 8 is of order either 8 · 3 · 7 or 8 · 9 · 5, see
[Be]. His proof is very short and elementary. We cite his result to construct the
third parabolic subgroup G3. The first parabolic subgroup G1 is constructed using the
amalgam method while we choose G2 and G3 as normalizers of an elementary abelian
subgroup and a cyclic subgroup of order 16 and 3, respectively.

Contrary to Janko [Ja] we do not use any character theory.

Acknowledgements. I would like to thank A.A. Ivanov as well as G. Stroth for
fruitful discussions, C. Parker who pointed out a gap in a previous draft of the paper
and last not least U. Meierfrankenfeld for carefully reading the paper.

2 Proof of Theorem 1.

Let G be a group of J3-type. Then all the involutions in G are conjugate and the
centralizer of an involution is a split extension of an extraspecial group of order 32 by
Alt(5).

Notation. For g ∈ G let Cg = CG(g) and Ng = NG(〈g〉). For i ∈ G an involution, set
Qi = O2(Ci) and let Ti be a complement to Qi in Ci.

So |Qi| = 32 and Ti
∼= Alt(5), for every involution i in G.

Lemma 2.1 Assume that i ∈ G is an involution.

(i) CCi(Qi) ≤ Qi and Qi
∼= D8 ∗Q8.

(ii) Qi/〈i〉 is the even part of the permutation module for Ti
∼= Alt(5).

(iii) Qi/〈i〉 is the O−
4 (2)-module for Ti

∼= O−
4 (2) and Ti is transitive on the singular

subspaces of Qi/〈i〉.
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(iv) Qi/〈i〉 is a projective module for Ti.

(v) Let s be an element of order 3 in Ti. Then Cs ∩Qi
∼= D8.

Proof. Assume CCi(Qi) 6≤ Qi. Then, as CCi(Qi) is normal in Ci, we have CCi(Qi)Qi =
Ci. Therefore, there is a complement T to CCi(Qi) ∩ Qi = 〈i〉 in CCi(Qi) which is
isomorphic to Alt(5). Let j be an involution in T . Then Ci and Cj intersect in a
Sylow 2-subgroup S. This is not possible, since i is a commutator in S, but j is not,
which contradicts the fact that all involutions are conjugate in G. Hence CCi(Qi) ≤ Qi.

As Qi is an extraspecial group, there is a non-degenerate quadratic form on Qi

which is left invariant by Ti. The fact that Ti
∼= O−

4 (2) implies that Qi is of −-type,
that is Qi

∼= D8 ∗ Q8. This also shows the first part of (iii) and application of the
Lemma of Witt yields the second part of (iii).

It follows from (iii) that Ti has two orbits of size 5 and 10 on the set of involutions
in Qi/〈i〉. Hence, Qi/〈i〉 is not a GF (4)-module for Ti. It is an easy exercise that there
is exactly one module of order 24 which is not a GF (4)-module for Ti such that Ti has
two orbits of size 5 and 10 on the set of involutions of the module. As the even part of
the permutation module for Ti

∼= Alt(5) satisfies these conditions, (ii) holds.
According to Theorem 2.8.7 of [GLS] Qi/〈i〉 is a projective module for Ti as stated

in (iv).
Let s be an element of order 3 in Ti. Then s centralizes a subgroup U of order 4 in

the even part of the permutation module Qi/〈i〉. The preimages of two elements of U
are of order 4 in Qi, which implies Cs ∩Qi

∼= D8, statement (v). 2

Lemma 2.2 G acts transitively on the set

P := {(j, W ) | j ∈ G an involution, j ∈ W, W elementary abelian of order 24}.

Proof. Let U ≤ Qi, with i an involution, be an elementary abelian subgroup of maxi-
mal rank. By Lemma 2.1 U is of order 4, the involution i is in U and NTi(U) ∼= Alt(4),
as U/Z(Qi) is a singular point in Qi/Z(Qi). Set V = UO2(NTi(U)).

We claim that V is elementary abelian. As every element of order 3 of NTi(U) acts
trivially in U also O2(NTi(U)) acts trivially on U . Thus V is elementary abelian of
order 16.

Now let W be some elementary abelian subgroup of order 16 in Ci. Then Qi∩W ∼=
22 and (Qi ∩W )/〈i〉 is a singular point.

We claim that all the complements to Qi ∩ W in W are conjugate under C =
CCi(Qi ∩W ). We have CQi(Qi ∩W ) ∼= Q8 × 2 and C ∼= (Q8 × 2) : Alt(4). We count
the elementary abelian subgroups of Z \ Qi of order 4 where Z = O2(C). Let f be
an involution in Z ∩ Ti. Then we see in the permutation module Qi/〈i〉 for Ti that f
inverts two subgroups 〈c1〉, 〈c2〉 of order 4 in C ∩ Qi and that c1c2 ∈ Qi ∩W . Hence
there are two different elementary abelian subgroups of order 8 in C ∩ Qi : 〈f〉 and
therefore there are precisely four complements to C ∩ Qi in Z. It is |Z ∩ Ti| = 4 and
NZ(Z ∩ Ti) is of order 24, which implies, as |Z| = 26, that |(Z ∩ Ti)Z | = 4. Thus all
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the complements to C ∩ Qi in Z are conjugate. This yields that all the complements
to Qi ∩W in W are conjugate in Ci as asserted.

Therefore we may assume W = (Qi ∩ W )O2(NTi(Qi ∩ W )). Thus, since Ti acts
transitively on the singular points in Qi/〈i〉, the centralizer Ci acts transitively on the
elementary abelian subgroups of Ci of maximal rank. As in G there is only one class
of involutions, G acts transitively on P , as claimed. 2

In the following let V be a maximal elementary abelian subgroup of order 24.

Lemma 2.3 NG(V ) ∼= 24 : GL2(4).

Proof. By Lemma 2.2 NG(V ) acts transitively on V #. Let i be an involution in V ,
then NCi(V ) ∼= 24 : Alt(4). It can be observed in Ci that CG(V ) = V , so we obtain that
NCi(V ) induces on V a group of order 12 which is in fact the stabilizer of an element
of V # in NG(V ). Thus NG(V ) induces on V a group of order 12 · 15 which is transitive
on V #. This yields, as NG(V ) is a subgroup of 24 : SL4(2), that NG(V )/V ∼= GL2(4),
see [Hu, II (8.27)]. Let S be a Sylow 3-subgroup of O2,3(NG(V )). Then, as S acts fixed
point freely on V , the Frattini argument implies that the normalizer of S in NG(V ) is
a complement to V in NG(V ). Thus NG(V ) splits over V , which proves assertion. 2

Set
G2 := NG(V ).

Let L1 be a subgroup of NG(V ) isomorphic to 24 : (3 × D10) and let L12 be a
subgroup of L1 isomorphic to 3×D10. Let 〈s〉 = O3(L12). Next, we construct G3.

Lemma 2.4 Ns
∼= (3× Alt(6)) : 2 ∼= 3 : PGL2(9).

Proof. The element s is centralized by an involution i. By 2.1 (vi) we have Cs ∩Ci
∼=

D8 × 3. As all the involutions of G are conjugate and as 〈s〉 is a Sylow-3-subgroup
of Ci, all the involutions in Cs are conjugate and the centralizer of every involution
in Cs = Cs/〈s〉 is a dihedral group of order 8. By the result of Bender [Be] we have
|Cs| = 3·8·7 or 8·9·5. As 5 divides |Cs|, the latter holds. Let R := CG2(s) ∼= 3× Alt(5),
then R is a subgroup of index 6 and it follows that Cs

∼= Alt(6). As there is an
involution in Ci which inverts s, it follows Ns/〈s〉 ∼= PGL2(9) or Sym(6). Assume the
latter. Then every Sylow 2-subgroup U of Ns is isomorphic to D8×2. Let Ci = Qi : Ti.
As Qi/〈i〉 is the even part of the permutation module for Ti

∼= Alt(5), see 2.1, we
see easily that U 6∼= D8 × 2. Thus Ns is an extension of 〈s〉 by a group isomorphic to
PGL2(9).

It remains to show that this extension splits. Let σ be an element of order 3 in
R′ ∼= Alt(5). Then NR(〈σ〉) = 〈s〉 × A with A ≤ R′ and A ∼= Sym(3) and there
is an involution which inverts σ and centralizes s. As there is no involution in Ns

which inverts s and centralizes an element of order 3, the subgroups 〈s〉 and 〈σ〉 are not
conjugate in G. As s · σ centralizes an involution in O2(G2), this element is conjugate
to s. If Ns were a non-split extension, then a Sylow 3-subgroup of Ns would be an
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extraspecial group of order 27 and the elements σ and s · σ would be conjugate in Cs.
Since this is not the case, we have proven the assertion of the lemma. 2

Recall the definition of L1 and L12 just before Lemma 2.4. Set

G3 := Ns.

The next result follows from Lemma 2.4.

Lemma 2.5 NG(L12) ∼= Sym(3)×D10.

Set
L2 := NG(L12).

Notice, that L12 = L1 ∩ L2.
Let f be an involution and w an element of order 5 in L12. Then f inverts 〈w〉 and

centralizes 〈s〉 and CL1(f) ∼= 22 : 3× 2 ∼= Alt(4)× 2 and CL2(f) ∼= Sym(3)× 2. Set

L3 := 〈CL1(f), CL2(f)〉.

Lemma 2.6 L3
∼= Alt(5)× 2.

Proof. We have NCf
(〈s〉) ∼= 3 : D16 and all the subgroups isomorphic to

CL2(f) ∼= Sym(3)× 2

are conjugate in NCf
(〈s〉). Therefore, we may choose a complement Tf

∼= Alt(5) to
Qf in Cf such that Tf ∩ CL2(f) ∼= Sym(3).

It remains to show that CL1(f) is contained in a conjugate of 〈f〉 × Tf under the
action of the normalizer of CL2(f) in Cf .

Assume CL1(f) ∩ Qf > 〈f〉. Then CL1(f) ∩ Qf is elementary abelian of order
8, which contradicts the fact that Qf

∼= D8 ∗ Q8 is of minus-type, see Lemma 2.1.
Therefore, we have CL1(f) ∩Qf = 〈f〉.

We claim that all the subgroups isomorphic to 2 × Alt(4) which intersect Qf

precisely in 〈f〉 and which contain s are conjugate in Cf ∩ Cs. Let X be such a
subgroup. Let U be the projection of XQf/Qf onto Tf and let u be an involution in
U . Then C̃ = CQf /〈f〉(u) = 22 with preimage K ∼= 4× 2 and u inverts every element of
order 4 of K. Let CK(s) = 〈f, b〉. Then b is an involution and notice, if 〈qu, (qu)s〉 ∼= 22

for some q ∈ K, then 〈bqu, (bqu)s〉 6∼= 22. This shows that there are precisely two
subgroups 〈qu, (qu)s〉 with q ∈ K which are elementary abelian of order 4. We have
CQf

(s) ∼= D8 and CQf
(〈s, u〉) ∼= 22 which implies that the two subgroups are conjugate

under CQf
(s). This proves the claim.

Hence, CL1(f) is conjugate to a subgroup of 〈f〉×Tf under the action of the normal-
izer of CL2(f) in Cf . So, we may assume that Tf is chosen such that CL1(f) ≤ 〈f〉×Tf .
This yields the assertion. 2
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Set
L = 〈L1, L2〉.

Then L3 ≤ L. Recall that

L1
∼= 24 : (3×D10), L2

∼= Sym(3)×D10 and L3
∼= 2× Alt(5).

To prove that L ∼= L2(16) : 2, we show the following.

Lemma 2.7 Let H be a group and H1,H2,H3 subgroups of H such that

(i) H = 〈H1,H2〉;
(ii) H1

∼= 24 : (3×D10), CH1(O2(H1)) = O2(H1); H2
∼= Sym(3)×D10; H3

∼= Alt(5)×
2; and

(iii) H1 ∩H2
∼= 3×D10; H1 ∩H3

∼= Alt(4)× 2; H2 ∩H3
∼= Sym(3)× 2.

Then H is a triply transitive permutation group of degree 17; in this action H1 is the
stabilizer of a point and |H| = 2 · 15 · 16 · 17.

Proof. Let 〈s〉 = O3(H2), 〈w〉 = O5(H2) and let b, i be involutions in H2 ∩H3 with

sb = s−1, wb = w and si = s, wi = w−1.

Let Θ be a graph whose vertices are the cosets of H1 in H and whose edges are the
sets {H1x,H1bx} with x ∈ H.

As by (i) H = 〈H1,H2〉 = 〈H1, b〉 this graph is connected.
We claim that Θ is a graph of valency 16. Clearly, b normalizes H1 ∩ H2. If b

would also normalize H1, then H = H1〈b〉 in contradiction to 2 × Alt(5) ∼= H3 ≤ H.
Since CH1(O2(H1)) = O2(H1), the intersection H1∩H2 is maximal in H1 which implies
H1 ∩Hb

1 = H1 ∩H2
∼= 3 ×D10 is the stabilizer of the two neighbours H1 and H1b in

H. Thus Θ is of valency |H1 : H1 ∩Hb
1| = 16, as claimed.

Therefore, it follows that O2(H1) acts regularly on Θ(H1). Moreover, as H1 ∩H2

is transitive on O2(H1)#, it follows that H1 acts doubly transitively on its neighbours
Θ(H1).

Next, we show that Θ is a complete graph. Notice, that the facts H3
∼= 2× Alt(5),

b ∈ (H2 ∩H3) \H1 and H1 ∩H3
∼= 2× Alt(4) yield that there is an h ∈ H1 ∩H3 such

that (bh)3 ∈ 〈i〉. Hence
H1bhb = H1hbh = H1bh

is a common neighbour of H1 and H1b. This shows that there is a triangle in Θ. Now,
the fact that H1 acts doubly transitively on Θ(H1) implies that every vertex in Θ(H1)
is a neighbour of H1b, so Θ is a complete graph.

Thus Θ consists of 17 vertices and |H : H1| = 17 which implies |H| = |H1| · 17 =
2 · 15 · 16 · 17 and H acts triply transitively on the cosets of H1 in H. 2
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Corollary 2.8 Let L be a faithful completion of an amalgam

B = {H1, H2,H3,H12,H13,H23},

where the groups H1,H2 and H3, Hij := Hi ∩Hj (1 ≤ i < j ≤ 3) are as described in
Lemma 2.7. Then |L| = 2 · 15 · 16 · 17. In particular, every faithful completion of such
an amalgam is already universal.

Notice that H = L2(16) : 2 possesses such an amalgam B: Let H1 be a point
stabilizer in H in its action of degree 17. Then H1

∼= 24 : (3 × D10). Let H2 be
the setwise stabilizer of two points such that H1 ∩ H2

∼= 3 × D10. Finally, let f be
an involution in H1 ∩ H2 and set H3 = CH(f). Then H1,H2,H3, Hij := Hi ∩ Hj

(1 ≤ i < j ≤ 3) form an amalgam as described in Lemma 2.7. By Lemma 2.8 a
completion of an amalgam of type B is a triply transitive permutation group of degree
17.

Lemma 2.9 The embeddings of H1
∼= 24 : (3 × D10) and of H2

∼= Sym(3) × D10 in
Sym(17) as the stabilizer of a point and of a 2-set containing that point, respectively,
are unique up to conjugation in Sym(17).

Proof. Let H1 be the stabilizer of 1. Then O2(H1) acts regularly on {2, . . . , 17} =: Ω.
Let K = Sym(Ω). Then NK(O2(H1)) ∼= 24 : L4(2). We may assume that O3(H1 ∩H2)
fixes 2 ∈ Ω. As O3(H1 ∩ H2) acts fixed point freely on O2(H1)#, it follows that
H1 ∩H2 = CH1(O3(H1 ∩H2)) is a subgroup of the stabilizer of 2 in H1 and therefore
H1 ∩H2 is the stabilizer of 2 in H1. Moreover, the action of H1 ∩H2 on Ω is uniqely
determined up to conjugation in NK(O2(H1)). Let a be an involution in H2 \H1 ∩H2

which centralizes O5(H1 ∩H2). Then a interchanges 1 and 2 and it fixes all 5 3-cycles
of O3(H1∩H2) on the set Ω\{2}. We may assume the action of a on one of the 3-cycles
which then determines uniquely the action of a on Ω. 2

The previous lemma yields that the amalgam B is uniquely determined. This shows
the following.

Corollary 2.10 The universal completion of B is isomorphic to L2(16) : 2. In partic-
ular, L is isomorphic to L2(16) : 2.

Set
G1 := L.

Lemma 2.11 A = {G1, G2, G3, G12, G13, G23, B} is an amalgam of type J3.

Proof. By construction A is of type J3. 2

Lemma 2.11 completes the proof of Theorem 1.
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