A geometry for groups of J_3-type.

Barbara Baumeister
Institut für Mathematik II
Fachbereich Mathematik und Informatik, FU Berlin
D-14195 Berlin
Germany
baumeist@math.fu-berlin.de
7.3.2006

Abstract
The proof of the existence and of the uniqueness of groups of J_3-type by G. Higman and J. McKay is based on the fact that a group of J_3-type is a faithful completion of an amalgam of J_3-type, see [HiMc]. In this paper here, we provide a reference for that fact. The proofs in this paper are elementary and we do not use any character theory.

1 Introduction.
A finite simple group G is said to be of J_3-type provided that all involutions of G are conjugate and the centralizer of an involution is a split extension of an extraspecial group of order 32 by $\text{Alt}(5)$. Janko presented the initial evidence of a group of J_3-type [Ja], G. Higman and J. McKay showed the existence and the uniqueness of groups of J_3-type [HiMc]. Their proof is computer-based and uses, moreover, the fact that a group of J_3-type is a faithful completion of an amalgam of J_3-type.

An amalgam of rank n is a family $A = (\alpha_{J,K} : P_J \to P_K \mid \emptyset \neq K \subset J \subseteq I)$, where $I = \{1, \ldots, n\}$, of group homomorphisms such that for all $L \subset K \subset J \subseteq I$

$$\alpha_{J,K} \alpha_{K,L} = \alpha_{J,L}.$$

To shorten notation we will simply write $A = (P_J \mid \emptyset \neq J \subseteq I)$. A completion $\beta : A \to G$ for A is a family $\beta = (\beta_J : P_J \to G)$ of group homomorphisms such that $G = \langle P_J^{\beta_J} \mid J \subseteq I \rangle$ and for all $K \subset J \subset I$ it holds $\alpha_{J,K} \beta_K = \beta_J$. A completion is said to be faithful if each β_J is an injection and a faithful completion $\gamma : A \to G(A)$ is

*2000 MR Subject Classification 20D08, 20D05, 51E24
universal if for every completion $\beta : A \to G$ there is a group homomorphism φ of $G(A)$ onto G such that $\gamma J \varphi = \beta J$ for all $J \subseteq I$. These definitions are taken from [Asch3]. In the following we omit brackets in $G_{(i,j)}$ by writing G_{ij}.

An amalgam of J_3-type is an amalgam $A = \{G_1, G_2, G_3, G_{12}, G_{13}, G_{23}, G_{123}\}$ of rank 3 satisfying the following conditions, where $B := G_{123}$.

(i) $G_1 \cong L_2(16) : 2$, $G_2 \cong 2^4 : GL_2(4)$, $G_3 \cong 3 : PGL_2(9)$;
(ii) $G_{12} \cong 2^4 : (3 \times D_{10})$, $G_{23} \cong GL_2(4) \cong 3 \times \text{Alt}(5)$, $G_{13} \cong \text{Sym}(3) \times D_{10}$;
(iii) $B \cong 3 \times D_{10}$,

It was shown by J. G. Thompson that a group of J_3-type has a subgroup isomorphic to $L_2(16) : 2$, but this result was never published.

Meanwhile, there are also existence proofs of a group of J_3-type which are not computer dependant [Wei, Asch2, Ba1] and there is a computer-free uniqueness proof due to D. Frohardt [Fro].

In this paper we provide a reference for the fact that a group of J_3-type is a faithful completion of an amalgam of J_3-type. We show

Theorem 1 Let G be a group of J_3-type. Then G is a completion of an amalgam of J_3-type.

The hope is that we can use Theorem 1 to give a more simple uniqueness proof for groups of J_3-type because of the following facts. A completion of an amalgam of J_3-type acts flag-transitively on a Buekenhout geometry, namely on a dual extended quadrangle DEQ (see [Ba2]) which is a geometry consisting of points, lines and quads such that

(res(p)) For a point p the lines and the quads which are incident with p form a complete graph whose vertices are the lines and whose edges are the quads;
(res(l)) Any point on a line l is incident to any quad which is incident with l;
(res(q)) For a quad q the points and the lines which are incident to q form a generalized quadrangle.

See [Buc] or [Pa] for an introduction to diagram geometries.

Let A be an amalgam of J_3-type and let G be a faithful completion of A. Then the coset geometry $\Gamma = \Gamma(G, (G_1, G_2, G_3))$, a rank three geometry consisting of points, lines and quads, which are the cosets of G_i for $i = 1, 2, 3$ in G, respectively, such that two elements of the geometry are incident if and only if the respective cosets intersect non-trivially, is a DEQ and G acts flag-transitively on Γ. In [Ba1] it was shown that there is up to isomorphism only one amalgam of J_3-type. This shows that there is at most one universal completion of an amalgam of J_3-type. By Lemma 2.2 of [Ba1] the latter group is finite. Moreover, in the same paper a DEQ, Γ has been constructed which admits a group of J_3-type as flag-transitive group of automorphisms.

The two latter facts and Theorem 1 imply the following.
Corollary 1.1 Let G be a group of J_3-type. Then G acts flag-transitively on a DEQ which is a quotient of the universal cover of $\hat{\Gamma}$. In particular, G is a quotient of the universal completion of A.

To show that there is only one group of J_3-type up to isomorphism it remains to determine the universal cover of the geometry $\hat{\Gamma}$ and to study their quotients. Until now, this has been done only with the aid of a computer, see for instance [Ba2].

Theorem 2 [Ba2] The universal cover of $\hat{\Gamma}$ is a triple cover of $\hat{\Gamma}$.

The previous theorem implies that the completion of an amalgam of J_3-type is either a group of J_3-type or a triple cover of a groups of J_3-type and that there is exactly one group of J_3-type up to isomorphism.

The proof of Theorem 1 is almost self-contained. We only quote some standard group theory and the result of Bender which states that a group whose involution centralizers are dihedral groups of order 8 is of order either $8 \cdot 3 \cdot 7$ or $8 \cdot 9 \cdot 5$, see [Be]. His proof is very short and elementary. We cite his result to construct the third parabolic subgroup G_3. The first parabolic subgroup G_1 is constructed using the amalgam method while we choose G_2 and G_3 as normalizers of an elementary abelian subgroup and a cyclic subgroup of order 16 and 3, respectively.

Contrary to Janko [Ja] we do not use any character theory.

Acknowledgements. I would like to thank A.A. Ivanov as well as G. Stroth for fruitful discussions, C. Parker who pointed out a gap in a previous draft of the paper and last not least U. Meierfrankenfeld for carefully reading the paper.

2 Proof of Theorem 1.

Let G be a group of J_3-type. Then all the involutions in G are conjugate and the centralizer of an involution is a split extension of an extraspecial group of order 32 by $\text{Alt}(5)$.

Notation. For $g \in G$ let $C_g = C_G(g)$ and $N_g = N_G(g)$. For $i \in G$ an involution, set $Q_i = O_2(C_i)$ and let T_i be a complement to Q_i in C_i.

So $|Q_i| = 32$ and $T_i \cong \text{Alt}(5)$, for every involution i in G.

Lemma 2.1 Assume that $i \in G$ is an involution.

(i) $C_{C_i}(Q_i) \leq Q_i$ and $Q_i \cong D_8 * Q_8$.

(ii) $Q_i / \langle i \rangle$ is the even part of the permutation module for $T_i \cong \text{Alt}(5)$.

(iii) $Q_i / \langle i \rangle$ is the $O^-_2(2)$-module for $T_i \cong O^-_2(2)$ and T_i is transitive on the singular subspaces of $Q_i / \langle i \rangle$.
(iv) $Q_i/(i)$ is a projective module for T_i.

(v) Let s be an element of order 3 in T_i. Then $C_s \cap Q_i \cong D_8$.

Proof. Assume $C_{C_i}(Q_i) \not\subseteq Q_i$. Then, as $C_{C_i}(Q_i)$ is normal in C_i, we have $C_{C_i}(Q_i)Q_i = C_i$. Therefore, there is a complement T to $C_{C_i}(Q_i) \cap Q_i = (i)$ in $C_{C_i}(Q_i)$ which is isomorphic to $\text{Alt}(5)$. Let j be an involution in T. Then C_i and C_j intersect in a Sylow 2-subgroup S. This is not possible, since i is a commutator in S, but j is not, which contradicts the fact that all involutions are conjugate in G. Hence $C_{C_i}(Q_i) \leq Q_i$.

As Q_i is an extraspecial group, there is a non-degenerate quadratic form on Q_i which is left invariant by T_i. The fact that $T_i \cong O_{-}(2)$ implies that Q_i is of $-\text{-type}$, that is $Q_i \cong D_8 \ast Q_8$. This also shows the first part of (iii) and application of the Lemma of Witt yields the second part of (iii).

It follows from (iii) that T_i has two orbits of size 5 and 10 on the set of involutions in $Q_i/(i)$. Hence, $Q_i/(i)$ is not a $GF(4)$-module for T_i. It is an easy exercise that there is exactly one module of order 2^4 which is not a $GF(4)$-module for T_i such that T_i has two orbits of size 5 and 10 on the set of involutions of the module. As the even part of the permutation module for $T_i \cong \text{Alt}(5)$ satisfies these conditions, (ii) holds.

According to Theorem 2.8.7 of [GLS] $Q_i/(i)$ is a projective module for T_i as stated in (iv).

Let s be an element of order 3 in T_i. Then s centralizes a subgroup U of order 4 in the even part of the permutation module $Q_i/(i)$. The preimages of two elements of U are of order 4 in Q_i, which implies $C_s \cap Q_i \cong D_8$, statement (v). \hfill \square

Lemma 2.2 G acts transitively on the set

$$P := \{(j,W) \mid j \in G \text{ an involution, } j \in W, W \text{ elementary abelian of order } 2^4\}.$$

Proof. Let $U \subseteq Q_i$, with i an involution, be an elementary abelian subgroup of maximal rank. By Lemma 2.1 U is of order 4, the involution i is in U and $N_{T_i}(U) \cong \text{Alt}(4)$, as $U/Z(Q_i)$ is a singular point in $Q_i/Z(Q_i)$. Set $V = UO_2(N_{T_i}(U))$.

We claim that V is elementary abelian. As every element of order 3 of $N_{T_i}(U)$ acts trivially in U also $O_2(N_{T_i}(U))$ acts trivially on U. Thus V is elementary abelian of order 16.

Now let W be some elementary abelian subgroup of order 16 in C_i. Then $Q_i \cap W \cong 2^2$ and $(Q_i \cap W)/(i)$ is a singular point.

We claim that all the complements to $Q_i \cap W$ in W are conjugate under $C = C_{C_i}(Q_i \cap W)$. We have $C_{Q_i}(Q_i \cap W) \cong Q_8 \times 2$ and $U \cong (Q_8 \times 2) : \text{Alt}(4)$. We count the elementary abelian subgroups of $Z \setminus Q_i$ of order 4 where $Z = O_2(C)$. Let f be an involution in $Z \cap T_i$. Then we see in the permutation module $Q_i/(i)$ for T_i that f inverts two subgroups $\langle c_1 \rangle, \langle c_2 \rangle$ of order 4 in $C \cap Q_i$ and that $c_1c_2 \in Q_i \cap W$. Hence there are two different elementary abelian subgroups of order 8 in $C \cap Q_i : \langle f \rangle$ and therefore there are precisely four complements to $C \cap Q_i$ in Z. It is $|Z \cap T_i| = 4$ and $N_Z(Z \cap T_i)$ is of order 2^4, which implies, as $|Z| = 2^9$, that $|(Z \cap T_i)^2| = 4$. Thus all
the complements to $C \cap Q_i$ in Z are conjugate. This yields that all the complements to $Q_i \cap W$ in W are conjugate in C_i as asserted.

Therefore we may assume $W = (Q_i \cap W)O_2(N_{T_i}(Q_i \cap W))$. Thus, since T_i acts transitively on the singular points in $Q_i/\langle i \rangle$, the centralizer C_i acts transitively on the elementary abelian subgroups of C_i of maximal rank. As in G there is only one class of involutions, G acts transitively on P, as claimed. □

In the following let V be a maximal elementary abelian subgroup of order 2^4.

Lemma 2.3 $N_G(V) \cong 2^4 : GL_2(4)$.

Proof. By Lemma 2.2 $N_G(V)$ acts transitively on $V^\#$. Let i be an involution in V, then $N_{C_i}(V) \cong 2^4 : \text{Alt}(4)$. It can be observed in C_i that $C_i G(V) = V$, so we obtain that $N_{C_i}(V)$ induces on V a group of order 12 which is in fact the stabilizer of an element of $V^\#$ in $N_G(V)$. Thus $N_G(V)$ induces on V a group of order $12 \cdot 15$ which is transitive on $V^\#$. This yields, as $N_G(V)$ is a subgroup of $2^4 : SL_4(2)$, that $N_G(V)/V \cong GL_2(4)$, see [Hu, II (8.27)]. Let S be a Sylow 3-subgroup of $O_{2,3}(N_G(V))$. Then, as S acts fixed point freely on V, the Frattini argument implies that the normalizer of S in $N_G(V)$ is a complement to V in $N_G(V)$. Thus $N_G(V)$ splits over V, which proves assertion. □

Set

$$G_2 := N_G(V).$$

Let L_1 be a subgroup of $N_G(V)$ isomorphic to $2^4 : (3 \times D_{10})$ and let L_{12} be a subgroup of L_1 isomorphic to $3 \times D_{10}$. Let $\langle s \rangle = O_3(L_{12})$. Next, we construct G_3.

Lemma 2.4 $N_s \cong (3 \times \text{Alt}(6)) : 2 \cong 3 : PGL_2(9)$.

Proof. The element s is centralized by an involution i. By 2.1 (vi) we have $C_s \cap C_i \cong D_8 \times 3$. As all the involutions of G are conjugate and as $\langle s \rangle$ is a Sylow-3-subgroup of C_i, all the involutions in C_s are conjugate and the centralizer of every involution in $\overline{C}_s = C_s/\langle s \rangle$ is a dihedral group of order 8. By the result of Bender [Be] we have $|\overline{C}_s| = 3 \cdot 8 \cdot 7$ or $8 \cdot 9 \cdot 5$. As 5 divides $|\overline{C}_s|$, the latter holds. Let $R := C_{G_2}(s) \cong 3 \times \text{Alt}(5)$, then \overline{R} is a subgroup of index 6 and it follows that $\overline{C}_s \cong \text{Alt}(6)$. As there is an involution in C_i which inverts s, it follows $N_s/\langle s \rangle \cong PGL_2(9)$ or $\text{Sym}(6)$. Assume the latter. Then every Sylow 2-subgroup U of N_s is isomorphic to $D_8 \times 2$. Let $C_i = Q_i : T_i$. As $Q_i/\langle i \rangle$ is the even part of the permutation module for $T_i \cong \text{Alt}(5)$, see 2.1, we see easily that $U \not\cong D_8 \times 2$. Thus N_s is an extension of $\langle s \rangle$ by a group isomorphic to $PGL_2(9)$.

It remains to show that this extension splits. Let σ be an element of order 3 in $R' \cong \text{Alt}(5)$. Then $N_R(\langle \sigma \rangle) = \langle s \rangle \times A$ with $A \leq R'$ and $A \cong \text{Sym}(3)$ and there is an involution which inverts σ and centralizes s. As there is no involution in N_s which inverts s and centralizes an element of order 3, the subgroups $\langle s \rangle$ and $\langle \sigma \rangle$ are not conjugate in G. As $s \cdot \sigma$ centralizes an involution in $O_2(G_2)$, this element is conjugate to s. If N_s were a non-split extension, then a Sylow 3-subgroup of N_s would be an
This yields the assertion. \(\square \)

Recall the definition of \(L_1 \) and \(L_{12} \) just before Lemma 2.4. Set
\[
G_3 := N_s.
\]

The next result follows from Lemma 2.4.

Lemma 2.5 \(N_G(L_{12}) \cong \Sym(3) \times D_{10} \).

Set
\[
L_2 := N_G(L_{12}).
\]

Notice, that \(L_{12} = L_1 \cap L_2 \).

Let \(f \) be an involution and \(w \) an element of order 5 in \(L_{12} \). Then \(f \) inverts \(\langle w \rangle \) and centralizes \(\langle s \rangle \) and \(C_{L_1}(f) \cong 2^2 : 3 \times 2 \cong \Alt(4) \times 2 \) and \(C_{L_2}(f) \cong \Sym(3) \times 2 \). Set
\[
L_3 := \langle C_{L_1}(f), C_{L_2}(f) \rangle.
\]

Lemma 2.6 \(L_3 \cong \Alt(5) \times 2 \).

Proof. We have \(N_{C_f}(\langle s \rangle) \cong 3 : D_{16} \) and all the subgroups isomorphic to \(C_{L_2}(f) \cong \Sym(3) \times 2 \) are conjugate in \(N_{C_f}(\langle s \rangle) \). Therefore, we may choose a complement \(T_f \cong \Alt(5) \) to \(Q_f \) in \(C_f \) such that \(T_f \cap C_{L_2}(f) \cong \Sym(3) \).

It remains to show that \(C_{L_1}(f) \) is contained in a conjugate of \(\langle f \rangle \times T_f \) under the action of the normalizer of \(C_{L_2}(f) \) in \(C_f \).

Assume \(C_{L_1}(f) \cap Q_f > \langle f \rangle \). Then \(C_{L_1}(f) \cap Q_f \) is elementary abelian of order 8, which contradicts the fact that \(Q_f \cong D_8 \ast Q_8 \) is of minus-type, see Lemma 2.1. Therefore, we have \(C_{L_1}(f) \cap Q_f = \langle f \rangle \).

We claim that all the subgroups isomorphic to \(2 \times \Alt(4) \) which intersect \(Q_f \) precisely in \(\langle f \rangle \) and which contain \(s \) are conjugate in \(C_f \cap C_s \). Let \(X \) be such a subgroup. Let \(U \) be the projection of \(XQ_f / Q_f \) onto \(T_f \) and let \(u \) be an involution in \(U \). Then \(\tilde{C} = C_{Q_f / Q_f}(u) = 2^2 \) with preimage \(K \cong 4 \times 2 \) and \(u \) inverts every element of order 4 of \(K \). Let \(C_K(s) = \langle f, b \rangle \). Then \(b \) is an involution and notice, if \(\langle bu, (qu)^s \rangle \cong 2^2 \) for some \(q \in K \), then \(\langle bu, (bu)^s \rangle \not\cong 2^2 \). This shows that there are precisely two subgroups \(\langle qu, (qu)^s \rangle \) with \(q \in K \) which are elementary abelian of order 4. We have \(C_{Q_f}(s) \cong D_8 \) and \(C_{Q_f}(\langle s, u \rangle) \cong 2^2 \) which implies that the two subgroups are conjugate under \(C_{Q_f}(s) \). This proves the claim.

Hence, \(C_{L_1}(f) \) is conjugate to a subgroup of \(\langle f \rangle \times T_f \) under the action of the normalizer of \(C_{L_2}(f) \) in \(C_f \). So, we may assume that \(T_f \) is chosen such that \(C_{L_1}(f) \leq \langle f \rangle \times T_f \). This yields the assertion. \(\square \)
Set
\[L = \langle L_1, L_2 \rangle. \]

Then \(L_3 \leq L \). Recall that

\[L_1 \cong 2^4 : (3 \times D_{10}), L_2 \cong \text{Sym}(3) \times D_{10} \text{ and } L_3 \cong 2 \times \text{Alt}(5). \]

To prove that \(L \cong L_2(16) : 2 \), we show the following.

Lemma 2.7 Let \(H \) be a group and \(H_1, H_2, H_3 \) subgroups of \(H \) such that

(i) \(H = \langle H_1, H_2 \rangle \);

(ii) \(H_1 \cong 2^4 : (3 \times D_{10}), C_{H_1}(O_2(H_1)) = O_2(H_1); H_2 \cong \text{Sym}(3) \times D_{10}; H_3 \cong \text{Alt}(5) \times 2 \); and

(iii) \(H_1 \cap H_2 \cong 3 \times D_{10}; H_1 \cap H_3 \cong \text{Alt}(4) \times 2; H_2 \cap H_3 \cong \text{Sym}(3) \times 2. \)

Then \(H \) is a triply transitive permutation group of degree 17; in this action \(H_1 \) is the stabilizer of a point and \(|H| = 2 \cdot 15 \cdot 16 \cdot 17. \)

Proof. Let \(\langle s \rangle = O_3(H_2), \langle w \rangle = O_5(H_2) \) and let \(b, i \) be involutions in \(H_2 \cap H_3 \) with

\[s^b = s^{-1}, w^b = w \text{ and } s^i = s, w^i = w^{-1}. \]

Let \(\Theta \) be a graph whose vertices are the cosets of \(H_1 \) in \(H \) and whose edges are the sets \(\{H_1 x, H_1 b x\} \) with \(x \in H \).

As by (i) \(H = \langle H_1, H_2 \rangle = \langle H_1, b \rangle \) this graph is connected.

We claim that \(\Theta \) is a graph of valency 16. Clearly, \(b \) normalizes \(H_1 \cap H_2 \). If \(b \) would also normalize \(H_1 \), then \(H = H_1 \langle b \rangle \) in contradiction to \(2 \times \text{Alt}(5) \cong H_3 \leq H \).

Since \(C_{H_1}(O_2(H_1)) = O_2(H_1) \), the intersection \(H_1 \cap H_2 \) is maximal in \(H_1 \) which implies \(H_1 \cap H_1^b = H_1 \cap H_2 \cong 3 \times D_{10} \) is the stabilizer of the two neighbours \(H_1 \) and \(H_1 b \) in \(H \). Thus \(\Theta \) is of valency \(|H_1 : H_1 \cap H_1^b| = 16 \), as claimed.

Therefore, it follows that \(O_2(H_1) \) acts regularly on \(\Theta(H_1) \). Moreover, as \(H_1 \cap H_2 \) is transitive on \(O_2(H_1)^\# \), it follows that \(H_1 \) acts doubly transitively on its neighbours \(\Theta(H_1) \).

Next, we show that \(\Theta \) is a complete graph. Notice, that the facts \(H_3 \cong 2 \times \text{Alt}(5), b \in (H_2 \cap H_3) \setminus H_1 \) and \(H_1 \cap H_3 \cong 2 \times \text{Alt}(4) \) yield that there is an \(h \in H_1 \cap H_3 \) such that \((bh)^3 \in \langle i \rangle \). Hence

\[H_1 b h b = H_1 h b h = H_1 b h \]

is a common neighbour of \(H_1 \) and \(H_1 b \). This shows that there is a triangle in \(\Theta \). Now, the fact that \(H_1 \) acts doubly transitively on \(\Theta(H_1) \) implies that every vertex in \(\Theta(H_1) \) is a neighbour of \(H_1 b \), so \(\Theta \) is a complete graph.

Thus \(\Theta \) consists of 17 vertices and \(|H : H_1| = 17 \) which implies \(|H| = |H_1| \cdot 17 = 2 \cdot 15 \cdot 16 \cdot 17 \) and \(H \) acts triply transitively on the cosets of \(H_1 \) in \(H \). \(\square \)
Corollary 2.8 Let L be a faithful completion of an amalgam

$$B = \{H_1, H_2, H_3, H_{12}, H_{13}, H_{23}\},$$

where the groups H_1, H_2 and $H_3, H_{ij} = H_i \cap H_j$ ($1 \leq i < j \leq 3$) are as described in Lemma 2.7. Then $|L| = 2 \cdot 15 \cdot 16 \cdot 17$. In particular, every faithful completion of such an amalgam is already universal.

Notice that $H = L_2(16) : 2$ possesses such an amalgam B: Let H_1 be a point stabilizer in H in its action of degree 17. Then $H_1 \cong 2^4 : (3 \times D_{10})$. Let H_2 be the setwise stabilizer of two points such that $H_1 \cap H_2 \cong 3 \times D_{10}$. Finally, let f be an involution in $H_1 \cap H_2$ and set $H_3 = C_H(f)$. Then $H_1, H_2, H_3, H_{ij} = H_i \cap H_j$ ($1 \leq i < j \leq 3$) form an amalgam as described in Lemma 2.7. By Lemma 2.8 a completion of an amalgam of type B is a triply transitive permutation group of degree 17.

Lemma 2.9 The embeddings of $H_1 \cong 2^4 : (3 \times D_{10})$ and of $H_2 \cong \text{Sym}(3) \times D_{10}$ in $\text{Sym}(17)$ as the stabilizer of a point and of a 2-set containing that point, respectively, are unique up to conjugation in $\text{Sym}(17)$.

Proof. Let H_1 be the stabilizer of 1. Then $O_2(H_1)$ acts regularly on $\{2, \ldots, 17\} =: \Omega$. Let $K = \text{Sym}(\Omega)$. Then $N_K(O_2(H_1)) \cong 2^4 : L_4(2)$. We may assume that $O_3(H_1 \cap H_2)$ fixes 2 $\in \Omega$. As $O_3(H_1 \cap H_2)$ acts fixed point freely on $O_2(H_1)^\#$, it follows that $H_1 \cap H_2 = C_{H_1}(O_3(H_1 \cap H_2))$ is a subgroup of the stabilizer of 2 in H_1 and therefore $H_1 \cap H_2$ is the stabilizer of 2 in H_1. Moreover, the action of $H_1 \cap H_2$ on Ω is uniquely determined up to conjugation in $N_K(O_2(H_1))$. Let a be an involution in $H_2 \setminus H_1 \cap H_2$ which centralizes $O_3(H_1 \cap H_2)$. Then a interchanges 1 and 2 and it fixes all 5 3-cycles of $O_3(H_1 \cap H_2)$ on the set $\Omega \setminus \{2\}$. We may assume the action of a on one of the 3-cycles which then determines uniquely the action of a on Ω. □

The previous lemma yields that the amalgam B is uniquely determined. This shows the following.

Corollary 2.10 The universal completion of B is isomorphic to $L_2(16) : 2$. In particular, L is isomorphic to $L_2(16) : 2$.

Set $G_1 := L$.

Lemma 2.11 $A = \{G_1, G_2, G_3, G_{12}, G_{13}, G_{23}, B\}$ is an amalgam of type J_3.

Proof. By construction A is of type J_3. □

Lemma 2.11 completes the proof of Theorem 1.
References

