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Chapter 1

Introduction.

In this thesis we investigate groups and in particular finite groups. Thus, in the thesis all the
groups are supposed to be finite. A group is said to be factorizable if G = AB for some proper
subgroups A and B of G. The expression G = AB is called a factorization of G. A permutation
group (G, Ω) is a group G which acts faithfully on a set Ω.

There is a surprisingly large number of mathematical questions related to factorizations of
groups. First of all they play a constitutive role in group theory. We will discuss this further in
the brief history at the end of this chapter. Of course, they also appear in geometric context. A
very special, but beautiful example is the following: O. H. Kegel and H. Lüneburg could show
that the condition of Desargues and the little Reidemeister condition are equivalent in finite
projective planes. Their proof that in finite projective planes the little Reidemeister condition
implies the condition of Desargues is based on the following theorem: A group G which is the
product G = AB of two subgroups A and B that are both isomorphic to A5 is either isomorphic
to the direct product A × B or to the alternating group A6 of degree 6, see [55].

Factorizations are also of importance in the theory of permutation groups. A group G is
the product G = AB of two of its subgroups A,B if and only if A acts transitively on the set
Ω of cosets of B in G. If moreover, A and B intersect trivially, then the factorization G = AB
is called exact and A acts regularly on Ω. If B is maximal, then G is a primitive permutation
group on Ω.

Note that the classification of the primitive permutation groups which admit a regular
subgroup will imply a complete list of the primitive graphs which are Cayley graphs (for an
introduction to Cayley graphs see for instance [33])! There are far more areas where factor-
izations of groups do emerge. For instance, the knowledge of the cyclic regular subgroups of
the primitive permutation groups is necessary in the classification of polynomials by their mon-
odromy groups, see for instance [39]. If the group G has an exact factorization G = AB, then
one can construct a semisimple Hopf algebra from these data, see for instance [86] or [29].

The four strongly related problems studied in this thesis can be read as results on factor-
izations of groups or as results on permutation groups. The first problem is to classify the
transitive subgroups of primitive permutation groups (G, Ω) which are conjugate in Aut(G) to
a point stabilizer i.e. to classify those groups G which possess a core-free maximal subgroup A
such that G = AAα for some α ∈ Aut(G). The second problem is to find all the irreducible
subgroups of GLd(q) which possess a subgroup of prime power index pa such that either p is a
prime dividing q and a ≥ d or p does not divide q and qd ≤ pa. The second problem arose out
of a question whose answer we needed to solve the first problem. The third part is a charac-
terization of the finite soluble groups, as well as a proof of an old conjecture of O.H. Kegel [54,
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p. 210]. The fourth problem is to provide a list of all the primitive permutation groups (G, Ω)
which possess a regular subgroup.

Let us discuss our results in some detail. Recall that all the groups are supposed to be
finite. In Chapter 5 we classify all the groups G which posses a core-free maximal subgroup A
such that G = AAα for some α ∈ Aut(G). We call such a factorization of a group a primitive
factorization. Let Gi be a group and πi a permutation representation of Gi on the set Ωi, for
i = 1, 2. Then π1 and π2 are said to be isomorphic, if there exists an isomorphism φ : G1 → G2

and a bijection θ : Ω1 → Ω2 such that

gπ1θ = θgφπ2 for all g ∈ G1.

Two permutation groups are permutation equivalent if their permutation representations are
isomorphic. We prove the following.

Theorem 1 Let G be a primitive permutation group on a set Ω of size m. Suppose that
G = GωGα

ω for Gω a point stabilizer and for α ∈ Aut(G). Then one of the following holds.
Conversely each of the listed groups gives rise to such an example.

(a) G is affine:
G = E23L3(2) o X, where X is a transitive subgroup of Sn and m = 23n.

(b) G is almost simple:

(b.a) E(G) ∼= PΩ+
8 (q) and G is an extension of E(G) by field automorphisms. E(G)ω

∼=
PΩ7(q), E(G)ω ∩ E(G)α

ω
∼= G2(q) and m = q4(q4 − 1);

(b.b) E(G) ∼= Sp4(q), q even, and G is an extension of E(G) by field automorphisms.
E(G)ω

∼= L2(q2)2, E(G)ω ∩ E(G)α
ω
∼= Frob(q2 + 1 : 4) and m = q2(q2 − 1)/2;

(b.c) G ∼= Sp4(2) ∼= S6, Gω
∼= S5, Gω ∩ Gα

ω
∼= Frob(5 : 4) and m = 6;

(b.d) G ∼= Sp4(2)′ ∼= A6, Gω
∼= L2(4), Gω ∩ Gα

ω
∼= Frob(5 : 2) and m = 6;

(b.e) G ∼= M12, Gω
∼= M11, Gω ∩ Gα

ω
∼= L2(11) and m = 12.

(c) G is permutation equivalent to a blow–up K of index n of an almost simple group A:
K ≤ A o Sn, where A is a permutation group listed in (b) and m = |A : Aω|n. Moreover
E(G)ω = E(A)n

ω and there exists a ∈ Aut(A) such that A = AωAa
ω and such that E(G)ω∩

E(G)α
ω
∼= (E(A)ω ∩ E(A)a

ω)n.

In the following corollary we formulate the statement of Theorem 1 in terms of permutation
representations.

Proposition 1 Let G be a group which has two isomorphic primitive permutation representa-
tions π1 and π2 on the sets Ω1 and Ω2, respectively. Suppose that a point stabilizer of π1 acts
transitively on Ω2. Then G and Ω1, Ω2 are as listed in Theorem 1 and each of the listed groups
gives rise to such an example.

Notice also that we obtain from Theorem 1 the following geometric application.

Proposition 2 Let (X, Γ) be a flag–transitive m×m grid such that the stabilizer of a parallel
class of lines, G, acts faithfully and primitively on each of the two parallel classes of lines. Then
G and m are as in Theorem 1.
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In order to prove Theorem 1 we have to solve interesting group theoretic questions. One
question we generalize to the following: Find all the groups G which admit a subgroup K of
index pa, p a prime, under the assumption that G has an irreducible and faithful GF (q)-module
in characteristic p whose dimension over GF (q) is at most a. Our result is as follows.

Theorem 2 Let G be a group which contains a subgroup K of index pa for a prime p and let
V be an irreducible and faithful G-module over GF (q) in characteristic p whose dimension over
GF (q) is d. Then one of the following holds.

(a) a < d;

(b) a ≥ d and all the following items hold.

(b.a) p = 2 and d = 3r, for some r ∈ IN ;

(b.b) a ≤ 4r − 1;

(b.c) E(G) = T1 × . . . × Tr, where Ti
∼= L3(2), for i = 1, . . . , r, and E(G) is a minimal

normal subgroup of G;

(b.e) E(G) 6≤ K and, for i = 1, . . . , r, either Ti ≤ K or K ∩ Ti
∼= Frob(7 : 3);

(b.f) V = [V, T1] ⊕ . . . ⊕ [V, Tr], where [V, Ti] is a 3-dimensional GF (q)-module for Ti;

(b.g) G/F (G) ∼= T1 o X with X a transitive subgroup of Sr and F (G) induces scalar
multiplication on [V, Ti], for i = 1, . . . , r.

Remarks. (1) Notice that the statement of Theorem 2 remains true if V is a projective irre-
ducible and faithful G-module in characteristic p.
(2) In fact it can happen that a ≥ d and that at the same time Ti ≤ K, for some i ∈ {1, . . . , r}.
Consider the special situation of Theorem 2(b). Let r = 2 and let X ≤ S8 be isomorphic
to L2(7) and let G = T1 o X. Now let K2 be a subgroup of T2 isomorphic to the Frobenius
group Frob(7 : 3) and let S1 be the stabilizer of T1 in S. Then, as well, S1

∼= Frob(7 : 3)
and 〈KS1

2 〉 ∼= Frob(7 : 3)7. Set K = T1 × 〈K2, S1〉. Then the index of K in G is 224 and the
dimension d of the module V is 24, so indeed T1 ≤ K and a ≥ d.

An application of Theorem 2 to permutation groups is as follows. Let (G, Ω) be a primitive
permutation group of affine type, that is G = Op(G)Gω where Gω is the stabilisator of ω ∈ Ω
and where Op(G) is an irreducible and faithful GF (p)Gω-module. Theorem 2 implies the
following.

Corollary 1 Let (G, Ω) be a primitive permutation group of affine type. Suppose that M is a
maximal subgroup of G which acts transitively on Ω and which is conjugate to a point stabilizer
Gw in Aut(G). Then the following hold.

(a) Op(G) is elementary abelian of order 23r for some positive integer r;

(b) G ∼= (23 : L3(2)) o X for some transitive subgroup X of Sr and M ∼= L3(2) o X.

As every transitive maximal subgroup of G which does not contain Op(G) is conjugate to
a point stabilizer Gw in Aut(G), see [84, Chapter 2, Corollary to 8.7], Corollary 1 implies the
following statement:

Corollary 2 Let (G, Ω) be a primitive permutation group of affine type. Suppose that M is a
maximal subgroup of G which acts transitively on Ω. Then either Op(G) ≤ M or G and M are
as in Corollary 1.
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This corollary generalizes a result of C. E. Praeger, see [74, (Proposition 5.2)], in which the
subgroup M is assumed to be primitive.

Corollary 2 also follows from a result of Aschbacher and Scott [4, Theorem 3] together
with Proposition 4.3.1 of this thesis. For the convenience of the reader we give two proofs of
Corollary 2 in Chapter 4: one based on Theorem 2 and the other one on [4, Theorem 3] and
Proposition 4.3.1.

Finally, notice that Corollary 2 implies a classification of the maximal factorizations of the
primitive permutation groups of affine type:

Corollary 3 Let (G, Ω) be a primitive permutation group of affine type. Suppose that G =
A1A2 for two maximal subgroups of G. Set Q = Op(G). Then one of the following holds.

(a) Q ≤ A1, A2 and G/Q = (A1/Q)(A2/Q);

(b) Q ≤ Ai, G = Q : Aj and Ai/Q is isomorphic to a maximal subgroup of Aj for {i, j} =
{1, 2};

(c) G is as described in Corollary 1 and A1
∼= A2

∼= L3(2) o X.

Consider again the assumptions of Theorem 2. It is natural to ask what happens if we
assume that q is the power of a prime t which is different from p still assuming that a ≥ d. In
fact there are many examples satisfying these assumptions:

For instance, if pa divides q − 1, then there is an example with a ≥ d: Let d be a natural
number which is at most a, let G = GLd(q) and let K be a subgroup of G of index pa (let U
be the subgroup of GF (q)# of order (q − 1)/pa and let K be the set of elements of G whose
determinant is in U). For instance, q = 35, p = 11 and a = d = 2 satisfy these conditions.

Since the latter class of examples are not that interesting, it is better to study those groups
G which have a subgroup of prime power index pa and which act irreducibly on a module of
size qd ≤ pa where q is a power of the prime t. It is also reasonable to assume that p does
not divide the order of the Fitting subgroup F (G) of G. If p divides |F (G)|, then again many
examples can be constructed. For instance, let p be a prime, q a power of a prime t 6= p, and
d a natural number such that |P | > qd for P ∈ Sylp(GLd(q)). This happens for example, if
p = 2, q = 3 and d = 4. Therefore, we assume that p does not divide the order of F (G). There
is a family of examples which satisfies all our assumptions:

A family of Examples. Let m be a natural number such that p = 2m − 1 is a Mersenne
prime, let P be a Sylow p-subgroup in the symmetric group Sp, and set G = SLm(2) o P .
Let V = ⊕p

i=1Vi be the direct sum of natural SLm(2)-modules, so V is of dimension d = mp,
and let G act naturally on V . Set t = 2. Then G contains a subgroup K of index pp+1 and
pa = pp+1 ≥ 2mp = qd (see Lemma 4.2.1).

We show the following:

Theorem 3 Let G be a group which contains a subgroup K of index pa for a prime p that
does not divide |F (G)| and let V be an irreducible and faithful G-module over the field GF (q)
of dimension d such that pa ≥ qd. Then there are natural numbers r,m ∈ IN such that the
following holds.

(a) q = 2 and d = rm;

(b) E(G) = T1× . . .×Tr, where Ti
∼= SLm(2) with 2m−1 a Mersenne prime, for i = 1, . . . , r,

and E(G) is a minimal normal subgroup of G;
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(c) V = [V, T1]⊕. . .⊕[V, Tr], where [V, Ti] is a natural SLm(2)-module for Ti, for i = 1, . . . , r;

(d) G ∼= T1 o X with X a transitive subgroup of Sr;

(e) Either

(e.a) p = q or

(e.b) p = 2m − 1, a Mersenne prime.

Chapter 6 is devoted to a characterization of the soluble groups. The questions we address
there are again related to factorizations of groups and to permutation groups. Recall that for
a group G and a subgroup M of G we say that a subgroup A of G is a supplement to M in G,
if G = MA. We prove the following theorem.

Theorem 4 Let G be a group which satisfies the condition that every maximal subgroup of G
admits an abelian supplement. Then G is soluble.

This result proves a conjecture of Kegel [54, p. 210]. Theorem 4 may also be formulated in
terms of permutation groups as follows.

Corollary 4 Let G be a group such that for every primitive action (G, Ω) of G, there exists an
abelian subgroup of G which acts transitively on Ω. Then G is soluble.

Upon replacing ”action” by ”permutation action”, the statement of the theorem is no longer
true: If there is to be a transitive abelian subgroup only for every faithful primitive action (G, Ω)
of G, then G is not necessarily soluble. For example let G be an extension of an elementary
abelian group N by a non soluble group. Let (G, Ω) be a faithful and primitive action of G.
Then the stabilizer Gω of an element ω ∈ Ω is a maximal subgroup of G and N is not contained
in Gω. Therefore, G = GωN which implies that N acts transitively on Ω. Thus for every
faithful primitive action of G there is an abelian transitive subgroup in G, but G is not soluble.

Unfortunately, Theorem 4 does not characterize the soluble groups as the following example
shows.

Example. Let G = SL2(3) ∼= Q8 : Z3. Let Z = Z(O2(G)) and let T be a subgroup of order 3
of G. Then M = ZT is maximal in G, but does not have an abelian supplement.

The soluble groups can be characterized among the finite groups by a condition which is a
little more general than this one in Theorem 4.

Theorem 5 A group G is soluble if and only if every maximal subgroup M of G admits a
supplement whose commutator subgroup is contained in M .

Which groups G are such that every maximal subgroup of G admits a nilpotent or a soluble
supplement? The answers are given in the following two theorems.

Theorem 6 Let G be a group such that every maximal subgroup M of G admits a nilpotent
supplement. Then G/O∞(G) is isomorphic to 1 or L2(7).

Theorem 7 Let G be a group such that every maximal subgroup M of G admits a soluble
supplement. Then the composition factors of G are either p-groups, p a prime, or isomorphic
to L2(q), with q ∈ {5, 7, 11}. There is no chief factor which is a direct product T1 × · · · × Tn

with n > 1 and Ti
∼= L2(7) or Ti

∼= L2(11).
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In order to prove these theorems we also classify the almost simple groups G satisfying the
property that every maximal subgroup admits a supplement which does not contain soc(G),
see Proposition 6.2.4.

Assume that T is a simple non abelian group which satisfies the assumption of Theorem 5,
i.e. every maximal subgroup M of T admits a supplement C with C ′ ≤ M . Assume further
that C ∩M 6= 1. Then, as C ∩M is normal in C, it follows that (C ∩M)G = (C ∩M)M ≤ M .
Therefore T has a non-trivial normal subgroup, which is impossible. This shows that C is an
abelian complement to M in T and in particular, C acts regularly on the set of cosets of M in
G.

In Chapter 7 we address the problem of classifying the primitive permutation groups which
admit a regular subgroup. If this classification will be finished it will have many applications.

Recall the subdivision of the primitive permutation groups into different types, see 2.3.
Every primitive permutation group (G, Ω) of affine type, of diagonal type or of twisted product
action type possesses a regular subgroup, see 7.2. Thus the goal is to determine those (G, Ω)
possessing a regular subgroup with G almost simple or (G, Ω) of product action type. In this
thesis we focus on G being almost simple. We give a complete list of those (G, Ω) with soc(G)
an alternating or a sporadic or an exceptional group of Lie type. Further we present all the
examples which are known to us for G a classical group. Our particular interest is in the 8-
dimensional orthogonal groups of Witt index 4. This family of classical groups seems to be
the most difficult one to analyse, as the group PΩ+

8 (q) has lots of maximal subgroups, see [57],
and admits lots of factorizations, see [67, Theorem A]. It also seems that most examples live in
small dimension – and in small characteristic, namely in characteristic 2 and 4. We determine
all the pairs (G, Ω) such that G has a regular subgroup for soc(G) ∼= PΩ+

8 (q). In the end of
Section 7.3 of Chapter 7 we outline how to finish the classification of the case T a classical
group. Our results are as follows.
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The alternating and symmetric groups.

See the definition of M(pe + 1) in Chapter 2.

Theorem 8 Let (G, Ω) be a primitive permutation group with soc(G) = T ∼= An, n ≥ 5 and
suppose that there is a subgroup X of G which acts regularly on Ω. Then one of the following
holds, where ω is an element in Ω and ∆ = {1, . . . , n}.

(a) G = An.

(a.a) Ω = ∆ and Gω = An−1.

(a.b) Gω is sharply k-transitive on ∆ and X is the pointwise stabilizer of a k-subset of ∆,
for some k ∈ {3, 4, 5}, and one of the following holds.

(a.b.a) n = p2 +1, with p a prime congruent to 3 modulo 4, k = 3 and Gω
∼= M(p2 +1);

(a.b.b) n = 11, k = 4 and Gω
∼= M11;

(a.b.c) n = 12, k = 5 and Gω
∼= M12.

(a.c) Gω is k-homogeneous, but not k-transitive on ∆, for some k ∈ {2, 3, 4}, and one of
the following holds. In the last two items p is a prime congruent to 3 modulo 4, but
p 6= 3, 7, 11, 23.

(a.c.a) n = 9, k = 4, Gω
∼= PΓL2(8) and X ∼= S5;

(a.c.b) n = 33, k = 4, Gω
∼= PΓL2(32) and X ∼= (A29 × A3) : 2;

(a.c.c) n = p + 1, k = 3, Gω
∼= L2(p) and X ∼= Sp−2;

(a.c.d) n = p, k = 2, Gω
∼= Frob(p : (p − 1)/2) and X ∼= Sp−2.

(a.d) Ω is the set of k-subsets of ∆, for some k ∈ {2, 3}, and one of the following holds.
In the last item q a is prime power congruent to 3 modulo 4.

(a.d.a) n = 8, k = 3 and X ∼= AGL1(8);
(a.d.b) n = 32, k = 3 and X ∼= AΓL1(32);
(a.d.c) n = q, k = 2 and X ∼= AGL1(q)/〈−1〉 ∼= Frob(q : (q − 1)/2).

(a.e) n = 8, Gω
∼= 23 : L3(2), |Ω| = 15 and X ∼= ZZ 15.

(b) G = Sn.

(b.a) Gω ∩ An is a subgroup of index 2 in Gω and is as in (a.a), (a.b.a) or as a group
listed in (a.d).

(b.b) Gω is sharply k-transitive on ∆, for some k ∈ {2, 3}, X ∼= Sn−k and one of the
following holds. In both cases p is a prime and p ≥ 5.

(b.b.a) n = p, k = 2 and Gω
∼= Frob(p : (p − 1));

(b.b.b) n = p + 1, k = 3 and Gω
∼= PGL2(p).

(b.c) n = 6, Gω
∼= PGL2(5) is transitive on ∆ and X is a subgroup of G of order 6;

Conversely, each of the listed items satisfies the assumptions of the theorem.

Remark. (a) If (G, Ω) is as in (b.b.a), then (Gω ∩An, Ω) is as in item (a.c.d) of the theorem.
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The sporadic groups.

Theorem 9 Let (G, Ω) be a primitive permutation group with soc(G) = T a sporadic simple
group. Suppose that there is a subgroup X of G which acts regularly on Ω. Let A be the stabilizer
in G of an element in Ω. Then (G,A,X) are as follows.

(a) T = G ∼= M11 and one of the following holds.

(a.a) A ∼= M10 and Ω is the set of points of the Steiner system S = S(4, 5, 11) related to
T ; and X ≤ T with X ∼= ZZ 11;

(a.b) A ∼= M9.2 ∼= 32 : SD16 and Ω is the set of duads of the Steiner system S; and X ≤ T
with X ∼= Frob(11 : 5).

(b) T ∼= M12 and one of the following holds.

(b.a) A∩ T ∼= M11 and Ω is the set of points P of the Steiner system S(5, 6, 12) related to
T ; and X ≤ T with X ∼= 22 × 3, A4 or 2 × S3;

(b.b) A ∩ T ∼= L2(11); and X ≤ T with X ∼= 32 : SD16.

(c) T ∼= M22, G ∼= Aut(M22), and Ω is the set of points of the Steiner system S(3, 6, 22)
related to T ; and X 6≤ T with X ∼= Frob(11 : 2).

(d) T = G ∼= M23 and one of the following holds.

(d.a) A ∼= M22 and Ω is the set of points of the Steiner system S = S(4, 7, 23) related to
T ; and X ≤ T with X ∼= ZZ 23;

(d.b) A ∼= M21 : 2 and Ω is the set of duads of S; and X ≤ T with X ∼= Frob(23 : 11);

(d.c) A ∼= Frob(23 : 11); and X ≤ T with X ∼= M21 : 2 or 24 : A7;

(d.d) A ∼= 24 : A7 and Ω is the set of blocks of S; and X ≤ T with X ∼= Frob(23 : 11).

(e) T = G ∼= M24 and one of the following holds.

(e.a) A ∼= M23 and Ω is the set of points P of the Steiner system S(5, 8, 24) related to T ;
and X ≤ T with X ∼= D8 × 3, (22 × 3) : 2, S4 or 22 × S3;

(e.b) A ∼= L2(23); and X ≤ T with X ∼= 24 : A7 or M21 : 2.

(f) T ∼= J2, G ∼= Aut(J2) and Ω is the set of points of the rank three graph for T ; A ∩ T ∼=
U3(3); and X 6≤ T with X ∼= 52 : 4 where X/O5(X) acts as a central or a non-central
element of order 4 of Aut(O5(X)) ∼= GL2(5) on O5(X).

(g) T ∼= HS and Ω is the set of points of the Higman-Sims graph related to T ; A ∩ T ∼= M22;
and X 6≤ T with X ∼= 5×5 : 4 or 52 : 4 and O5(X) is self-centralizing in X and X/O5(X)
acts either as a central or as a non-central element of Aut(O5(X)) ∼= GL2(5) on O5(X).

In particular, the rank 3 graphs for J2 and HS, respectively, are Cayley graphs.
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The exceptional groups of Lie type.

If G is an exceptional group of Lie type, then there is no example:

Theorem 10 Let (G, Ω) be a primitive permutation group with soc(G) = T an exceptional
group of Lie type. Then there is no regular subgroup in G.

The classical groups.

Let G be a classical group. In Section 7.3 of Chapter 7 we present all the examples known to
us. Then we first prove the following theorem in order to be able to study PΩ+

8 (q).

Theorem 11 Let (G, Ω) be a primitive permutation group with T = soc(G) ∼= PΩ7(q), q even
or odd. Suppose that Gω ∩ T ∼= G2(q), for ω in Ω. Then G has a regular subgroup if and only
if q ∈ {2, 4}.

The next theorem, which is a negative statement, we only need for n = 3, but prove in full
generality.

Theorem 12 Let (G, Ω) be a primitive permutation group with T = soc(G) ∼= PΩ2n+1(q), q
odd. Let V be the natural module for T and assume that Ω equals the set of totally singular
subspaces of dimension i of V , for some i in {1, . . . , n}. Then there is no regular subgroup in
G.

Then we are showing the main result of this section.

Theorem 13 Let (G, Ω) be a primitive permutation group with T = soc(G) ∼= PΩ+
8 (q). Sup-

pose there is a subgroup X of G which acts regularly on Ω. Then (G, Ω) is one of the examples
(f), (g), (i) or (l) listed in Section 7.3 of Chapter 7.

In order to characterize the examples for the unitary groups in their action on the set of
totally isotropic i-subspaces of their natural module we show the following:

Theorem 14 Let T ∼= Un(q) and let T ≤ G ≤ Aut(T ). Suppose there is a subgroup X of G
which acts regularly on the set Ω of totally isotropic subspaces of dimension i of the natural T -
module V , for some 1 ≤ i ≤ n/2 if n is even or 1 ≤ i ≤ (n−1)/2 if n is odd. Then (n, q) = (4, 2)
or (3, 8) and the pair (T, X) is as in Example (a) or (n) in Section 7.3 of Chapter 7.

Shortly before submitting the thesis the author learned from C.E. Praeger that she as well
as M.W. Liebeck and J. Saxl would also be working on the classification of regular subgroups
of primitive permutation groups.

Note that the thesis provides new evidence for the fact that L2(7) is a special group: Two
of our results imply characterizations of the simple group L2(7). Theorem 6 implies that L2(7)
is the only non-abelian simple group T such that every maximal subgroup of T has a nilpotent
supplement (which is in fact a complement). Moreover, it follows from Theorem 2 that L2(7) is
the only non-abelian simple group T which is a transitive subgroup of a primitive permutation
group of affine type.

In Chapter 2 we fix some notation and sum up definitions that will be used throughout
the present work. In that chapter also included is the necessary background on primitive
permutation groups, as well as the classification of the maximal subgroups of the classical
groups by M. Aschbacher, and lower bounds on the dimensions of the irreducible modules for
the groups of Lie type in defining and in cross characteristic.
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Some words on the methods of proofs used in this thesis. First of all, note that all the results
of this thesis rely on the classification of the finite simple groups. In quite a few chapters, namely
in Chapters 4, 6 and 7 Zsigmondy primes (see Chapter 2 for their definition) play a prominent
role. In Chapters 4 and 6 we first solve the problems discussed therein for the almost simple
groups and then try (successfully) to reduce the general case to the special case of the almost
simple groups. Therefor Lemma 6.3.1 of L. G. Kovács is of great use in the latter chapter. In
Chapter 5 we determine all the permutations groups (G, Ω) admitting a primitive factorization.
Each section of this chapter is devoted to one of the different types of the primitive permutation
groups (see the partition given in Chapter 2). For each of these types it turned out to be
necessary to devise a new method of proof. In Chapters 4, 6 and 7 we quote the classification
of maximal factorizations of the almost simple groups by Liebeck, Praeger and Saxl a lot. In
the Chapter 7 we can not apply general methods but need studying the groups in detail.

A brief history.

We recall some important results on factorizations of groups. A group G has a non-trivial
factorization if and only if G acts on a set Ω and possesses a non-trivial transitive subgroup.
This connection suggests that there are many many theorems which can be read as a result on
factorizations of groups. Thus we are only able to mention some of the theorems on factoriza-
tions.

We do not start with the work of Cauchy or Galois, who both clearly worked also on
factorizations of groups, as they studied transitive permutation groups, but much later with
W. Burnside. It seems to me that there are four principal questions, closely related to each
other, which have been and still are asked about factorizations of groups.

The first question. Given a group G = AB which factorizes in two subgroups A and B of
G, does G inherite certain properties of A and B? The main emphasis has been and still is
put on properties of A and B which force G to be soluble. In this context a first result is the
fundamental paqb-theorem by W. Burnside published in 1904, which states if G = AB with A
and B p-groups of not necessarily the same prime, then G is soluble, [19].

Thirty years later P. Hall characterized the soluble groups: A group G is soluble if and only if
every Sylow p-subgroup of G admits a complement if and only if G possesses a Sylow-system (a
Sylow-system is a set of Sylow-subgroups of G containing exactly one Sylow-subgroup for every
prime in π(G) such that every two elements in the system commute setwise), see [40,41,42].

Then, in 1955, N. Ito proved that if G = AB with A and B abelian, then G is metabelian,
i.e. G′ is abelian, [48]. This theorem also holds for infinite groups. The Theorem of Burnside
as well as the Theorem of Ito have been generalized by H. Wielandt and O.H. Kegel. They
showed that if G = AB with A and B nilpotent, then G is soluble, [91, 52]. Notice that the
proof of W. Burnside of his theorem is based on character theory. Later D. Goldschmidt gave
a group theoretic proof of the paqb-theorem for p and q odd, see [34], and H. Bender extended
the proof of Goldschmidt for all primes [14].

Properties of A and B which force G to be not a non-abelian simple group gained much
attention, as well. In 1963 J. Szép suggested if G = AB with Z(A) 6= 1 6= Z(B), then G is not
non-abelian simple, [85]. E. Fisman and Z. Arad proved the conjecture using the classification
of the finite simple groups [32]. It seems that a classification-free proof is not possible for the
time being. Later C. Hering proposed that if G is a group of Lie type the conjecture could be
deduced from quite elementary facts of groups of Lie type and certain geometrically significant
collineations of buildings [45]. He demonstrated this for the case G ∼= Ln(q). Notice that the
paqb-theorem of Burnside is a consequence of the Conjecture of Szép. Maybe more special cases
of the conjecture can be proven without using the classification by applying the methods of
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Goldschmidt and Bender to the problem.
In 1965 Kegel published a paper [54] in which he considers conditions on a group which

are in the spirit of the Theorem of Hall and of his theorem with Wielandt. Kegel showed,
if G is a group such that every maximal subgroup of G admits a supplement which is cyclic
and of prime-power order, then G is soluble, see [54, Proposition 1]. In the same paper Kegel
conjectured Theorem 4 of this thesis stated above, [54, p.210]. It is well known that every
maximal subgroup of a soluble group is of prime power index in that group. The theorem of
Kegel can be seen as a partial converse of this fact. Note that in the simple group L2(7) every
maximal subgroup is of prime power index, as well. R. M. Guralnick showed that if G is a
group such that every maximal subgroup has prime power index in G, then G/O∞(G) ∼= 1 or
L2(7), see [37, Corollary 3].

Another characterization of soluble groups was obainted by Y. Wang. He showed that a
group G is soluble if and only if for every maximal subgroup H of G there exists a normal
subgroup N = N(H) of G such that G = HN and H ∩ N ≤ Core(H) [88, Theorem 3.1]. In
their paper [13] J. C. Beidleman and D. J. S. Robinson considered groups G having the property
that for every proper subgroup H of G there is a cyclic group X = X(H) which is not in H
such that XH = HX. They proved that every group G enjoying this property is soluble [13,
Theorem A]. See also the related work by Z. Yaoqing [94] and by W. E. Deskins [27]. Notice
that the proofs of Corollary 3 of [37] and of Theorem A of [13] are based on the classification
of finite simple groups. Also notice that Theorem 4 implies Corollary 3 of [37], Theorem A of
[13] as well as Theorem 3.1 of [88].

In this context research on permutable subgroups (H ≤ G is called permutable, if HK =
KH for all K ≤ G), see for instance [12] or [28] and the references therein, and on formations
and Fitting classes, see for instance [43], should also be mentioned. Finally, I would like to
quote a result by G. Xiuyun, K.P. Shum and A. Ballester-Bolinches. They showed that a group
G is soluble if there is a maximal subgroup M in G such that every minimal subgroup of M
has a complement in G, see [93, (4.1)].

The second question is the extension problem. Given two groups A and B, find all the
groups G possessing two subgroups A′ and B′, which are isomorphic to A and B, respectively,
such that G = A′B′. There are quite a few papers by L. Rédei and J. Szép on this difficult
problem, see for instance [77]. U. Preiser classifies in [76] all the groups G which contain simple
groups A and B with G = AB such that every Sylow 2-subgroup of A and of B has rank 2 or
is elementary abelian, respectively.

The third question is as follows. Given a group G, a normal subgroup N of G (or a
subgroup U of G), does there exist a complement to N (or to U) in G? Partial answers to
this question are provided by the Theorems of Gaschütz (see for instance Theorem 10.4 of [5])
and Schur and Zassenhaus (see Theorem 18.1 of [5]). There is also the Normal p-complement
Theorem by Burnside, stating if a Sylow p-subgroup of G is in the center of its normalizer
then every Sylow p-subgroup has a normal complement in G (a normal complement to a Sylow
p-subgroup is also called normal p-complement), see Theorem 39.1 of [5], as well as the Normal
p-complement Theorem by G. Frobenius, stating G has a normal p-complement if and only if
each p-local subgroup of G has a normal p-complement if and only if AutG(P ) is a p-group for
each p-subgroup P of G, see Theorem 39.4 of [5], and the Normal p-complement Theorem by
J. Thompson. It is as follows: Let p be an odd prime and P ∈ Sylp(G). If NG(J(P )) and
CG(Ω1(Z(P ))) have normal p-complements, then G has a normal p-complement, where J(P ) is
the Thompson-subgroup of P , see Theorem 39.5 of [5]. A paper related to the third question has
been written by M. Liebeck, C.E Praeger and J. Saxl in the language of permutation groups.
They determine the structure of a group G which acts primitively on a set and contains a
transitive subgroup which does not contain a subnormal subgroup of G, see [69].
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The last question is as follows. Does there exist a (special) factorization for a given group
G? In a fundamental work Liebeck, Praeger and Saxl proved: Let T be a finite simple group
and let G be a group such that T ≤ G ≤ Aut(T ). Suppose that G = AB, where A and B are
maximal subgroups of G not containing T . Then the triples (G,A, B) are explicitly known and
they present explicit lists of the triples (G,A, B), see [67]. Theorem 1 of this thesis can also
be seen as an answer to the fourth question. Finally, there is a paper by R.W. Baddeley and
C.E. Praeger where they determine all the factorizations T = AB for the simple groups T such
that A is maximal in T and such that |T |, |A| and |B| are divisible by the same primes. This
result is related to but independent of Theorem 1.

Special attention obtain and obtained the primitive permutation groups which have a regular
subgroup (see also the third question). Let G be a group which acts faithfully and primitively
on a set Ω. In 1911 W. Burnside proved that if (G, Ω) contains a cyclic regular subgroup of
prime power order, then G is doubly transitive or of prime degree [21, p. 343]. Later I. Schur
could extend this result to all cyclic groups: if G contains a cyclic regular subgroup, then G
is doubly transitive or of prime degree [79]. In order to prove this fact Schur introduced the
powerful theory of S-rings. In 1935 H. Wielandt [90] generalized this theorem to abelian groups
with a cyclic Sylow subgroup: if G contains an abelian regular subgroup which has a cyclic
Sylow subgroup, then G is doubly transitive or of prime degree. In his book [92] Wielandt
introduced the notion of a Burnside group. A group X is called a Burnside-group (or short a
B-group) if each primitive permutation group which contains a regular subgroup isomorphic to
X is necessarily 2-transitive. Hence the above theorem states in fact that every abelian group
which has a cyclic Sylow subgroup is a B-group, see for a survey of B-groups [92, Chapter IV
§ 25].

All the pairs (G, Ω) such that G contains a cyclic regular subgroup have then been classified
by Feit [31] (the insoluble ones), see also [36, Theorem 1.49], and by J. F. Ritt [78, p. 27] (the
soluble ones) – see also G. A. Jones [49].

C. Li classified those (G, Ω) such that G contains an abelian regular subgroup. As a corol-
lary of this classification he obtained that an abelian group X which is not a p-group is not a
B-group if and only if X = X1 × · · · × Xn with |Xi| = |Xj | and n ≥ 2. In the last chapter
we continue the classification of the pairs (G, Ω) such that G contains a regular subgroup and
discuss some results on B-groups.
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