# A geometry for groups of $J_{3}$-type. * 

Barbara Baumeister<br>Institut für Mathematik II<br>Fachbereich Mathematik und Informatik, FU Berlin<br>D-14195 Berlin<br>Germany<br>baumeist@math.fu-berlin.de

7.3.2006


#### Abstract

The proof of the existence and of the uniqueness of groups of $J_{3}$-type by G. Higman and J. McKay is based on the fact that a group of $J_{3}$-type is a faithful completion of an amalgam of $J_{3}$-type, see [HiMc]. In this paper here, we provide a reference for that fact. The proofs in this paper are elementary and we do not use any character theory.


## 1 Introduction.

A finite simple group $G$ is said to be of $J_{3}$-type provided that all involutions of $G$ are conjugate and the centralizer of an involution is a split extension of an extraspecial group of order 32 by Alt(5). Janko presented the inital evidence of a group of $J_{3}$-type [Ja], G. Higman and J. McKay showed the existence and the uniqueness of groups of $J_{3}$-type [HiMc]. Their proof is computer-based and uses, moreover, the fact that a group of $J_{3}$-type is a faithful completion of an amalgam of $J_{3}$-type.

An amalgam of rank $n$ is a family

$$
\mathcal{A}=\left(\alpha_{J, K}: P_{J} \rightarrow P_{K} \mid \emptyset \neq K \subset J \subseteq I\right),
$$

where $I=\{1, \ldots, n\}$, of group homomorphisms such that for all $L \subset K \subset J \subseteq I$

$$
\alpha_{J, K} \alpha_{K, L}=\alpha_{J, L} .
$$

To shorten notation we will simply write $\mathcal{A}=\left(P_{J} \mid \emptyset \neq J \subseteq I\right)$. A completion $\beta: \mathcal{A} \rightarrow G$ for $\mathcal{A}$ is a family $\beta=\left(\beta_{J}: P_{J} \rightarrow G\right)$ of group homomorphisms such that $G=\left\langle P_{J}^{\beta_{J}} \mid J \subset I\right\rangle$ and for all $K \subset J \subset I$ it holds $\alpha_{J, K} \beta_{K}=\beta_{J}$. A completion is said to be faithful if each $\beta_{J}$ is an injection and a faithful completion $\gamma: \mathcal{A} \rightarrow G(\mathcal{A})$ is

[^0]universal if for every completion $\beta: \mathcal{A} \rightarrow G$ there is a group homomorphism $\varphi$ of $G(\mathcal{A})$ onto $G$ such that $\gamma_{J} \varphi=\beta_{J}$ for all $J \subseteq I$. These definitions are taken from [Asch3]. In the following we omit brackets in $G_{\{i, j\}}$ by writing $G_{i j}$.

An amalgam of $J_{3}$-type is an amalgam $\mathcal{A}=\left\{G_{1}, G_{2}, G_{3}, G_{12}, G_{13}, G_{23}, G_{123}\right\}$ of rank 3 satisfying the following conditions, where $B:=G_{123}$.
(i) $G_{1} \cong L_{2}(16): 2, G_{2} \cong 2^{4}: G L_{2}(4), G_{3} \cong 3: P G L_{2}(9)$;
(ii) $G_{12} \cong 2^{4}:\left(3 \times D_{10}\right), G_{23} \cong G L_{2}(4) \cong 3 \times \operatorname{Alt}(5), G_{13} \cong \operatorname{Sym}(3) \times D_{10}$;
(iii) $B \cong 3 \times D_{10}$,

It was shown by J. G. Thompson that a group of $J_{3}$-type has a subgroup isomorphic to $L_{2}(16): 2$, but this result was never published.

Meanwhile, there are also existence proofs of a group of $J_{3}$-type which are not computer dependant [Wei, Asch2, Ba1] and there is a computer-free uniqueness proof due to D. Frohardt [Fro].

In this paper we provide a reference for the fact that a group of $J_{3}$-type is a faithful completion of an amalgam of $J_{3}$-type. We show

Theorem 1 Let $G$ be a group of $J_{3}$-type. Then $G$ is a completion of an amalgam of $J_{3}$-type.

The hope is that we can use Theorem 1 to give a more simple uniqueness proof for groups of $J_{3}$-type because of the following facts. A completion of an amalgam of $J_{3}$-type acts flag-transitively on a Buekenhout geometry, namely on a dual extended quadrangle DEQ (see [Ba2]) which is a geometry consisting of points, lines and quads such that
$(\operatorname{res}(\mathrm{p}))$ For a point $p$ the lines and the quads which are incident with $p$ form a complete graph whose vertices are the lines and whose edges are the quads;
(res(l)) Any point on a line $l$ is incident to any quad which is incident with $l$;
(res(q)) For a quad $q$ the points and the lines which are incident to $q$ form a generalized quadrangle.

See [Bue] or [Pa] for an introduction to diagram geometries.
Let $\mathcal{A}$ be an amalgam of $J_{3}$-type and let $G$ be a faithful completion of $\mathcal{A}$. Then the coset geometry $\Gamma=\Gamma\left(G,\left(G_{1}, G_{2}, G_{3}\right)\right)$, a rank three geometry consisting of points, lines and quads, which are the cosets of $G_{i}$ for $i=1,2,3$ in $G$, respectively, such that two elements of the geometry are incident if and only if the respective cosets intersect non-trivially, is a DEQ and $G$ acts flag-transitively on $\Gamma$. In [Ba1] it was shown that there is up to isomorphism only one amalgam of $J_{3}$-type. This shows that there is at most one universal completion of an amalgam of $J_{3}$-type. By Lemma 2.2 of [Ba1] the latter group is finite. Moreover, in the same paper a DEQ, $\hat{\Gamma}$ has been constructed which admits a group of $J_{3}$-type as flag-transitive group of automorphisms.

The two latter facts and Theorem 1 imply the following.

Corollary 1.1 Let $G$ be a group of $J_{3}$-type. Then $G$ acts flag-transitively on a $D E Q$ which is a quotient of the universal cover of $\hat{\Gamma}$. In particular, $G$ is a quotient of the universal completion of $\mathcal{A}$.

To show that there is only one group of $J_{3}$-type up to isomorphism it remains to determine the universal cover of the geometry $\hat{\Gamma}$ and to study their quotients. Until now, this has been done only with the aid of a computer, see for instance [Ba2].

Theorem 2 [Ba2] The universal cover of $\hat{\Gamma}$ is a triple cover of $\hat{\Gamma}$.
The previous theorem implies that the completion of an amalgam of $J_{3}$-type is either a group of $J_{3}$-type or a triple cover of a groups of $J_{3}$-type and that there is exactly one group of $J_{3}$-type up to isomorphism.

The proof of Theorem 1 is almost self-contained. We only quote some standard group theory and the result of Bender which states that a group whose involution centralizers are dihedral groups of order 8 is of order either $8 \cdot 3 \cdot 7$ or $8 \cdot 9 \cdot 5$, see [Be]. His proof is very short and elementary. We cite his result to construct the third parabolic subgroup $G_{3}$. The first parabolic subgroup $G_{1}$ is constructed using the amalgam method while we choose $G_{2}$ and $G_{3}$ as normalizers of an elementary abelian subgroup and a cyclic subgroup of order 16 and 3 , respectively.

Contrary to Janko [Ja] we do not use any character theory.
Acknowledgements. I would like to thank A.A. Ivanov as well as G. Stroth for fruitful discussions, C. Parker who pointed out a gap in a previous draft of the paper and last not least U. Meierfrankenfeld for carefully reading the paper.

## 2 Proof of Theorem 1.

Let $G$ be a group of $J_{3}$-type. Then all the involutions in $G$ are conjugate and the centralizer of an involution is a split extension of an extraspecial group of order 32 by Alt(5).

Notation. For $g \in G$ let $C_{g}=C_{G}(g)$ and $N_{g}=N_{G}(\langle g\rangle)$. For $i \in G$ an involution, set $Q_{i}=O_{2}\left(C_{i}\right)$ and let $T_{i}$ be a complement to $Q_{i}$ in $C_{i}$.

So $\left|Q_{i}\right|=32$ and $T_{i} \cong \operatorname{Alt}(5)$, for every involution $i$ in $G$.
Lemma 2.1 Assume that $i \in G$ is an involution.
(i) $C_{C_{i}}\left(Q_{i}\right) \leq Q_{i}$ and $Q_{i} \cong D_{8} * Q_{8}$.
(ii) $Q_{i} /\langle i\rangle$ is the even part of the permutation module for $T_{i} \cong \operatorname{Alt}(5)$.
(iii) $Q_{i} /\langle i\rangle$ is the $\mathrm{O}_{4}^{-}(2)$-module for $T_{i} \cong \mathrm{O}_{4}^{-}(2)$ and $T_{i}$ is transitive on the singular subspaces of $Q_{i} /\langle i\rangle$.
(iv) $Q_{i} /\langle i\rangle$ is a projective module for $T_{i}$.
(v) Let $s$ be an element of order 3 in $T_{i}$. Then $C_{s} \cap Q_{i} \cong D_{8}$.

Proof. Assume $C_{C_{i}}\left(Q_{i}\right) \not \leq Q_{i}$. Then, as $C_{C_{i}}\left(Q_{i}\right)$ is normal in $C_{i}$, we have $C_{C_{i}}\left(Q_{i}\right) Q_{i}=$ $C_{i}$. Therefore, there is a complement $T$ to $C_{C_{i}}\left(Q_{i}\right) \cap Q_{i}=\langle i\rangle$ in $C_{C_{i}}\left(Q_{i}\right)$ which is isomorphic to $\operatorname{Alt}(5)$. Let $j$ be an involution in $T$. Then $C_{i}$ and $C_{j}$ intersect in a Sylow 2-subgroup $S$. This is not possible, since $i$ is a commutator in $S$, but $j$ is not, which contradicts the fact that all involutions are conjugate in $G$. Hence $C_{C_{i}}\left(Q_{i}\right) \leq Q_{i}$.

As $Q_{i}$ is an extraspecial group, there is a non-degenerate quadratic form on $Q_{i}$ which is left invariant by $T_{i}$. The fact that $T_{i} \cong O_{4}^{-}(2)$ implies that $Q_{i}$ is of --type, that is $Q_{i} \cong D_{8} * Q_{8}$. This also shows the first part of (iii) and application of the Lemma of Witt yields the second part of (iii).

It follows from (iii) that $T_{i}$ has two orbits of size 5 and 10 on the set of involutions in $Q_{i} /\langle i\rangle$. Hence, $Q_{i} /\langle i\rangle$ is not a $G F(4)$-module for $T_{i}$. It is an easy exercise that there is exactly one module of order $2^{4}$ which is not a $G F(4)$-module for $T_{i}$ such that $T_{i}$ has two orbits of size 5 and 10 on the set of involutions of the module. As the even part of the permutation module for $T_{i} \cong \operatorname{Alt}(5)$ satisfies these conditions, (ii) holds.

According to Theorem 2.8.7 of [GLS] $Q_{i} /\langle i\rangle$ is a projective module for $T_{i}$ as stated in (iv).

Let $s$ be an element of order 3 in $T_{i}$. Then $s$ centralizes a subgroup $U$ of order 4 in the even part of the permutation module $Q_{i} /\langle i\rangle$. The preimages of two elements of $U$ are of order 4 in $Q_{i}$, which implies $C_{s} \cap Q_{i} \cong D_{8}$, statement (v).

Lemma 2.2 G acts transitively on the set

$$
P:=\left\{(j, W) \mid j \in G \text { an involution, } j \in W, W \text { elementary abelian of order } 2^{4}\right\}
$$

Proof. Let $U \leq Q_{i}$, with $i$ an involution, be an elementary abelian subgroup of maximal rank. By Lemma $2.1 U$ is of order 4 , the involution $i$ is in $U$ and $N_{T_{i}}(U) \cong \operatorname{Alt}(4)$, as $U / Z\left(Q_{i}\right)$ is a singular point in $Q_{i} / Z\left(Q_{i}\right)$. Set $V=U O_{2}\left(N_{T_{i}}(U)\right)$.

We claim that $V$ is elementary abelian. As every element of order 3 of $N_{T_{i}}(U)$ acts trivially in $U$ also $O_{2}\left(N_{T_{i}}(U)\right)$ acts trivially on $U$. Thus $V$ is elementary abelian of order 16.

Now let $W$ be some elementary abelian subgroup of order 16 in $C_{i}$. Then $Q_{i} \cap W \cong$ $2^{2}$ and $\left(Q_{i} \cap W\right) /\langle i\rangle$ is a singular point.

We claim that all the complements to $Q_{i} \cap W$ in $W$ are conjugate under $C=$ $C_{C_{i}}\left(Q_{i} \cap W\right)$. We have $C_{Q_{i}}\left(Q_{i} \cap W\right) \cong Q_{8} \times 2$ and $C \cong\left(Q_{8} \times 2\right)$ : Alt(4). We count the elementary abelian subgroups of $Z \backslash Q_{i}$ of order 4 where $Z=O_{2}(C)$. Let $f$ be an involution in $Z \cap T_{i}$. Then we see in the permutation module $Q_{i} /\langle i\rangle$ for $T_{i}$ that $f$ inverts two subgroups $\left\langle c_{1}\right\rangle,\left\langle c_{2}\right\rangle$ of order 4 in $C \cap Q_{i}$ and that $c_{1} c_{2} \in Q_{i} \cap W$. Hence there are two different elementary abelian subgroups of order 8 in $C \cap Q_{i}:\langle f\rangle$ and therefore there are precisely four complements to $C \cap Q_{i}$ in $Z$. It is $\left|Z \cap T_{i}\right|=4$ and $N_{Z}\left(Z \cap T_{i}\right)$ is of order $2^{4}$, which implies, as $|Z|=2^{6}$, that $\left|\left(Z \cap T_{i}\right)^{Z}\right|=4$. Thus all
the complements to $C \cap Q_{i}$ in $Z$ are conjugate. This yields that all the complements to $Q_{i} \cap W$ in $W$ are conjugate in $C_{i}$ as asserted.

Therefore we may assume $W=\left(Q_{i} \cap W\right) O_{2}\left(N_{T_{i}}\left(Q_{i} \cap W\right)\right)$. Thus, since $T_{i}$ acts transitively on the singular points in $Q_{i} /\langle i\rangle$, the centralizer $C_{i}$ acts transitively on the elementary abelian subgroups of $C_{i}$ of maximal rank. As in $G$ there is only one class of involutions, $G$ acts transitively on $P$, as claimed.

In the following let $V$ be a maximal elementary abelian subgroup of order $2^{4}$.
Lemma $2.3 N_{G}(V) \cong 2^{4}: G L_{2}(4)$.
Proof. By Lemma $2.2 N_{G}(V)$ acts transitively on $V^{\#}$. Let $i$ be an involution in $V$, then $N_{C_{i}}(V) \cong 2^{4}$ : Alt(4). It can be observed in $C_{i}$ that $C_{G}(V)=V$, so we obtain that $N_{C_{i}}(V)$ induces on $V$ a group of order 12 which is in fact the stabilizer of an element of $V^{\#}$ in $N_{G}(V)$. Thus $N_{G}(V)$ induces on $V$ a group of order $12 \cdot 15$ which is transitive on $V^{\#}$. This yields, as $N_{G}(V)$ is a subgroup of $2^{4}: S L_{4}(2)$, that $N_{G}(V) / V \cong G L_{2}(4)$, see [Hu, II (8.27)]. Let $S$ be a Sylow 3 -subgroup of $O_{2,3}\left(N_{G}(V)\right)$. Then, as $S$ acts fixed point freely on $V$, the Frattini argument implies that the normalizer of $S$ in $N_{G}(V)$ is a complement to $V$ in $N_{G}(V)$. Thus $N_{G}(V)$ splits over $V$, which proves assertion.

Set

$$
G_{2}:=N_{G}(V)
$$

Let $L_{1}$ be a subgroup of $N_{G}(V)$ isomorphic to $2^{4}:\left(3 \times D_{10}\right)$ and let $L_{12}$ be a subgroup of $L_{1}$ isomorphic to $3 \times D_{10}$. Let $\langle s\rangle=O_{3}\left(L_{12}\right)$. Next, we construct $G_{3}$.

Lemma $2.4 N_{s} \cong(3 \times \operatorname{Alt}(6)): 2 \cong 3: P G L_{2}(9)$.
Proof. The element $s$ is centralized by an involution $i$. By 2.1 (vi) we have $C_{s} \cap C_{i} \cong$ $D_{8} \times 3$. As all the involutions of $G$ are conjugate and as $\langle s\rangle$ is a Sylow-3-subgroup of $C_{i}$, all the involutions in $C_{s}$ are conjugate and the centralizer of every involution in $\bar{C}_{s}=C_{s} /\langle s\rangle$ is a dihedral group of order 8. By the result of Bender [Be] we have $\left|\bar{C}_{s}\right|=3 \cdot 8 \cdot 7$ or $8 \cdot 9 \cdot 5$. As 5 divides $\left|\bar{C}_{s}\right|$, the latter holds. Let $R:=C_{G_{2}}(s) \cong 3 \times \operatorname{Alt}(5)$, then $\bar{R}$ is a subgroup of index 6 and it follows that $\bar{C}_{s} \cong \operatorname{Alt}(6)$. As there is an involution in $C_{i}$ which inverts $s$, it follows $N_{s} /\langle s\rangle \cong P G L_{2}(9)$ or $\operatorname{Sym}(6)$. Assume the latter. Then every Sylow 2-subgroup $U$ of $N_{s}$ is isomorphic to $D_{8} \times 2$. Let $C_{i}=Q_{i}: T_{i}$. As $Q_{i} /\langle i\rangle$ is the even part of the permutation module for $T_{i} \cong \operatorname{Alt}(5)$, see 2.1, we see easily that $U \not \approx D_{8} \times 2$. Thus $N_{s}$ is an extension of $\langle s\rangle$ by a group isomorphic to $P G L_{2}(9)$.

It remains to show that this extension splits. Let $\sigma$ be an element of order 3 in $R^{\prime} \cong \operatorname{Alt}(5)$. Then $N_{R}(\langle\sigma\rangle)=\langle s\rangle \times A$ with $A \leq R^{\prime}$ and $A \cong \operatorname{Sym}(3)$ and there is an involution which inverts $\sigma$ and centralizes $s$. As there is no involution in $N_{s}$ which inverts $s$ and centralizes an element of order 3, the subgroups $\langle s\rangle$ and $\langle\sigma\rangle$ are not conjugate in $G$. As $s \cdot \sigma$ centralizes an involution in $O_{2}\left(G_{2}\right)$, this element is conjugate to $s$. If $N_{s}$ were a non-split extension, then a Sylow 3 -subgroup of $N_{s}$ would be an
extraspecial group of order 27 and the elements $\sigma$ and $s \cdot \sigma$ would be conjugate in $C_{s}$. Since this is not the case, we have proven the assertion of the lemma.

Recall the definition of $L_{1}$ and $L_{12}$ just before Lemma 2.4. Set

$$
G_{3}:=N_{s}
$$

The next result follows from Lemma 2.4.

Lemma $2.5 N_{G}\left(L_{12}\right) \cong \operatorname{Sym}(3) \times D_{10}$.
Set

$$
L_{2}:=N_{G}\left(L_{12}\right) .
$$

Notice, that $L_{12}=L_{1} \cap L_{2}$.
Let $f$ be an involution and $w$ an element of order 5 in $L_{12}$. Then $f$ inverts $\langle w\rangle$ and centralizes $\langle s\rangle$ and $C_{L_{1}}(f) \cong 2^{2}: 3 \times 2 \cong \operatorname{Alt}(4) \times 2$ and $C_{L_{2}}(f) \cong \operatorname{Sym}(3) \times 2$. Set

$$
L_{3}:=\left\langle C_{L_{1}}(f), C_{L_{2}}(f)\right\rangle
$$

Lemma 2.6 $L_{3} \cong \operatorname{Alt}(5) \times 2$.
Proof. We have $N_{C_{f}}(\langle s\rangle) \cong 3: D_{16}$ and all the subgroups isomorphic to

$$
C_{L_{2}}(f) \cong \operatorname{Sym}(3) \times 2
$$

are conjugate in $N_{C_{f}}(\langle s\rangle)$. Therefore, we may choose a complement $T_{f} \cong \operatorname{Alt}(5)$ to $Q_{f}$ in $C_{f}$ such that $T_{f} \cap C_{L_{2}}(f) \cong \operatorname{Sym}(3)$.

It remains to show that $C_{L_{1}}(f)$ is contained in a conjugate of $\langle f\rangle \times T_{f}$ under the action of the normalizer of $C_{L_{2}}(f)$ in $C_{f}$.

Assume $C_{L_{1}}(f) \cap Q_{f}>\langle f\rangle$. Then $C_{L_{1}}(f) \cap Q_{f}$ is elementary abelian of order 8, which contradicts the fact that $Q_{f} \cong D_{8} * Q_{8}$ is of minus-type, see Lemma 2.1. Therefore, we have $C_{L_{1}}(f) \cap Q_{f}=\langle f\rangle$.

We claim that all the subgroups isomorphic to $2 \times \operatorname{Alt}(4)$ which intersect $Q_{f}$ precisely in $\langle f\rangle$ and which contain $s$ are conjugate in $C_{f} \cap C_{s}$. Let $X$ be such a subgroup. Let $U$ be the projection of $X Q_{f} / Q_{f}$ onto $T_{f}$ and let $u$ be an involution in $U$. Then $\tilde{C}=C_{Q_{f} /\langle f\rangle}(u)=2^{2}$ with preimage $K \cong 4 \times 2$ and $u$ inverts every element of order 4 of $K$. Let $C_{K}(s)=\langle f, b\rangle$. Then $b$ is an involution and notice, if $\left\langle q u,(q u)^{s}\right\rangle \cong 2^{2}$ for some $q \in K$, then $\left\langle b q u,(b q u)^{s}\right\rangle \not \equiv 2^{2}$. This shows that there are precisely two subgroups $\left\langle q u,(q u)^{s}\right\rangle$ with $q \in K$ which are elementary abelian of order 4 . We have $C_{Q_{f}}(s) \cong D_{8}$ and $C_{Q_{f}}(\langle s, u\rangle) \cong 2^{2}$ which implies that the two subgroups are conjugate under $C_{Q_{f}}(s)$. This proves the claim.

Hence, $C_{L_{1}}(f)$ is conjugate to a subgroup of $\langle f\rangle \times T_{f}$ under the action of the normalizer of $C_{L_{2}}(f)$ in $C_{f}$. So, we may assume that $T_{f}$ is chosen such that $C_{L_{1}}(f) \leq\langle f\rangle \times T_{f}$. This yields the assertion.

Set

$$
L=\left\langle L_{1}, L_{2}\right\rangle .
$$

Then $L_{3} \leq L$. Recall that

$$
L_{1} \cong 2^{4}:\left(3 \times D_{10}\right), L_{2} \cong \operatorname{Sym}(3) \times D_{10} \text { and } L_{3} \cong 2 \times \operatorname{Alt}(5) .
$$

To prove that $L \cong L_{2}(16): 2$, we show the following.
Lemma 2.7 Let $H$ be a group and $H_{1}, H_{2}, H_{3}$ subgroups of $H$ such that
(i) $H=\left\langle H_{1}, H_{2}\right\rangle$;
(ii) $H_{1} \cong 2^{4}:\left(3 \times D_{10}\right), C_{H_{1}}\left(O_{2}\left(H_{1}\right)\right)=O_{2}\left(H_{1}\right) ; H_{2} \cong \operatorname{Sym}(3) \times D_{10} ; H_{3} \cong \operatorname{Alt}(5) \times$ 2; and
(iii) $H_{1} \cap H_{2} \cong 3 \times D_{10} ; H_{1} \cap H_{3} \cong \operatorname{Alt}(4) \times 2 ; H_{2} \cap H_{3} \cong \operatorname{Sym}(3) \times 2$.

Then $H$ is a triply transitive permutation group of degree 17; in this action $H_{1}$ is the stabilizer of a point and $|H|=2 \cdot 15 \cdot 16 \cdot 17$.

Proof. Let $\langle s\rangle=O_{3}\left(H_{2}\right),\langle w\rangle=O_{5}\left(H_{2}\right)$ and let $b, i$ be involutions in $H_{2} \cap H_{3}$ with

$$
s^{b}=s^{-1}, w^{b}=w \text { and } s^{i}=s, w^{i}=w^{-1} .
$$

Let $\Theta$ be a graph whose vertices are the cosets of $H_{1}$ in $H$ and whose edges are the sets $\left\{H_{1} x, H_{1} b x\right\}$ with $x \in H$.

As by (i) $H=\left\langle H_{1}, H_{2}\right\rangle=\left\langle H_{1}, b\right\rangle$ this graph is connected.
We claim that $\Theta$ is a graph of valency 16. Clearly, $b$ normalizes $H_{1} \cap H_{2}$. If $b$ would also normalize $H_{1}$, then $H=H_{1}\langle b\rangle$ in contradiction to $2 \times \operatorname{Alt}(5) \cong H_{3} \leq H$. Since $C_{H_{1}}\left(O_{2}\left(H_{1}\right)\right)=O_{2}\left(H_{1}\right)$, the intersection $H_{1} \cap H_{2}$ is maximal in $H_{1}$ which implies $H_{1} \cap H_{1}^{b}=H_{1} \cap H_{2} \cong 3 \times D_{10}$ is the stabilizer of the two neighbours $H_{1}$ and $H_{1} b$ in $H$. Thus $\Theta$ is of valency $\left|H_{1}: H_{1} \cap H_{1}^{b}\right|=16$, as claimed.

Therefore, it follows that $O_{2}\left(H_{1}\right)$ acts regularly on $\Theta\left(H_{1}\right)$. Moreover, as $H_{1} \cap H_{2}$ is transitive on $O_{2}\left(H_{1}\right)^{\#}$, it follows that $H_{1}$ acts doubly transitively on its neighbours $\Theta\left(H_{1}\right)$.

Next, we show that $\Theta$ is a complete graph. Notice, that the facts $H_{3} \cong 2 \times \operatorname{Alt}(5)$, $b \in\left(H_{2} \cap H_{3}\right) \backslash H_{1}$ and $H_{1} \cap H_{3} \cong 2 \times \operatorname{Alt}(4)$ yield that there is an $h \in H_{1} \cap H_{3}$ such that $(b h)^{3} \in\langle i\rangle$. Hence

$$
H_{1} b h b=H_{1} h b h=H_{1} b h
$$

is a common neighbour of $H_{1}$ and $H_{1} b$. This shows that there is a triangle in $\Theta$. Now, the fact that $H_{1}$ acts doubly transitively on $\Theta\left(H_{1}\right)$ implies that every vertex in $\Theta\left(H_{1}\right)$ is a neighbour of $H_{1} b$, so $\Theta$ is a complete graph.

Thus $\Theta$ consists of 17 vertices and $\left|H: H_{1}\right|=17$ which implies $|H|=\left|H_{1}\right| \cdot 17=$ $2 \cdot 15 \cdot 16 \cdot 17$ and $H$ acts triply transitively on the cosets of $H_{1}$ in $H$.

Corollary 2.8 Let L be a faithful completion of an amalgam

$$
\mathcal{B}=\left\{H_{1}, H_{2}, H_{3}, H_{12}, H_{13}, H_{23}\right\},
$$

where the groups $H_{1}, H_{2}$ and $H_{3}, H_{i j}:=H_{i} \cap H_{j}(1 \leq i<j \leq 3)$ are as described in Lemma 2.7. Then $|L|=2 \cdot 15 \cdot 16 \cdot 17$. In particular, every faithful completion of such an amalgam is already universal.

Notice that $H=L_{2}(16): 2$ possesses such an amalgam $\mathcal{B}$ : Let $H_{1}$ be a point stabilizer in $H$ in its action of degree 17 . Then $H_{1} \cong 2^{4}:\left(3 \times D_{10}\right)$. Let $H_{2}$ be the setwise stabilizer of two points such that $H_{1} \cap H_{2} \cong 3 \times D_{10}$. Finally, let $f$ be an involution in $H_{1} \cap H_{2}$ and set $H_{3}=C_{H}(f)$. Then $H_{1}, H_{2}, H_{3}, H_{i j}:=H_{i} \cap H_{j}$ $(1 \leq i<j \leq 3)$ form an amalgam as described in Lemma 2.7. By Lemma 2.8 a completion of an amalgam of type $\mathcal{B}$ is a triply transitive permutation group of degree 17.

Lemma 2.9 The embeddings of $H_{1} \cong 2^{4}:\left(3 \times D_{10}\right)$ and of $H_{2} \cong \operatorname{Sym}(3) \times D_{10}$ in $\operatorname{Sym}(17)$ as the stabilizer of a point and of a 2-set containing that point, respectively, are unique up to conjugation in $\operatorname{Sym}(17)$.

Proof. Let $H_{1}$ be the stabilizer of 1 . Then $O_{2}\left(H_{1}\right)$ acts regularly on $\{2, \ldots, 17\}=: \Omega$. Let $K=\operatorname{Sym}(\Omega)$. Then $N_{K}\left(O_{2}\left(H_{1}\right)\right) \cong 2^{4}: L_{4}(2)$. We may assume that $O_{3}\left(H_{1} \cap H_{2}\right)$ fixes $2 \in \Omega$. As $O_{3}\left(H_{1} \cap H_{2}\right)$ acts fixed point freely on $O_{2}\left(H_{1}\right)^{\#}$, it follows that $H_{1} \cap H_{2}=C_{H_{1}}\left(O_{3}\left(H_{1} \cap H_{2}\right)\right)$ is a subgroup of the stabilizer of 2 in $H_{1}$ and therefore $H_{1} \cap H_{2}$ is the stabilizer of 2 in $H_{1}$. Moreover, the action of $H_{1} \cap H_{2}$ on $\Omega$ is uniqely determined up to conjugation in $N_{K}\left(O_{2}\left(H_{1}\right)\right)$. Let $a$ be an involution in $H_{2} \backslash H_{1} \cap H_{2}$ which centralizes $O_{5}\left(H_{1} \cap H_{2}\right)$. Then $a$ interchanges 1 and 2 and it fixes all 53 -cycles of $O_{3}\left(H_{1} \cap H_{2}\right)$ on the set $\Omega \backslash\{2\}$. We may assume the action of $a$ on one of the 3 -cycles which then determines uniquely the action of a on $\Omega$.

The previous lemma yields that the amalgam $\mathcal{B}$ is uniquely determined. This shows the following.

Corollary 2.10 The universal completion of $\mathcal{B}$ is isomorphic to $L_{2}(16): 2$. In particular, $L$ is isomorphic to $L_{2}(16): 2$.

Set

$$
G_{1}:=L .
$$

Lemma $2.11 \mathcal{A}=\left\{G_{1}, G_{2}, G_{3}, G_{12}, G_{13}, G_{23}, B\right\}$ is an amalgam of type $J_{3}$.
Proof. By construction $\mathcal{A}$ is of type $J_{3}$.
Lemma 2.11 completes the proof of Theorem 1.

## References

[Asch1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge 1986.
[Asch2] M. Aschbacher, The existence of $J_{3}$ and its embeddings in $E_{6}$, Geom. Dedicata 35 (1990) 143 - 154.
[Asch3] M. Aschbacher, Sporadic Groups, Cambridge University Press 1994.
[Ba1] B. Baumeister, A computer free construction of the third group of Janko $J$. Algebra, 192 (1997), 780 - 809.
[Ba2] B. Baumeister, A characterization of the third group of Janko, Preprint.
[Be] H. Bender, Finite groups with large subgroups Illinois J. Math. 18 (1974), 223228.
[BP] J.N. Bray, C.W. Parker, On groups with involution centralizer $D_{8}$, draft (2002).
[Bue] F. Buekenhout, Foundations of incidence geometry, chapter 3 in Handbook of Incidence Geometry, (F. Buekenhout ed.), North Holland 1995.
[Fro] D. Frohardt, A trilinear form for the third Janko group, J. Algebra 83 (1983), $349-379$.
[GLS] D. Gorenstein, R. Lyons, R. Solomon, The classification of the Finite Simple Groups, Number 3, American Mathematical Society, Providence, Rhode Island, 1998.
[HiMc] G. Higman, J. McKay, On Janko's simple group of order 50,234,960, Bull. London Math. Soc. 1 (1969), $89-94$.
[Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, 1979.
[Ja] Z. Janko, Some new simple group of finite order I, Sym. Math. 1 (1968), $25-64$.
[Pa] A. Pasini, Diagram Geometries, Oxford University Press, 1994.
[Wei] R. Weiss, A geometric construction of Janko's group $J_{3}$, Math. Z. 179 (1982). 91-95.


[^0]:    *2000 MR Subject Classification 20D08, 20D05, 51E24

