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Notes for the authors
U: strong steinberg tensor product theorem
U: the weights of a module are really weights on Φ∗

U: Need to think about the notations (α, β) and <α, β>. For example <α, β> currently
also denotes the root system generated by α and β.

U: I added the GLS reference. According the Parker/Rowler, it contains a proof (
Theorem 2.8.2) that the irreducible modules of the untwisted groups stay irreducible for
the twisted group.
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Chapter 1

Introduction

In this book we classify modules for finite groups fullfiling certain properties which forces
the module to be ”small” in some sense or annother. The main motivation for the book is
provide the information about modules necessary in the local classification of finite groups
of local characterisic p [LGCP].
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Chapter 2

Some Group Theory

Lemma 2.0.1 [three subgroup lemma] Let A,B,C be subroups of G with [A,B,C] +
[B,C,A] = 1. Then [C,A,B] + 1.

Proof:

Lemma 2.0.2 [nilpotent groups] Let M be a nilpotent group and A a proper subgroup
of M . Then A is a proper subgroup of NM (A) and 〈AM 〉 is a proper subgroup of M .
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Chapter 3

Some elementary representation
theory

Lemma 3.0.3 Let G be a finite group and V an irreducible KG-module. If char K = p, p
a prime and Ωp(G) acts homogenously on V , Ωp(G) acts irreducible on V .

Proof: Comment: ref? any extra assumptions on K ?
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Chapter 4

Quadratic pairs in odd
characteristic

The proof of the Glauberman-Thompson Theorem presented in

4.1 sec:glauberman thompson

is essentially due to Paul Flavell.

4.2 a,b and ab-quadratic

[sec:ab quadtratic]

Lemma 4.2.1 [ab quadratic] Let G a group, R a ring, V a faithful RG-module and
a, b ∈ G such that a, b and ab are quadratic in V and G = 〈a, b〉. Then

(a) [z] If G is abelian, then G is quadratic on 2V .

(b) [a] G is nilpotent of class at most two.

(c) [y] [V,G′] ≤ 2[V,G,G].

(d) [b] [V,G′, G] = [V,G,G′] = 0.

(e) [c] 〈h〉G′ is quadratic for all h ∈ G.

(f) [d] αβ = −βα and γ = 2αβ, where α = a− 1, β = b− 1 and γ = [a, b] − 1.

(g) [e] Put Cδ = {v ∈ V | vδ = 0}. Then C2β ≤ V α + C2β ≤ Cγ ≤ V and V γ ∼=
V α+ C2β/C2β

∼= V/Cγ as R-modules.

(h) [f] Suppose that R is field, then dimR[V, [a, b]] ≤ 1
2 min{dimR[V, a],dimR[V, b]}.

11
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Proof: Let δ = ab−1. Then δ = (α+1)(β+1)−1 = αβ+α+β. Since α2 = β2 = δ2 = 0
we conclude that

1◦ [1] αβαβ + αβα+ αβ + βαβ + βα = 0

Suppose that G is abelian, then αβ = βα and so (1◦) implies 2αβ = 0. Thus (a) holds.

Multiplying (1◦) with β from the right we have

2◦ [2] αβαβ + βαβ = 0

Multiplying (2◦) with α from the left we get

3◦ [3] αβαβ = 0.

Substituting (3◦) into (2◦) we have

4◦ [4] βαβ = 0

Multiplying (1◦) with α from the right and using (3◦) we have

5◦ [5] αβα = 0

¿From (1◦), (3◦),(4◦) and (5◦) we get

6◦ [6] αβ + βα = 0

Let g = [a, b]. Then g−1 = (1−α)(1−β)(1+α)(1+β)−1 = αβ−αβ−βα+αβ = 2αβ
Thus (f) holds. (b),(c) and (d) are immediate consequences of (f). By (b) every element
h ∈ G can be written as h = akblgm with κ, l,m ∈ Z. Thus

h− 1 = (1 + kα)(1 + lβ)(1 + 2mαβ) − 1 = kα+ lβ + (kl + 2m)αβ

and so

(h− 1)2 = kl(αβ + βα) = 0

Thus all elements in G are quadratic. Hence (e) follows from (d).
(g) follows from γ = 2αβ.
Suppose R is a field. Then by (g),

dimV β = dimV/Cβ ≥ dimV/C2β ≥ dimV α+ C2β/C2β + dimV/Cγ = 2 dimVγ

By symmetry in a and b we conclude that (g) holds. �
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4.3 The Glauberman-Thompson Theorem

Let F be a field with char F 6= 2, G a group and V a faithfully and finitary FG-module. ote
here that we allow infinite fields and fields in characteristic 0. For a ∈ G let Ca = CV (a),
Va = V (a − 1) and da = dimVa. Let Q be the set on non trivial quadratic elements in G,
that is Q = {1 6= a ∈ G | Va ≤ Ca}. Put d = mina∈Q da and QR = {a ∈ Q | da = d}. The
elements of QR are called roots. Fix two roots a and b and let H = 〈a, b〉. Put α = a− 1,
b = β − 1, g = [a, b] and γ = g − 1. Then Va = V α and Cα = kerα. Suppose that H
is niloptent, i.e that H acts unipotenly on V . In this section we prove the Glauberman-
Thompson theorem which says that among other things H has class at most 2.

Lemma 4.3.1 [class two] Suppose that H has class two. Then

(a) [a] g is a root.

(b) [b] Va ∩ Vb = 0.

(c) [c] Vg = V αβ ⊕ V βα and V αβ = V β ∩ Cb = V β ∩ V γ.

(d) [d] V = Ca + Cb.

(e) [e] V is a direct sum of indecomposable FH-submodules.

(f) [f] Let W be non-trivial indecomposable direct summand of the FH-module V . Then
there exists a basis for V such that the matrices for α and β are ( in some order)0 0 0

1 0 0
0 0 0

 0 0 0
0 0 0
0 1 0


(g) [g] Let 1 6= d ∈ H. Then d is quadratic on V iff q is a root and iff d ∈ 〈aH〉 ∪ 〈bH〉.

Moreover, both 〈aH〉 and 〈bH〉 act quadratically on V .

Proof: Let A = 〈a, ab〉 = 〈a, g〉. Since H has class two, A is abelian and A is normal
in H. Moreover, ab

2
= ag2 = a2ba−1. Hence 4.2.1(b) implies that 〈a2b, a−1〉 is quadratic.

Since char F 6= 2 and a is quadratic, we have a2 6= 1. Hence the minimality of da = d implies
Va2 = Va and we conclude that A is quadratic. Then a centralizes Vg and by symmetry b
centalizes Vg. Therefore

1◦ [0] V g ≤ CV (H).

Note that

V α+ V γ = [V,A] = V α+ V αb = V α+ V αβ

In particular, Cb ∩ [V,A] = (V α ∩ Cb) + V αβ and so
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V γ ≤ (V α ∩ Cβ) + V αβ

By definition of d, dimV γ ≥ d. On the otherhand dim(V α∩Cb)+dimV αβ = dimV α =
d and we conclude that

2◦ [1] V γ = (V α ∩ Cβ) ⊕ V αβ and g is a root.

In particular, V αβ ≤ V γ ≤ CV (H). By symmetry V βα ≤ V γ ≤ CV (H). In particular,
V αβ+V βα is an FH-submodule in V and H acts quadtratically on V/(V αβ+V βα). Thus
V γ ≤ V αβ + V βα. Since V βα ≤ V α ∩ V γ ≤ V α ∩ Cb we conclude from (2◦) that

3◦ [2] V γ = V βα⊕ V αβ ≤ CV (H) and V α ∩ Cβ = V βα = V α ∩ V γ

In particular, V α ∩ V β = (V α ∩ Cb) ∩ (V β ∩ Ca) = V βα ∩ V αβ = 0 and (a), (b) and
(c) are proved. (d) follows from (b) applied to the dual module of V .

Let Ua be an F-complement to V α + CV (H) in Ca. Then Ua ∩ Cb ≤ Ua ∩ CV (H) = 0
and so dimUa = dimUaβ. Let u ∈ Ua with uβα = 0. Then uβ ∈ V β ∩ Cα = V αβ and so
uβ = vαβ for some v ∈ V . Hence u−vα ∈ Cb and u ∈ (Cb+V α)∩Cα = (Cα∩Cβ)+V α =
V α+CV (H). Thus u = 0 and Uaβ∩Ca = 0. Also Uaβ∩Uaβα ≤ Uaβ∩Ca = 0. Furthermore,
Uaβ + Uaβα ∩ Ca ≤ (V β ∩ Cα) + V α ≤ CV (H) + V α and so Ua ∩ Uab + Uaαβ = 0. Put
Wa = Ua +Uaβ + Uaβα. Then Wa = Ua ⊕Uaβ ⊕Uaβα and dimUa = dimUaβ = dimUαβ.
Thus if ui, 1 ≤ i ≤ m, is a basis for Uα, then ui, uiβ, uiβα, 1 ≤ i ≤ m is a basis for Wa.
Since a centralizes Ua and Uaβα and b centralizes Uaβ and Uaβα we see that F〈ui, uiβ, uiβα
is a 3-dimensional FH-submodule on which α and β as in (f).

Similarly define Ub andWb. Suppose thatWa∩Wb 6= 0. Then alsoWα∩Wβ∩CV (H) 6= 0.
But Wa ∩ CV (H) = Uaβα and Wβ ∩ CV (H) = Ubαβ and we obtain a contradiction to (b).
Thus Wa ∩Wb = 0.

Put V = V/Wa +Wb + CV (H). Since V = Ca + Cb = Ua + Ub + V α+ V β + CV (H) =
Wa + Wb + CV (H) we have V = [V ,H]. Since H is nilpotent on V , this implies V = 0.
Thus

V = Wa +Wb + CV (H) = Wa ⊕Wb ⊕ C

for some C ≤ CV (H). Hence (e) holds and (f) follows from the above and the Krull-Schmidt
Theorem. (g) follows easily from (f). �

Lemma 4.3.2 [va cap vb] Suppose that V α ∩ V β 6= 0. Then H is abelian.

Proof: Note that V α ∩ V β ≤ CV (H) and so V α ∩ V β ≤ V δ for all δ ∈ αH ∩ βH . Hence
by induction on the maximum of the subnormal lengths of a and b in H, both 〈aH〉 and
〈bH〉 are abelian. Thus H has class at most two and the lemma follows from 4.3.1(b).

Lemma 4.3.3 [A abelian] H has class at most two.
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Proof: Since H is unipotent on V , there exists v ∈ V with [v,H,H] = 0 and [v,H] 6= 0.
Interchanging a and b if necessary we may assume that vα 6= 0. Then vα ∈ V α∩CV (H) ≤
V δ for all δ ∈ αH . Thus by 4.3.2, A := 〈aH〉 is abelian. By induction on the subnormal
maximum of the subnormal lengths of a and b to H we may assume that B := 〈b, ba〉 has
class at most two. If B is abelian that g ∈ Z(B)∩A ≤ Z(H) and we are done. So suppose
that B has class two. Note thatH = AB. Since A is abelian, A∩B is normal in A. Since A is
normal in H, A∩B is normal in B and so A∩BEH. Since g ∈ A∩B, H/A∩B is abelian.
Hence [A,B] ≤ A ∩ B and B is normal in H. By 4.3.1(g), B has exactly two maximal
quadratic subgroups, namely 〈bB〉 and 〈baB〉. Thus a2 normalizes 〈bB〉 and ba

2 ∈ 〈bB〉.
Since [b, a, a] ∈ [A,A] = 1 we conclude b2a = (b[b, a])2 ∈ bb[b, a]2B′ = bba

2
B′ ⊆ < bB〉. Thus

[B, b2a, B] = 0. By minimality of d, [V, b2a] = [V, ba] and so [V, ba, B] = 0. Since B = Ba−1

we also have [V, b,B] = 0, [V,B,B] = 0 and B is abelian, a contradiction. �

4.4 The SL2(q)-Lemma

Let G be a finite group, F a field with positive characteristic p 6= 2, V a faithful, finite
dimensional FG-module and a, b quadratic elemennts. Put H = 〈a, b〉. In this section we
show (with some exceptions for p = 3), that if a and b are roots than either H is p-group
or H ∼= SL2(q) for some power q of p. Put δ = αβ + βα.

Lemma 4.4.1 [d commutes] δh = hδ for all h ∈ H.

Proof: αδ = αβα = δα.

Lemma 4.4.2 [d as scalar] Suppose that d acts as the scalar ξ on V .

(a) [a] If ξ = 0, then H is nilpotent of class at most two and all elements in H act
quadratically on V .

(b) [b] Suppose ξ 6= 0.

(a) [a] V is the direct sum of isomorphic 2-dimensional simple FH submodules.

(b) [b] For each simple FH-submodule in V there exists a basis such that the matrices
of α and β are (

0 1
0 0

) (
0 0
ξ 0

)
(c) [c] H ∼= SL2(Fp[ξ]) or p = 3, |ξ| = 4 and H ∼= SL2(5).

Proof: Suppose first that ξ = 0. Then αβ = −βα and so ab acts quadratic on V . Thus
(a) follows from 4.2.1.
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So suppose that ξ 6= 0. Then V = ξV = V δ = V α + V β = Ca + Cb and Ca ∩ Cb ≤
CV (H) ≤ ker δ = 0. Thus V α = Ca, V β = Cb and V = Cb ⊕ Ca. In particular the
Cb → Ca, v → vα is an isomorphism. Let v ∈ Cβ . Then vαβ = v(δ − βα) = ξv. Let
vi, 1 ≤ i ≤ m be a basis for Cb. Then vi, viα is a basis for V and we see (b:a) and (b:b)
holds. (b:c) now follows from Dickson’s Theorem ( see [?]) �

For ξ ∈ F let Vξ be the generalized ξ-eigenspace for δ on V . Note that by 4.4.1Vξ is an
H-submodule.

Lemma 4.4.3 [v xi] Let ξ ∈ F] and suppose that V = Vξ. Then H/Op(H) ∼= SL2(Fp[ξ])
respectively SL2(5) if p = 3 and |ξ| = 4.

Proof: Note that ε := δ − ξ act nilpotenly on V and δ acts as the scalar ξ in each
V εn/V εn+1. Thus the lemma follows from 4.4.2.

Lemma 4.4.4 [n central] Let N/Op(H) = Z(H/Op(H) and put Z = Op(N). Then Z
acts as a scalar±1 on each Vξ. Inparticular, Z ≤ Z(H), Z is an elementary abelian 2-group
and N = Op(H) × Z.

Proof: Note that N acts as a scalar on each composition factor of H on V . In particular,
N/Op(H) is a p′-group and so N = Op(H)Z. Let h be a p′ element in N and ξ ∈ F. If ξ = 0,
then Op(H) and so also h centralize Vξ. So suppose that ξ 6= 0. Since [h,H] centralizes
all the composition factors for H on Vξ we conclude from 4.4.3 that h either centalizes all
the composition factors or h inversts all the composition factors of H on Vξ. Since h is a
p′ we conclude that h acts as ±1 on Vξ. To prove the remaing assertions we may assume
that F is algebraicly closed. Then V is the direct sum of its eigenspaces and so h2 = 1 and
[h,H] = 1. �

Lemma 4.4.5 [op central] Suppose that a is a root. Then [Op(H), Op(H)] = 1.

LetW be a non-trivial simple submodule forH in V . TheWα 6= 0. Moreover, N normalizes
Wα, A := 〈aN 〉 is a p-group and [Wα ≤ V αn for all n ∈ N . Thus by 4.3.2, A is abelian.
Thus A act on N . Let X be a composition factor for H on Op(H). Then by 4.4.4, N acts
trivially on X. On the otherhand by 4.4.3 H/N is a subdirect product of L2(q) for odd q′s
and so H/N is p-stable. Thus a and so also Op(H) centralizes X. �

With ring we mean a ring with one. Let Mn(R) be the ring of n× n matrices over the
ring R.

Lemma 4.4.6 [ideals] Let R and S be a rings, φ : R → S an onto ringhomomorphism
and I = kerφ. Then

(a) [a] φ1 : Mm(R) →Mm(S), (aij) 7→ (φ(aij) is an onto ring homomorphism with kerφ1 =
Mn(I).
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(b) [b] φ2 : GLm(R) → GLm(S), (aij) 7→ (φ(aij) is an group homomorphism with kerφ1 =
1 +Mn(I).

(c) [c] Let a, b ∈ GLm(R). Then the following are equivalent: ab−1 ∈ 1 +Mn(R), a− b ∈
Mn(R) and φ2(a) = φ2(b).

Proof: Obvious. �

Lemma 4.4.7 [direct sum of rings] Let R1 and R2 be commuative rings. Then GLn(R1⊕
R2) ∼= GLn(R1) ×GLn(R2) and SLn(R1 ⊕R2) ∼= SLn(R1) × SLn(R2).

Proof: Obvious. �

Lemma 4.4.8 [trace 0] Let k, l,m be postive integers, R a commutative ring with one, F
a subfield of R and µ ∈ R with R = F[µ] and µk = 0 for some k ∈ N. Let M◦

m(R) be the
ring of trace 0, m×m matrices over F. Put

Il := {1 + µlb | b ∈M◦
m(R)}

Nonsense, thsi is not even a subgroup. Just use determined to describe the correct subgroup.

(a) [a] Il is a normal subgroup of GLm(R)

(b) [b] [1 + µra, 1 + µsb] ∈ 1 + µr+s(ba− ab)Ir+s+1 for all a, b ∈M◦
m(R) and r, s ∈ N.

(c) [c] [Ir, Is] = Ir+s. In particular, I2 = I ′1 and I1 is nilpotent of class k − 1.

(d) [d] For all 1 ≤ l ≤ k, Il/Il+1 is isomorphic to Mm ◦ (F) as a module for GLm(F).

(e) [e] Let a ∈ GLm(F) and i ∈ I1. Then ai ∈ (a + µd)I2 for some uniquely determined
d ∈Mm(F). Moreover, d has trace 0 and µ2 divides the trace of ai − a.

Proof:
Let a, b ∈M◦

m(R) and d ∈ GLm(R).
(a) (1 + µla)(1 + µlb) = 1 + µ(a + b + µlab) and so Il is a subgroup of GLm(R). Also

(1 + µla)d = 1 + µlad and so Il is a normal subgroup of GLm(R).
(b)
Let x = 1 + µra, y = 1 + µsb and z = 1 + µr+s(ba− ab). Then modulo Ir+s+1

xyc ≡ (1+µra+µsb+µr+sab)(1+µr+sba−µr+sab) ≡ (1+µra+µsb+µr+sab)+µr+sba−µr+sab ≡ 1+µra+µsb+µr+sba ≡ yx

Thus [x, y] = x−1y−1xy ≡ c modulo Ir+s+1 and (b) holds.
(c) follows fro (b) and some straightforward calculations.
(d) The map Mm ◦ (F) → Il/Il+1, a→ (1 + µla)Il+1 is GLm(F)-isomorphism.
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(e) We may assume without loss that µ2 = 0. The I2 = 0. We first show the uniqueness
of d. So suppose that a + µd = a + µe) with d, e ∈ Mm(F). Then µ(d − e) = 0 and since
d− e ∈Mm(F), d− e = 0 and d = e.

For the existence of d, note that i = 1 + µb with b ∈Mm(F) and so i−1 = 1 − µb. Thus

ai ∈ (1 − µb)a(1 + µb) = a+ µ(ab− ba)

So d = ab− ba works. Also ab and ba have the same trace and so ab− ba has trace 0.�

Let R be a commutative ring and O 6= ξ ∈ R. Let Sξ be the subgroup of SL2(R)
generated by

a :=
(

1 1
0 1

)
and bξ :

(
1 0
ξ 1

)

Lemma 4.4.9 [sxi irreducible] Let F be a locally finite field with 0 6= p := charF 6= 2
and 0 6= ξ ∈ F. Then Sξ acts irreducible on M◦

2 (Fp[ξ])

Proof: Let b = bξ, S = Sξ and K = Fp[ξ]. Then S ≤ SL2(K). Put V = M◦
2 (K) and

let 0 6= U an FpS submodule in V . We need to show that U = V . Note that V is an

KS-module. Put x =
(

0 1
0 0

)
, y :=

(
1 0
0 −1

)
and z :=

(
0 0
1 0

)
. Direct martix calculations

show that

1◦ [1] [x, a] = 0, [y, a] = 2x and [z, a] = y − x.

2◦ [2] [x, b] = ξy − ξ2z, [y, b] = −2ξz and [z, b] = 0

In particular,

3◦ [3] [x, a, a] = [y, a, a] = 0 and [z, a, a] = 2x.

and

4◦ [4] [z, a, a] = [y, a, a] = 0 and [x, a, a] = −2ξ2z.

Thus CV (a) = Kx. Put E := {a ∈ K | lx ∈ U} and D := {d ∈ K | dx ∈ U + Ky + Kz.
Then E and D are Fp subspace of K and E ≤ D. Since CU (a) 6= 0, E 6= {0}. Let d ∈ D.
Then [dx, b, b] ∈ U and so from (4◦), −2ξ2z ∈ U and so by (4◦) [−2ξ2z, a, a] = −4ξ2x ∈ U .
Thus ξ2E ≤ ξ2D ≤ E. Since multiplication by ξ2 is invertible we conclude that

5◦ [5] E = D = ξ2D.
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Let e ∈ E. Then [ex, b, a] = e[ξy− ξ2z, a] = e((2ξ + ξ2)x− ξ2y) ∈ U . Thus (2ξ + ξ2)e ∈
D = E. Since by (5◦), ξ2e ∈ E we get eξ ∈ E. Thus E is invaraint under multiplication by
ξ. Since K = Fp[ξ]], ξ acts irreducible on K by left multipication. Hence E = K. It now
follows from (2◦) and (4◦) that V = Kx+ Ky + Kz ≤ Ex+ [Ex, b] + [Ex, b, b] ≤ U and so
V = U . This completes the proof of the lemma.

�

Lemma 4.4.10 [a+y a root] Let F be a field, f a polynomial over F, n be a non-negative
integer and a a root of f in some extension field K of F.

(a) [a] a has multiplicity at least n as a root of f if and only if a + y is a root of f in
K[y]/(yn).

(b) [b] The map φ : F[x]/(fn) → K[y]/(yn), g + (fn) → f(a + y) + (yn) is a well-defined
ringhomomorphsim.

(c) [c] Suppose that K = F(a)(∼= F[x]/(f)) and that f is irreducible and seperable. Then φ
is an isomorphism.

Proof: (a) The proof is by induction on n. Write f = g · (x−a)+ b with g ∈ K[x] and
b = f(a) ∈ K. Then f(a + y) = g(a + y)y + b. Hence f(a + y) ∈ (yn) if and only if b = 0
and g(a+ y) ∈ (yn−1). By induction this is true if and only if a is a root of f and a is has
multiplicity at least n− 1 as a root of g. Thus (a) holds.

(b) Consider the ringhomorphism ψ : F[x] → K[y]/(yn), g → g(a + y). Since a has
multiplicity at least n as a root of fn we get from (a) that ψ(fn) = 0. Thus (fn) ≤ kerψ
and (b) holds.

(c) Hence F[x] is a PID, kerψ = (h) for some h ∈ F[x]. Since ψ(fn) = 0, h divides fn.
Since f is irreducible we can choose h = fm for some m ≤ n. From (a) we have that a
has multiplicity at least n as a root of h = fm. As f is seperable( that is f has no double
roots) we concclude that m ≤ n and so m = n. Hence kerψ = (fn) and so φ is one to one.
Let d = deg f . Then both F[x]/(fn) and K[y]/(yn) have dimension nd over F and so φ is
an isomorphism. �

Lemma 4.4.11 [Sf] Let p be a prime and f a non-constant polynomial over Fp with f(0) 6=
0. Let ξf = x+ (f) ∈ Rf , Rf = Fp[x]/(f) and Sf = Sξf

(a) [a] Suppose that f is irreducible. Then Rf is a field and exactly one of the follwing
holds.

1. [a] Sξ = SL2(Rξ) and either p 6= 3, or ξ2 = −1.

2. [b] Sξ ∼= SL2(5), p = 3 and ξ2 = −1.

(b) [b] Suppose that f = gn for an irreducible polynomial g. Then
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(a) [a] Rf ∼= Rg[y]/(yn).

(b) [b] According to (b:a), view Rg has a subfield of Rf . Then

Sf = (1 +M◦
2 (Rf )Sg.

(c) [c] Supposse that f =
∏m
i=1 gi, where gi = fni

i and the fi are pairwise distinct irreducible
polynomials in Fp[x]. Then

(a) [a] Rf ∼= ⊕m
i=1Rgi

∼= ⊕m
i=1Rfi

[y]/(yni).

(b) [b] SL2(Rf ) ∼= \/mi=1 SL2(Rgi) ∼= \/mi=1 SL2(Rfi
[y]/(yni)).

(c) [c] Sf ∼= \/ni=1 Sgi.

Proof: (a) is Dickson’s Theorem ([?]).
(b:a) follows from 4.4.10(c).
(b:b) Let F = Rg and R = F[y]/(yn). Then ξ := ξg = x+ (f) is root of f in F. Also put

µ = y + (yn). Then µn = 0 and R = F[µ]. By (b:a), SL2(Rf ) and SL2(R) are isomorphic.
Moreover, (see 4.4.10(b)) we can choose this isomorphism such that(

1 1
0 1

)
7→

(
1 1
0 1

)
and (

1 0
ξf 1

)
7→

(
1 0

ξ + µ 1

)
So we need to compute the subgroup S := Sξ+µ of SL2(R). Let I = (1 + M◦

2 (R),
H = ISξ and ρ = ξ + µ. By 4.6.6, Sg normalizes I and so H is a subgroup of SL2(R).
bξ+µ = bµbξ and bµ ∈ I we see that both a and bξ+µ are in H. Hence S ≤ H and H = SI.
Note that we can choose ε ∈ ±1 such that abεξ is a p′ element. Suppose that S ∩ I ≤ Φ(I).
Then S/S∩I ′ ∼= Sξ and so abερI ′ is a p′ element. Thus there exists i ∈ I with abερ = (abεξ)i

modulo I ′. We will now apply 4.6.6(d). Note that with the notations from 4.6.6, I1 = I
and by 4.6.6(c), I2 = I′. We conclude that µ2 divides the trace of abερ − abεξ = a(bεµ − 1).
But the latter has trace εµ, a contradiction.

Thus S ∩ I � I ′. By 4.6.6(d) and 4.4.9 we have that S acts irreducible on I/I′. Thus
I = (S ∩ I)I ′. Since I is nilpotent this implies I ≤ S and so H = SI = S. Thus (b:b) is
proved.

The first part of (c:a) follows from the Chinese Remainder Theorem. The second part
follows from (b:a).

(c:b) follows from (c:a) and 4.4.7.
(c:c) Put S = Sf , Si = Sgi and bi = bgi . We use the isomorphism in (c:b) to identify

SL2(Rf ) with \/mi=1 SL2(Rgi). Then S ≤ \/mi=1 Si. Let A = S1 and B = \/mi=2 Si. Then
AB = SB and by induction on m, AB = SA. Hence A∩ S EA, B ∩ S EB and A/A∩ S ∼=
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S/(A ∩ S)(B ∩ S) ∼= B/B ∩ S. If A ≤ S we also get that B ≤ S and we are done. So we
may assume that Si � S for all i.

Suppose first that ni = 1 for all 1 ≤ i ≤ m.
If A is not perfect then by (a), Rgi

∼= F3. So p = 3 and gi = x± 1. Moreover,B∞ ≤ S∞

and Si � S implies that m = 2 and wthout loss g1 = x+ 1 and g2 = x− 1. Since ab1 ∈ S1′
but ab2 /∈ S2′, we get that S/(AB′) = AB. Thus S contains a Sylow p-subgroup of AB.
Hence A = (A ∩ S)A′ and as A ∩ S is normal in A, A ≤ S, contrary to our assumnptions.

So we may assume that A is perfect and by symmetry that all the Si’s are perfect.
Hence by (a) each of the Si are quasisimple. In particular, A ∩ Si ≤ Z(A) and A/A ∩ S
is quasimple. Suppose that B ∩ S � Z(B). Then B contains a component or B and thus
Si ≤ S for some i, contray to our assumptions.

Thus B ∩S ≤ Z(B). Since B/B ∩S ∼= A/A∩S is quasisimple we conclude that m = 2.
Moreover, the exists an isomorphism φ : S1/Z(S1) → S2/Z(S2) which sends a1Z(S1) to
a2Z(S2) and b1Z(S1) to b2Z(S2). Note that for p = 3 at most one of the Si are isomorphic
to SL2(5) (since gi = x2 ∗ 1 if this holds. We conclude that Si = SL2(Ri) and that φ is
induced from a ismorphism of field σ : R1 → R2. But then g1 = g2, a contradiction.

This completes the analysis of the case ni = 1 for all 1 ≤ i ≤ m. Let T = Op(AB) =
Op(A)Op(B). Put h =

∏m
i=1 fi. Since AB/T = Sh we conclude from the preceeding case

that AB = ST . Then AT = (S ∩AT )T and so Op(A) ≤ S. By 4.6.6(d) and 4.4.9, Op(A) =
[Op(A), A] = [Op(A), Op(A)] ≤ Op(A) and so Op(A) ≤ S. By symmetry Op(Si) ≤ S for all
i and so T ≤ S and AB = ST = S. �

4.5 A second proof for the SL2(q)-lemma

.

Lemma 4.5.1 [ab semisimple] Let F a field, V a finite dimensional vector space over F,
and a, b ∈ GLF(V ). Suppose that a, b are quadratic and put H = 〈a, b〉.

(a) [a] Let λGLF(V ) with [λ,H] = 1. Let R be a commutative of EndFH(V ) containing
F, λ and λ−1. Suppose that v be an eigenvector with eigenvalue λ for ab on V , that is
vab = λv. Put W := Rv +Rva and w = va, then

(a) [a] va = w and wa = −v + 2w.

(b) [b] vb = 2v − λ−1w and wb = λv

(c) [c] vab = λv and wab = 2(λ− 1) + λ−1w

(d) [d] W is H-invariant.

(e) [e] Suppose that λ + λ−1 is invertible in R. Put t := w − 2(λ + λ−1)−1(λ − 1)v.
Then tab = λ−1t and W = Rv ⊕Rt.

(b) [b] Suppose that ab is semisimple.
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(a) [a] V = CV (ab) ⊕ [V, ab] and both [V, ab] and CV (ab) are H invariant.

(b) [b] If F is algebraicly closed then [V, ab] is the direct sun of simple 2-dimensional
FH-submodules.

(c) [c] Suppose that −ab is quadratic and p = char F 6= 2.

(a) [a] If p 6= 0, then H ∼= SL2(p).

(b) [b] V is the direct sum of isomorphic simple 2-dimensional FH-module.

(c) [c] There exists basis vi, wi, 1 ≤ i ≤ m for V such that Fvi ⊕ Fwi is H invariant
and the matrix for a and b with respect to vi, wi is(

1 2
0 1

) (
1 0
−2 1

)
Proof: (a) Since a is quadratic, va−v = (va−v)a and so w−v = wa−w and wa = −v+2w.
Thus (a:a) holds.

Note that λv = vab = wb. Hence vb
−1

= λ−1w. Since b is quadratic, [v, b] = −[v, b−1] =
v − vb

−1
= v − λ−1w amd so vb = 2v − λ−1w. Thus (a:b) holds. (a:d) follows immediately

form (a:a) and (a:b).
Moreover, vab = λv and wab = (va

2
)b = (−v + 2w)b = (−2v + λ−1w) + 2λv = 2(λ −

1)v + λ−1w and so also (a:c) holds.
That tab = λ−1t follows by direct calulation from (??). The definition of t implies

Rv+Rt = Rv+Rw = W . Let u ∈ Rv∩Rt. Then λu = uab = λ−1u and so (λ−λ−1)u = 0.
Since by assumption (λ − λ−1) is invertible we have u = 0 and Rv ∩ Rt = 0. Thus (a:e)
holds.

(b) We may assume that F is algebraicly closed. Since ab is semsimple, V is the direct
sum of the eigenspaces for ab on V . Let λ ∈ F, Vλ the corresponding eigenspaces and v ∈ Vλ.
Since ab is semisimple, (a:c) implies that w ∈ Fv + Vλ−1 . Thus Vλ + Vλ−1 is H invariant.
Thus (b:a) holds.

Suppose now that λ 6= 1 and v 6= 0. If w ∈ Fv, then the qudratic action of a and b imply
that H centralizes v, a contradiction to vab = λv 6= v. Thus Fv + Fw is 2-dimensional and
we conclude that (b:b) holds.

(c) Suppose that −ab is quadratic. Then (ab+1)2 = 0 and −1 is the only eigenvalue for
ab on V . Let v be a nonzero eigenvector with eigenvalue −1 for ab on V . Then as we saw
in the previous paragraph, Fv + Fw is 2-dimensional. Moreover, by (a:c), Fv is the unique
1-dimesional ab-invariant subspace of Fv+Fw and we conclude that U := 〈ker ab+1H〉 is the
direct sum of simple 2-dimesional FH-submodule. Thus dimV ≥ dimU = 2 dim ker ab+ 1
and since ab+ 1 = 0 we conclude that V = U . Thus (c:b) holds.

Finally we compute from (a) that the matrices of a and b with respect to the basis
v + w, v − w of Fv + Fw is are as given in (c:c). Thus (c:c) and so also (c:a) holds. �
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4.6 R-compostion rings

Definition 4.6.1 [def:composition ring] Let R be a commutative ring with 1. An R-
composition ring is pair (A, ·) such that

(a) [a] A is a ring with R ≤ Z(A) ( and 1R = 1A).

(b) [b] · is an R-linear anti-automorphism of A.

(c) [c] N(a) := aa ∈ R for all a ∈ A.

(d) [d] tr(a) := a+ a ∈ R for all a ∈ A.

Lemma 4.6.2 [norm quadratic] Let (A, ·) be an R-composition ring and define f(a, b) =
ab+ ba = tr(ab).

(a) [a] N : A→ R is a multiplicative homomorphism.

(b) [b] N is a quadratic form on A over R with f as associate R-bilinear symmetric form.

Proof: (a) N(ab) = abab = abba = a(bb)α = (bb)(aa) = N aN b.
(b) Note that f(·, ·) is a R-bilinear symmetric form. Also N(a + b) = (a + b)(a+ b) =

aa+ ab+ ba+ bb = N a+ f(a, b) + N b. �

Lemma 4.6.3 [groups from nilpotent rings] Let A be a ring and N a nilpotent subring
of A. Let G = 1 + N . Then G is a nipotent subgroup of A∗. Let k, l ∈ Z+ and define
Gk = 1 +Nk. Then [Gk, Gl] ≤ Gk+l and for all n ∈ Nk,m ∈ Nl

[1 + n, 1 +m] ≡ 1 + dn, ne mod Gk+l+1,

where dn,me = nm−mn.

Proof: Let n ∈ N . Since N is nilpotent, nk = 0 for some k ∈ N. Thus
∑∞

i=0(−n)i is well
defined and is an inverse for 1 + n in 1 +N . Also (1 + n)(1 +m) = 1 + (n+m+ nm) and
so 1 +N is closed under multiplication. Thus G is a group under multiplication. Now let
n ∈ Nk and m ∈ Nl. Put x = 1 + n, y = 1 +m and x = dx, ye = dn,me. Then

[x, y] = x−1y−1xy = x−1y−1(yx+ z) = 1 + x−1y−1z

Since x−1y−1 ∈ G, x−1y−1 = 1 + r for some a ∈ N . Now z ∈ Nk+l, az ∈ Nk+l+1 and
[x, y] = 1 + z + az ∈ 1 + z +Nk+l+1. Hence (1 + z)−1[x, y] ∈ 1 +Nk+l+1 = Gk+l+1. �

Lemma 4.6.4 [rnf(n)] Let R be a commutative ring and N a nilpotent ideal in R. Let
f ∈ R[x] sich that f(0) is invertible. Then the map N → N : n→ nf(n) is a bijection.
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Proof: Let k be minimal with Nk = 0 and put A = Nk−1. If k = 0, N = 0 and the lemma
holds. Suppose k > 0 and let m ∈ N . By induction on k, there exists a unique n+A ∈ N/A
with a := m−nf(n) ∈ A. Let b ∈ A. Since A is an ideal in R, f(n+ b) = f(n)+d for some
d ∈ A. Also f(n) = f(0) + e with e ∈ N . From NA = 0 we conclude

(n+ b)f(n+ b) = (n+ b))(f(n) + d) = (n+ b)f(n) = nf(n) + bf(n) = nf(n) + bf(0) =
m− a+ f(0)b. Thus n+ f(0)−1a is the unique solution of m = nf(n) in N . �

Lemma 4.6.5 [nilpotent and composition] Let (A, ·) be an R-composition ring and N
be nilpotent subring of A with N = N . Supppose that 2 is invertible in A. For S ⊆ A let
S◦ = S ∩ ker tr. Let H = 1 +N and H∗ = {h ∈ H | N(h) = 1}.

(a) [a] For each a ∈ A there exist unique ra ∈ R and ta ∈ A◦ with a = ra + ta.

(b) [b] For any subring B of A with B = B, B = (B ∩R) ⊕B◦.

(c) [z] Let a, b ∈ A◦. Then tab = 1
2da, be.

(d) [c] For each n ∈ N◦ there exists a unique sn ∈ R∩N with 1 + sn +n ∈ H∗. Moreover,
sn ∈ R ∩N2.

(e) [d] The map φ : N◦ → H∗, n→ 1 + sn + n is a bijection with inverse h→ th.

(a) ra = 1
2 tr a = 1

2(a+ a) and ta = a− ra = 1
2(a− a).

(b) Let b ∈ B. Since B = B, tr b ∈ B. Thus also rb and tb ∈ B. Therefore B =
(B ∩R) +B◦. If b ∈ R ∩B◦, then 2b = tr b = 0 and so b = 0 since 2 is invertible.

(c) Since a, b ∈ A◦ we have a = −a and b = −b. Thus

tab =
1
2
ab− ab =

1
2
(ab− ba) =

1
2
(ab− ba).

(d) Let s ∈ R ∩ N and n ∈ N◦. Then N(1 + s + n) = (1 + s)2 + (1 + s) trn + N s =
(1 + s)2 + N s. Thus 1 + s+ n ∈ H∗ if and only if

N(s) = −2s(s− 1
2
)

So by 4.6.4, there exists a unqique such s. Since N(s) ∈ N2, we can alreay such an s in
R ∩N2.

(e) Let n ∈ N◦. Since 1 + sn ∈ R, t1+sn+n = n. Let h ∈ H∗. Then h = 1 +m for some
m ∈ N . Also h = 1+(rm+ tm) = (1+ rm)+ tm. Thus implies th = tm ∈ N and φ(tm) = h.
�

Lemma 4.6.6 [trace 0] Let (A, ·) be an R-composition ring and N be nilpotent subring of
A which is generated by N◦ as a ring. Suppose also 2 is invertible in A. Then N = N and
for all k ∈ Z+:
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(a) [a] Nk = (R ∩Nk) ⊕N
dke
◦ and

(b) [b] φ(N dke
◦ ) = (1 +Nk) ∩H = H [k]

(c) [c] φk : N dke
◦ /N

dk+1e
◦ → H [k]/H [k+1], n + N

dk+1e
◦ → φ(n)H [k+1] is a well defined

isomorphism.

Proof: Since a = −a for all a ∈ N◦ we have N = N and we can apply 4.6.5.
(a) For k = 1 this follows from 4.6.5(b). Suppose ?? holds for k, we will show that it

also holds for k + 1. Let a ∈ N◦ and b ∈ N
dke
◦ . Thus by 4.6.5(a) and d

ab = rab + tab = rab + da, be ∈ D := (R ∩Nk+1) +N
dk+1e
◦

So the set of all m ∈ A with mN dke
◦ ≤ D is a subring containing N◦ and so NN dke

◦ ≤ D.
Similarly N dke

◦ N ≤ D

This implies

Nk+1 = ((R ∩N) +N◦)((R ∩Nk) +N
dke
◦ )

= (R ∩N)(R ∩Nk) +NN
dke
◦ +N

dke
◦ N

≤ D

As D ≤ Nk+1 we get Nk+1 = D By 4.6.5(b) the sum defining D is a direct sum and (a)
holds.

(b) Let n ∈ N
dke
◦ ≤ Nk and put Hk = (1 + Nk) ∩ H. Then tn ∈ Nk, sn ∈ N2k and

φ(n) ∈ Hk. Conversely, m ∈ Nk with 1 + m ∈ H. By (b) t1+m = tm ∈ N
dke
◦ . Since

φ(tm)1 +m we have φ(N dke
◦ ) = Hk.

We will show by induction on k that H [k]Hk+1 = Hk. For k = 1, this is obvious.
So suppose its true for n. By 4.6.3, H [k+1] ≤ [H,Hk] ≤ Hk+1. Let h ∈ Hk and choose
n ∈ N

dk+1e
◦ with h = φ(n). Then there exists finitely many ni ∈ N◦ and mi ∈ N

dk
◦ e with

n =
∑

idni,mie. By the inductions assumption φ(mi) ∈ hiHk+1 for some hi ∈ H [k]. Put
d =

∏
i[φ(ni), hi]. Then d ∈ H [k=1]. By 4.6.3,

[φ(ni), hi] ≡ 1 + dφ(ni) − 1, hiemodHk+2

and so also

[φ(ni), hi] ≡ 1 + dφ(ni) − 1, hi − 1e mod Nk+2

sicne hi − 1 −mi ∈ R and φ(ni) − 1 − ni ∈ R. We get

[φ(ni), hi] ≡ 1 + dni,mie mod Nk+2
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and so
d ≡ 1 +

∑
i

[dni,mi] ≡ 1 + n mod Nk+2

By 4.6.5(d), sn ∈ N2
k+1 ∈ Nk+2.

h = φ(n) = 1 + sn + n ≡ 1 + n ≡ d mod Nk+2

Hence also

h ≡ d mod H [k+2].

This completes the proof that H [k]Hk+1 = Hk. In particular if H [k+1] = Hk+1 then also
H [k] = Hk.. Let t ∈ N with N t = 0. Then H [t] ≤ Ht = 1. Thus H [k] = Hk for all k and (b)
holds.

(c) Let n,m ∈ N
dke
◦ . Then φ(n) ≡ 1 + n mod Nk+1. So φ(n) ≡ φ(m) mod Hk+1 if

and only if n ≡ m mod Nk+1. By (a), Nk+1 ∩N dke
◦ = N

dk+1e
◦ . So φ(n)Hk+1 = φ(m)Hk+1

if and only if n+N
dk+1e
◦ = m+N

dk+1e
◦ . Thus φk is well defined and one to one.

Also φ(n)φ(m) ≡ 1 + n+m ≡ φ(n+m) mod Nk+1 and so φk(n)φk(m) = φk(n+m).
Thus φk is a homomorphism and (c) is proved. �

4.7 The ring MR(δ)

Let R be a commutative ring and δ ∈ R. Define M = MR(δ) to be the ring with R ≤ Z(M)
and generated by R,α and β subject to the relation α2 = 0, β2 = 0 and δ = αβ + βα.

Lemma 4.7.1 [aba] Let n ∈ N . Then

(a) [a] αβα = δα.

(b) [b] βαβ = δβ

(c) [c] (αβ)2 = δαβ.

(d) [d] M is a free R-module with basis 1, α, β, αβ.

Proof: Since αβ = δ− βα and αα = 0, (a) holds. By symmetry (b) holds and (c) follows
from (a). From (a)-(b) we conclude that M is spanned by 1, α, β and αβ as an R-module
and it is easy to see that (d) holds. �

Since δ = (−β)(−α) + (−α)(b), the opposite ring of M is isomorphic to R and their
exists an unique R-linear anti-automorphism · : M → M,m → m with α = −α and
β = −β. Note that · has order two. For m,x, y ∈ N define trm = m+m, Nm = mm and
f(x, y) = xy + yx.
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Lemma 4.7.2 [direct sums and m]

(a) [a] Suppose that R = \/i∈I Ri and δ = (δi)i∈I ∈ R. Then MR(δ) ∼= \/i∈IMRi(δi).

(b) [b] Let I be an ideal in R. Then MI is an ideal in M , MI = I ⊕ Iα+ Iβ + Iαβ, and
M(R/I)(δ + I) ∼= M/MI.

Proof: (a): Put M∗ = \/i∈iMRi(δi), α
∗ = (αi)i∈I and β∗ = (βi)i∈I . Then R ≤ Z(M∗) and

α∗β∗ + β∗α∗ = δ. Hence there exists an unique R-linear ring homomorphism φ : MR(δ) →
M∗ with φ(α) = α∗ and φ(β) = β∗.

Lemma 4.7.3 [trace and norm]

(a) [a] 1 + 1, α = a, β = −β and αβ = βα = δ − αβ.

(b) [b] tr 1 = 1, trα = trβ = 0 and tr(αβ) = δ.

(c) [c] N 1 = 1, Nα = N b = N(αβ) = 0.

(d) [d] tr : M → R is R linear.

(e) [e] f : M →M → R is a symmetric and R-bilinear.

(f) [f] N : M → R is a quadratic form with f as its associate symmetric form, that is
N(x+ y) = N(x) + f(x, y) + N(y) for all x, y ∈M .

(g) [g] N : M → R is a multiplicative homomorphisms.

Proof: (a),(b) and (c) are readily verified. Clearly tr is a Rlinear map from M to M .
Since M is spanned by 1, α, β and αβ we conclude from (b) that tr(M) ≤ R and so (d)
holds.

Clealry f is symmetic and R-bilinear. Since f(x, y) = tr(xy), we conclude from (d) that
f takes values in R and so (d) holds.

N(x+y) = (x+y)(x+ y) = (x+y)(x+y) = xx+xy+yx+yy = N(x)+f(x, y)+N(y).
Also for r ∈ R, N(rx) = r2 N(x). So (c) and (d) imply that N(M) ⊆ R and (e) is proved.

Since N(y) ∈ R ≤ Z(M) we compute N(xy) = (xy)(xy) = xyyx = xN(y)x =
(xx)N(y) = N(x)N(y). So also (g) is proved. �

Define GLR(δ) the set of invertible elements in M . Let SLR(δ) = {m ∈M | N(m) = 1}.
Note that both GLR(δ) form groups under multiplication. Let R∗ be set of invertibel
elements in R.

Lemma 4.7.4 [glrd]

(a) [a] Let m ∈M . Then m ∈ GLR(δ) if and only if N(m) ∈ R∗.

(b) [b] Let m ∈ GLR(δ). Then m−1 = Nm1m.
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(c) [c] SLR(δ) is a normal subgroup of GLR(δ) and SLR(δ) = {m ∈ GLR(δ) | m = m−1}.

Proof: Let m be in M . If m is invertible than N(m) N(m−1) = N(mm−1) = N(1) =
1 and so N(m) is inverible. Suppose now that N(m) is invertible, then N(m−1m)m =
N(m−1)N(m) = 1. Thus m is invertible and (a) and (b) hold. Since SLR(δ) is the kernel
of the group homorphism N : GLR(δ) → R∗, the first statement in (c) holds. The second is
obvious. �

Lemma 4.7.5 [1+a in sl]

(a) [a] Let m ∈M . Then N(m) = 1 + tr(m) + N(m). In particular, 1 + a ∈ SLR(δ) if and
only if tr(m) = −N(m).

(b) [b] Let x ∈ M with tr(α) = N(a) = 0. Then x2 = 0 and 1 + Rx is a subgroups of
SLR(δ) isomorphic to (R/AnnR(x),+). In particular, 1+Ra and 1+Rb are subgroups
of SLR(δ) isomorphic to R.

Proof: N(1 + x) = N(1) + tr(y) + N(y) and so (a) holds.
(b): Since tr(x) = 0 we have x = −x and so N(x) = −x2. Thus x2 = 0. Let r, s ∈ R.

Then also N(rx) = 0 = tr(rx) and so by (a), 1 + rx ∈ SLR(δ). Since x2 = 0, the map
(R,+) → 1 +Rx, r 7→ 1 + rx is an onto groups homomorphism and so (b) holds. �

Put Rδ = {r ∈ R | rδ = 0}. For m ∈ M let φm be the ring homomorphism from M to
EndR(mM) resulting from the right M module mM .

Lemma 4.7.6 [sld=sl2]

(a) [a] αM is a free R-module with basis α, αβ.

(b) [b] The matrices of φ(α), φa(β), φa(αβ) and φα(βα) with respect to the basis α αβ are(
0 0
δ 0

)
,
(

0 1
0 0

) (
0 0
0 δ

)
and

(
δ 0
0 0

)

(c) [c] The image of M in EndR(aM) = M2(R) consists of all the matrices
(
r s
t u

)
, with

r − s ∈ Rδ and t ∈ Rδ.

(d) [d] kerφa = Rδa+Rδβα.

(e) [e] M/αM + βM ∼= R/Rd and αM ∩ βM = Rδαβ.

(f) [f] If δ is invertible, then φα is an isomorphism and M = aM ⊕ bM .
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Proof: (a) follows easily from 4.7.1(d). (b) is readily verified. Let m = r1 + rαα+ rββ +
rαβαβ ∈M . Then by (b), φα(M) has the matrix(

r1 rαδ
(,β) r1 + (,αβ)δ

)
Thus (c) holds. Moreover, φ(m) = 0 if and only if r1 = rβ = rαδ = rαβδ = 0 and so (d)

is proved.
¿From (a) and symmetry bM = Rβ + Rβα. Since βα = δ − αβ we get that aM +

bM = Rd + Rα + Rβ + Rαβ. Thus M/aM + bM ∼= R/Rd. Also if m ∈ aM ∩ bM , then
m = rαβ = sβα = sδ + sαβ for some r,<∈, R>. Thus r = s and sδ = 0 and (e) is proved.

(f) is an easy consequence of the previous statements. �

Let M◦ be the ideal in M generated by α and β.

Lemma 4.7.7 [mcirc] M◦ = Rδ +Rα+Rβ +Rαβ, M/M◦ ∼= R/Rδ and M◦ is nilpotent
if an only if δ is nilpotent.

Proof: This is easily verified. It might be also interesting to observe that the definition
of M implies that M/M◦ is the quotient ring of R definition by setting δ = 0. �

Lemma 4.7.8 [ideals] Let I be an ideal in MR(δ) with I ∩R = 0.

(a) [a] Let m = r1 + rαα + rββ + rαβαβ ∈ I. Then δ2r1 = 0, δ2rα = 0, δ2rβ = 0 and
δ3rαβ = 0. In particular, δ3I = 0.

(b) [b] Suppose that R = F[δ] for some field F ≤ R. Suppose also that there exists n ∈ N
with δn+1 = 0 and that n is minimal with this property.

Proof:

1◦ [1] If r ∈ R with rα ∈ I or rβ ∈ I then δr = 0.

¿From rα ∈ I we get rαβ ∈ I and rβα = 0. Hence also rδ = r(αβ + βα) ∈ I. From
R ∩ I = 0 we conclude that rδ = 0.

Let m = r1 + rαα+ rββ + rαβαβ ∈ I.

2◦ [2] δ2rα = 0 = δ2rβ.

αmα = rβαβα = δrββ. So by (1◦), δ2rβ = 0. Also βmβ = δrαα and by (1◦) δ2rα = 0.

3◦ [3] δ2r1 = 0

αm = r1α+ rβαβ ∈ I so (3◦) follows from (2◦) applied to αm in place of m.
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4◦ [4] δ3rαβ = 0

mα = r1α+ (,b)βα+ rαβδα = rβδ+ (r1 + δrαβ)α− rβαβ. So by (2◦) applied to mα and
using (3◦) we have 0 = δ2(r1 + δrαβ) = δ3rαβ . �

What to do next: assume R = F[δ], zentral series of for M◦ ( maybe only if δ nilpotent).
ideals in M, subgroup H generated by 1 + α, 1 + β. Prove some lemma if H is nilpotent.
For example usually there exists 1 6= h ∈ Z(H) with [V, h,H] = 0.



Chapter 5

Root Systems

5.1 Root Systems

Definition 5.1.1 [def:root system] A root system is a set Φ together with a vectorspace
VΦ over Q and a non-degenerate, positive definite, symmetric form ( , ) on VΦ such that

(a) [RS1] Φ is a finite set of non zero vectors in VΦ and Φ spans VΦ.

(b) [RS2] For all α, β ∈ Φ, <α, β> := 2 (α,β)
(β,β) ∈ Z.

(c) [RS3] For all α, β ∈ Φ, ωα(β) ∈ Φ, where

ωα : VΦ → VΦ, v → v −<v, α>α

is the reflection associated to α.

(d) [RS4] If α, β ∈ Φ are linearly dependent over Q then α = ±β.

Let Φ be a root system. The elements of Φ are called roots. Put W := 〈ωα | α ∈ Φ〉 ≤
O(VQ, ( , )). Note that (RS3) just says that Φ is invariant under W . Since Φ is finite and
spans VQ, W is finite.

Lemma 5.1.2 [dual root system] Let Φ be a root system. For α ∈ Φ define α∗ := 2
(α,α)α.

Let Φ∗ = {α∗ | α ∈ Φ} Then for all α, β ∈ Φ.

(a) [a] <α, β> = (α, β∗).

(b) [b] <α, β> = <β∗, α∗>.

(c) [c] ωα = ωα∗

(d) [d] ωα∗(β∗) = (ωα(β))∗

(e) [e] Φ∗ ( together with VΦ and ( , )) is a root system.

31
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Proof: (a)-(d) are readily verified and (e) follows from (c) and (d). �

Definition 5.1.3 [basis] Let Φ be a root system. A basis for Φ is a linearly independent
subset Π of Φ such that Φ = Φ+ ∪. Φ− where Φ+ = Φ ∩ Q+Π and Φ− = Φ ∩ Q−Π = −Φ+.

Lemma 5.1.4 [alpha string] Let Φ be a root system and α, β ∈ Phi with α 6= ±β. Then

(a) [a] There exists non-negative integers p−, p+ such that for i ∈ Z, β + iα ∈ Φ if and
only if −p ≤ i ≤ q.

(b) [b] Put ε = sgn(α, β), then one of the following holds.

1. [a] p−ε = |<β,α>| and pε = 0.

2. [b] p−ε = |<β,α>| + 1 and pε = 1.

(c) [c] (b) holds iff α and β are not long and Z{α, β} ∩ Φ is a root system of type B2 or
G2.

Proof: See [?] �

Lemma 5.1.5 [linear combinations of roots] Let Φ be a root system, A ⊆ Φ and for
a ∈ A let na ∈ Q. Put φ =

∑
a∈A naa and suppose that φ ∈ Φ. Then there exists b ∈ A with

nb(φ, b) > 0. Moreover, for any such b either φ = ±b or φ− sgn(na)a ∈ Φ.

Proof: Note that 0 < (φφ) =
∑

a∈A na(φ, a). Hence there exists b ∈ A with nb(φ, b) > 0.
Given any such b with φ 6= ±b. Then ε := sgn(φ, b) = sgnnn. Also |<φ, a>| ≥ 1 and

5.1.4 implies that φ− εa ∈ Φ. �

Lemma 5.1.6 [existence of simple roots] Let Φ be a root system.

(a) [a] Φ has basis.

(b) [b] Any two basis are conjugate under W .

(c) [c] If Π is any basis, than Φ+ = Φ ∩ N+Π.

Definition 5.1.7 [def: long] A root α in a root system Φ is called long ( short) if (α, α) ≥
(β, β) ((α, α) ≤ (β, β)) for all β ∈ Φ.

Note here that if all roots in Φ have the same length, then all roots are long and short.

Lemma 5.1.8 [dual basis] Let Φ be a root system with basis Π. Then Π∗ := {α∗ | α ∈ Π}
is a basis for Φ∗.
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Proof: Since for all α ∈ Φ, α and α∗ only differ by a positive rational factor, Q+Π = Q+Π∗

and α ∈ Q+Π if and only if α∗ ∈ Q+Π∗. Hence the lemma follows from the definition of a
basis. �

Λ := {λ ∈ VΦ | (λ, α∗) ∈ Z,∀α∗ ∈ Φ∗}.

The elements in Λ are the integral weights.
The elements in

{λ ∈ VΦ | (λ, α∗) > 0,∀α∗ ∈ Φ∗}

are called dominant weights.
Note that by (RS2) Φ ⊆ λ. Let (λα | α ∈ Π) be the basis of VQ dual to Π∗ so

(λα, β∗) =

{
1 if α = β

0 if α 6= β
. Then (λα | α ∈ Π) is a Z basis for Λ.

For α, β ∈ Φ let r, s ∈ N be maximal such that

β − rα, β − (r − 1)α, . . . , β − α, β, β + α, . . . β + sα)

all are roots. We call this sequence of roots the α-string through β. r will be denoted by
rαβ and s by sαβ .

5.2 Root Subsystems

Definition 5.2.1 [def:root subsystem] Let Φ be a root system and Ψ ⊆ Φ.

(a) [a] Ψ is a root subsystem of Φ if (Ψ,QΨ) is a root system.

(b) [b] Let R be a subring of Q. Then Ψ is called R-closed if Ψ = Φ ∩RΨ.

Lemma 5.2.2 [root subsystems] Let Φ be a root system and Ψ ⊆ Φ. Then

(a) [a] Ψ is a root subsystem iff Φ is invariant under W (Ψ) := 〈ωψ | ψ ∈ Ψ〉.

(b) [b] Ψ is Z-closed iff −Ψ ⊆ Ψ and α+ β ∈ Ψ for all α, β ∈ Ψ with α+ β ∈ Φ.

(c) [c] If Ψ is Z-closed, then Ψ is a root subsystem. If Ψ is Q-closed then Ψ is Z closed.

(d) [d] Ψ is a root subsystem if and only if Ψ∗ is a root subsystem of Φ∗. Ψ is Q-closed if
and only if Ψ∗ is Q closed.

(e) [e] If Ψ is a root subsystem and all roots in Ψ are long, then Ψ is Z-closed.
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Proof: (a): Note that (Ψ,QΨ) fulfills (RS1),(RS2) and (RS4). Hence Ψ is a root subsys-
tem iff ωa(b) ∈ Ψ for all α, β ∈ Ψ. This is the case iff Ψ is invariant W (Ψ).

(b) One direction is obvious. Suppose now that −α ∈ Ψ for all α ∈ Ψ, and α + β ∈ Ψ
for all α, β ∈ Ψ with α + β ∈ Φ. Let φ =

∑
ψ∈Ψ nψψ ∈ ZΨ ∩ Φ, where nψ ∈ Z. We show

by induction on
∑

|nψ| that φ ∈ Ψ. By 5.1.5 we can choose ψ ∈ Ψ with nψ(φ, ψ) > 0. If
φ = ±ψ, then φ ∈ Ψ. So suppose φ 6= ±ψ. Then by 5.1.5 α := φ − sgnnψψ ∈ Φ. By
induction α ∈ Ψ and so also φ = α+ sgnnψψ ∈ Φ.

(c), (d) and (e) are readily verified. �

Given a connected root system Φ with two different root lengths. Then the short roots
form a root subsystem which is not Z-closed. And the long roots form a subsystem which
is Z-closed but not Q-closed.

¿From the affine diagram of E8 we see that E8 has a root subsystem D8. Since D8 and
E8 both have rank 8, the Q closure of D8 is E8. On the otherhand D8 is Z-closed and
contains the Q-closure of any two of its elements.

The Z closure of Φlong × Φshort in Φ × Φ is Φlong × Φ. The Q closure is Φ × Φ.
Let n,m be integers with n ≥ 2 and m ≥ 1. Then Bn+m has a subsystem Bn × Bm.

The long roots in Bn form a subsystem Dn and the short roots in Bm a subsystem Am1 .
Then Z-closure of Dn ×Am1 is Dn ×Bm, while the Q-closure is Bnm .

Now let Ψ be a connected root subsystem of Φ. We claim that either Ψ is Z closed or
that the Z closure of Ψ is Q-closed. So suppose that Ψ is not Z closed. Then Ψ contains
roots which are not long in Φ. Without loss Φ is the Q-closure of Ψ. Then Φ is connected.
Since Ψ is connected QΨshort = QΨ = QΦ. Thus Ψshort has the same rank as Φshort. Since
Φshort is of type An, Dn or Am1 we conclude that Φshort = Φshort.

Thus Φ ⊆ ZΦshort ≤ ZΨ and Φ is the Z closure of Ψ.

Lemma 5.2.3 [closure in rank 2] Let Φ be a root system and α, β ∈ Φ with (α, β) 6= 0.
Then

(a) [a] α ∈ Q〈β, ωβ(α)〉.

(b) [b] If α is not shorter than β then α ∈ Z〈β, ωβ(α)〉.

(c) [c] If α and β have the same length, the α ∈ 〈β, ωβ(α)〉.

Proof: Readily verified, for example by inspection of the rank 2 root system Q〈α, β〉 �

Lemma 5.2.4 [z closure of phishort] Let Φ be a connected root system. Then Φ is the
Z closure of Φshort.

Proof: Let α be a long root and choose a short root β with (α, β) 6= 0. Then by 5.2.3(b),
α is in the Z closure of β and ωα(β). �
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Lemma 5.2.5 [covering root systems] Let Φ be a root system.

(a) [a] Let Ψ be a root subsystem of Φ, α ∈ Ψ and β ∈ Φ \ Ψ. Then ωα(β) 6∈ Ψ.

(b) [b] Suppose that Φ ⊆ X ∪ Y where X and Y are proper root subsytems of Φ. If X is
Q closed or both X and Y are Z-closed, then Φ is disconnected.

(c) [c] Suppose that Φ is connected and α, β ∈ Φ. Then there exists γ ∈ Φ such that γ is
neither perpendicular to α nor to β. In particular α and β are contained in a connected
subroot system of rank at most 3.

Proof: (a) If ωα(β) ∈ Ψ, then β = ωα(ωα(β)) ∈ Ψ a contradiction.
(b) Choose X and Y as in (b) with |X ∩ Y | minimal. Let A = Φ \ Y , B = Φ \X and

C = Φ∩X∩Y . Let a ∈ A and b ∈ B. Suppose for contradiction that (a, b) 6= 0. Then by (a),
ωb(a) /∈ Y and so ωb(a) ∈ X. If X is Q closed, then by 5.2.3(a), b ∈ Q〈a, ωb(a)〉 ∩Φ ⊆ X, a
contradiction. Thus X is not Q closed and so by assumption, X and Y are Z-closed. Hence
we may assume that b is not shorter than a. Thus by 5.2.3(b) b ∈ Z〈a, ωb(a)〉 ∩ Φ ⊆ X,
again a contradiction.

Thus A ⊥ B. Let X̃ = B⊥ ∩ X and Ỹ = A⊥ ∩ Y . Then X̃ and Ỹ are subsystems.
Moreover, either X̃ is Q-closed or both X̃ and Ỹ are Z-closed. Also A ⊆ X and B ⊆ Y .

We claim that Φ = X̃ ∪ Ỹ , that is that C ⊆ X̃ ∪ Ỹ . Let c ∈ C and suppose that c 6∈ X̃.
Then (c, a) 6= 0 for some a ∈ A. Since c ∈ Y and a is not, (a) implies ωc(a) = a− < a, c >
c ∈ A. Thus ωc(a) and a both perpendicular to B. Hence c ⊥ B and c ∈ Ỹ .

Thus C = X̃ ∪ Ỹ . The minimal choice of X ∩ Y implies X ∩ Y = X̃ ∩ Ỹ . Hence
C ⊆ X̃ ∩ Ỹ ≤ A⊥ ∩B⊥. Since also A ⊥ B, A∪B ∪C is a decompostion of Φ into pairwise
orthorgonal subsets. Thus Φ is disconnected and (b) is proved.

(c) By (a) there exists γ ∈ Φ \ (α⊥ ∪ β⊥). Also Φ ∩ Q〈α, β, γ〉 is connected root system
of rank at most 3. Thus (c) holds. �

Lemma 5.2.6 [generation by non perpendicular roots] Let Φ be a connected root sys-
tem, and α a short root.

(a) [a] Then QΦ = QΦlong = QΦShort.

(b) [b] Let Ψ be the root subsystem generated by α and the long roots, then Ψ = Φ.
Comment:false for F4

(c) [c] Let Ψ be the root subsystem generated by α and the long roots which are not per-
pendicular to α. If Φ is not of type Cn, n ≥ 3 or F4, then Ψ = Φ. Comment:maybe
false for F4 – indeed, it is false: if α = e1, then we obtain a subsystem of type
B4

Proof:
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(a) Let {i, j} = {long, short}. Since Φ is connected there exists αΦi and β ∈ Φj with
<α, β> 6= 0. If b /∈ QΦi then 5.2.5(a) implies ωβ(α) 6∈ QΦi a contradiction. Thus β ∈ QΦi

and the transitivity of WΦ on Φj implies QΦj ⊆ QΦi.
For (b) and (c) note that if Φ has rank two, then every subsystem containing a long and

a short system equals Φ (Comment:false for G2, it contains a A1(long) × A1(short)
Also QΦlong = QΦ and so Ψ contains a long root. So we may assume that Φ has rank at
least two. Let Σ be the subsystem generated by the long root.

(b) Without loss α is the highest short root. Let β be any short root. By (a) there
exists a long root δ with <δ, β> < 0. Then ωδ(β) has larger height than β Comment:this
is false if β is negative and so by induction ωδ(β) ∈ Ψ. Hence also β ∈ Ψ.

(c) We may assume that Φ is not of type Cn or F4. Thus Σ is connected. By definition
of Ψ, Σ = (Σ∩Ψ)∪ (Σ∩α⊥). Since Σ∩α⊥ is closed in Σ, 5.2.5(b) implies that Σ ⊆ Ψ. So
(c) follows from (b). �

Lemma 5.2.7 [height induction] Let Φ be a root system with simple roots Π and α ∈
Φ+ \ Π. Then there exists β ∈ Π and γ, δ ∈ Φ+ with α = ωβ(γ) = β + δ and (β, γ) < 0.
Comment:maybe combine with 5.1.5

Proof: Since α is a positive linear combination of Π and since (α, α) > 0 there exists β ∈ Π
with (α, β) > 0. Put γ = ωβ(α) and δ = α−β. Then (β, γ) = (ωβ(β), ωβ(γ)) = (−β, α) < 0.
Since γ = α−<α, β>β and α is not a multiple of β, γ is positive. Also δ is on the β-string
from γ to α. So δ is a root and δ is positive. �

Lemma 5.2.8 [perp of weight] Let Φ be a root system with simple roots Π and λ a dom-
inant integral weight for Π. Then Π ∩ λ⊥ is a system of simple roots for Φ ∩ λ⊥.

Proof: Let Ψ be the root subsytem generated by Π ∩ λ⊥. It suffices to show that Ψ =
Φ ∩ λ⊥. Let α ∈ Φ+ with λ(α) = 0 (that is α ∈ λ⊥). We show by induction on htα that
α ∈ Ψ. If α has height 1, then α ∈ Π and so α ∈ Ψ. If α ahs height larger than 1 then α /∈ Π
By 5.2.7, there exists β, γ ∈ Φ+ with α = ωβ(γ) and m := <γ, β> > 0. Then α = mβ + γ.
Since λ is dominant, both λ(β) and λ(γ) are non-negative. Thus λ(β) = 0 = λ(γ). By
induction, both β and γ are in Ψ and so also α ∈ Ψ. �

5.3 Quadratic weights

Definition 5.3.1 [def: quadratic weight] An integral weight λ on the root system Φ is
called quadratic provided that 1 ≤ (α, λ) ≤ 1 for all short roots α ∈ Φshort.

Theorem 5.3.2 [quadratic weights] Let Φ be a connected root system and λ a non-zero
dominant integral weight on Φ. Let t ∈ {long, short} and αt the heighest t-root in Φ. Then
the following are equivalent.
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(a) [d] (αt, λ) ≤ 1.

(b) [e] λ = λβ for some root β ∈ Π with ntβ = 1, where ntγ for γ ∈ Π is defined by
αt =

∑
γ∈Π n

t
γγ.

(c) [d+] λ = λβ for some root β ∈ Π such that β is long if t = long and such that Φt is
contained in the root subsystem generated by Φ ∩ λ⊥ and α

(d) [g] One of the following holds: Comment:labeling of roots needs to be intro-
duced Comment:needs to be updated, inparticular

1. [1] Φ = An and λ = λi for some 1 ≤ i ≤ n.

2. [2] Φ = Bn and λ = λ1 or λn.

3. [3] Φ = Cn and λ = λi for some 1 ≤ i ≤ n.

4. [4] Φ = Dn and λ = λ1, λn−1 or λn.

5. [5] Φ = E6 and λ = λ1 or λ6.

6. [6] Φ = E7 and λ = λ1.

7. [7] Φ = E8: No such module.

8. [8] Φ = G2 and λ = λ1.

9. [9] Φ = F4 and λ = λ1

(e) [f] λ is the (unique ) minimal (with respect to ≺) dominant weight in λW (Φ) + Φ∗
t .

Comment:needs some work, maybe make extra lemma

Proof: Put α = αt.
(a)⇐⇒ (b): Let λ =

∑
β∈Πmβλβ . Then each mβ is a non-negative integer and each ntγ

is a positive integer. Also (α, λ) =
∑

β∈Πmβn
t
β and so (a) and (b) are equivalent.

(b)=⇒ (c): Let Ψ be the root subsystem generated by Φ ∩ λ⊥ and α.

Let δ ∈ Φ+
t . We need to show that δ ∈ Ψ. Since (b) implies (a), (α, λ) = 1 and so

(δ, λ) = 0 or (δ, λ) = 1.
Suppose that (δ, λ) = 0, then δ ∈ Φ ∩ λ⊥ and so δ ∈ Ψ.
Suppose next that (δ, λ) = 1 and that δ is not perpendicular to α. Since (α, δ) ≥ 0 and

αt and δ have the same length we conclude that <α, δ> = 1 and so ωα(δ) = δ − α. Also
(δ, λ) = (α, λ) and hence δ − α ∈ Φ ∩ λ⊥ ⊆ Ψ. Thus δ = ωα(δ − α) ∈ ψ.

Suppose finally that (δ, λ) = 1 and δ is perpendicular to α. By 5.2.5(c), there exists
γ ∈ Φ such that γ is neither perpendicular to α nor to δ. If γ ∈ Φt then by the previous
paragraph both γ and ωγ(δ) are in Ψ, so also δ ∈ Ψ. So suppose that γ /∈ Φt. Since the
diagram of (α, γ, δ) is not sperical, we see that α, γ, δ are not linear independent. Let ∆
be the root sytem generated by α, γ and δ. Then ∆ has rank two, is connected and has
a pair of perpendicular roots of the same length. ∆ is of type B2. Put r = |<γ, α>| and
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µ = α−rδ. In δ we see that µ ∈ Φ, and δ = ωµ(α). Since (δ, λ) = (µ, λ) we have µ ∈ Φ∩λ⊥.
Hence δ = ωµ(α) ∈ Ψ.

It remains to show that β is long if t is not short. So suppose that Φ has two distinct
roots length, t = long and β is a short. The there exists δ ∈ Phi+long with (δ, β) < 0. Put
then −<α, β> ≥ 2 and so (ωβ(δ), λ) = (δ, λ) −<α, β> ≥ 2, a contradiction.

(c)=⇒ (a): Let δ ∈ Φ+
t with (δ, λ) 6= 0. By (c), δ = γ + nα for some n ∈ Z and γ ∈ λ⊥.

Since (δ, λ) ≥ 0, n > 0. Since α is the highest t- root, the β-coefficent of δ is not larger
than the β coefficent of α. Thus n ≤ 1 and so n = 1. Hence (δ, λ) = (α, δ). It remains to
show that there exists δ ∈ Φt with (δ, λ) = 1. If β ∈ Φt we can choose δ = β. So we may
assume that β /∈ Φt. The assumptions of (c) imply that t = short. Thus β is long. Let Ψ
be the Q closure of Φshort ∩ λ⊥. Then Πshort ∈ Ψ and all roots in λ⊥ \ Ψ are perpendicular
to Ψ. Since Φ is connected we conclude that β is not perpendicular to Ψ. Thus there exists
a γ ∈ Φshort ∩ λperp with (γ, β) < 0. Put δ = ωβ(γ). Since β is long, δ = γ + β. Thus
(δ, λ) = 1 and we are done.

(b)⇐⇒ (d): Follows from a glance at the highest t- root of Φ (??).

(a) =⇒ (e): Suppose that µ is a dominant weight with µ ≺ λ and µ ∈ λ + ZΦ∗
t . Put

δ = λ − µ. Then δ ∈ NΦ∗ ∩ ZΦ∗
t . In particular (α, δ) ≥ 0. Since (α, λ) = 1 we conclude

that (α, µ) = 1 and (α, δ) = 0. Hence for all φ ∈ Φ+
t we have (φ, µ) ∈ {0, 1}. It follows that

|(φ, δ)| ≤ 1. Therefore there exists w ∈ W (Φ) such that ρ := δφ is an dominant integral
weight with (α, ρ) = 1. Also ρ ∈ ZΦ∗

t . Using (d) we can express the restriction of ρ to ZΦt

as rational linear combination of a basis for Φ∗
t . Since not all the coefficents are integers we

obtain a contradiction. Comment:make an explicit list of the quadratic weights as
linear combination of Π∗. Or find a better proof

(e)=⇒ (a): Let λ be a dominant weight such that λ is minimal under the dominant

weights in λ+ ZΦ∗
t . We will show that (α, λ) ≤ 1 and that λ is unique in λ+ ZΦ∗

t .
Consider first the case where all roots in Φ have the same length.
Suppose that (α, λ) ≥ 2 and choose δ ∈ Φt = Φ of minimal height with respect to

(δ, λ) ≥ 2. By minimality of λ, λ− δ∗ is not dominant and so there exists β ∈ Π such that
(β, λ − δ∗) < 0. Thus (β, λ) < (β, δ∗). Since β and δ∗ have equal length we conclude that
(β, δ∗) + 1 and (β, λ) = 0. Thus δ − β is a root and (δ − β, λ) = (δ, λ) ≥ 2, contradicting
the minimal height of δ.

Hence (α, λ) ≤ 1.
Suppose next that µ ∈ λ+ ZΦ∗ is also minimal with respect to being dominant. Then

also (α, µ) ≤ 1. Put δ = λ−µ. Then −1 ≤ (φ, δ) ≤ 1 for all φ ∈ Φ= and so φ is a quadratic
weight. Since δ ∈ ZΦ∗ we conclude from the “ (a) =⇒ (e):” step that δ = 0. Thus λ = µ

and the one root length case is completed.
Now consider the case where Φ has roots of two different lengths. Let {r, t} = {long, short}.

Put Σ =
∪

ΠW (Πr)
t . Then Σ is a basis for Φt. and Σ is invariant under W (Πr)). Note

that W (Φt)) acts trivial on Λ(Φ)/ZΦ∗
t and W (Φ) = W (Φt)W (Πr)). So λW (Φ) + ZΦ∗

t =
λW (Πr) + ZΦ∗

t . For µ ∈ Λ(Φ) let µ the restriction of µ to ZΦτ . Then l is a minimal domi-
nant integral weight in l+ ZΦ∗

t . Thus by the one root length case (α, λ) = 1. Let µ be any
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minimal dominant weight in λW (Φ) + ZΦ∗
t and pick w ∈ W (Πr) with µ ∈ λw + ZΦ∗

t . Since
Σ is invariant under w, lw and µ are minimal dominant weights in µ + ZΦ∗

t . Thus by the
one root length case, µ = l

w. Thus µ − λw ∈ Φ⊥
t and so µ = λw. Since every W (Φ) orbit

on Λ(Φ) contains a unique dominant weight we conclude that µ = λ. �

5.4 Subdiagrams

Definition 5.4.1 [def:diagram] Let α = (α1, . . . , αn) be a tuple of roots. Then the dia-
gram of α is the matrix (<αi, αj>). If Φ is a connected root system and α = (α1, . . . , αn)
is basis for Φ in the standard order, then the diagram of α is called an Φ-diagram.

Note that the Φ-diagram is just the Cartan matrix of Φ.

Lemma 5.4.2 [conjugation to pi] Let Φ be a root system with simple roots Π and λ a
dominant integral weight for Φ. Let φ ∈ Φ with λ(φ) = 1. Let ω ∈ WΦ∩λ⊥ with htφω

minimal. Then there exist β1, β2, . . . , βk ∈ Π such that

(a) [a] φω = β1 + β2 + . . .+ βk.

(b) [b] If k > 1 then (β1, β2, . . . , βk) has Bk or G2 diagram.

(c) [c] λ(β1) = 1 and λ(βi) = 0 for 2 ≤ i ≤ k.

Proof: Put Ψ = Φ ∩ λ⊥ and α := φω. If α ∈ Π, then the lemma holds with k = 1 and
β1 = α. So suppose that α 6∈ Φ. Let β and γ be as in 5.2.7 and put m = (α, β∗). Then
α = mβ + γ. Suppose that λ(β) = 0. Then ωβ ∈ WΨ and γ = ωβ(α) has smaller height
than α, a contradiction to the choice of α. Thus λ(β) 6= 0. Since λ is dominant integral
and λ(α) = 1 we conclude that m = 1, λ(β) = 1 and λ(γ) = 0. Since m = 1, (α, α) ≤ (β, β)
and α = β + γ.

Suppose that (α, α) = (β, β). Then ωγ(α) = β and β has smaller height than α,
contradiction the choice of α.

Suppose that 2(α, α) = (β, β). Since β ∈ Π \ Ψ, β∗ is a dominant integral weight on
Ψ. Moreover by 5.2.8, Π ∩ Ψ is basis for Ψ. Also (γ, β∗) = m = 1. Let w ∈ WΨ∩β⊥ . Then
w ∈ WΨ and αw = β + γw. Thus the choice of α implies that ht(γ) ≤ ht(γw). So by
induction on Π there exists b2, . . . , bk ∈ Π ∩ Ψ such that

• [e] γ = β2 + . . .+ βk.

• [f] (β2, β2, . . . , βk) has Bk−1 or G2 diagram.

• [g] (β2, β) = 1 and (βi, β) = 0 for 3 ≤ i ≤ k
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Since no connected component of Φhas roots of three different lengths, (β2, . . . , βk)
cannot have G2-diagram. Put β1 = β. Then clearly (a) and (c) holds. If k ≤ 3, then both
β1 and β2 are long and so (β1, . . . , βk) has Bk-diagram. If k = 2, then β2 = γ is short and
(β1, β2) has B2-diagram. Thus in any case (b) holds.

Suppose finally that 3(α, α) = (β, β). Then Φ is of type G2 and Π = {β, γ}. Thus the
lemma holds with β1 = β and β2 = γ. �

Lemma 5.4.3 [an strings] Let Φ be a connected root system and (α0, α1, . . . , αk) an or-
dered tuple of roots in Φ with diagram Xk+1 where X ∈ {A,B,G}. Suppose that α0 is long.
Then there exists an integer m ≥ k, roots β0, β1, . . . , βm in Φ and w ∈W (Φ) such that

(a) [z] αwi = βi for all 0 ≤ i < k and awk = βk + . . .+ βm.

(b) [a] β0 = −αlong.

(c) [b] βi ∈ Π for all 1 ≤ i ≤ m.

(d) [e] One of the following holds;

1. [a] X = A, k = m, awk = bk and (β0, β1, . . . , βk) has diagram Ak+1.

2. [b] X 6= A and (β0, β1, . . . , βm) has diagram Xm+1.

(e) [c] Put Ψi = (Φ∩α⊥
0 ∩ . . .∩α⊥

i )w. Then for all 0 ≤ i ≤ k, Ψi∩Π is a system of simple
roots for Ψi.

Proof: By induction on k. Suppose first that k = 0. Since Ao is long and Φ is connected
αw0 = −αlong for some w ∈ W . Put m = 0 and β0 = −αlong. Then clearly (b) to (d) holds.
Note also that α∗

long induces a dominant integral weight on Π and so (e) follows from 5.2.8.
Suppose now that k ≤ 1 and that the statement has been proved for k − 1. Since

(α0, . . . , ak−1) has Ak diagram we conclude that exists v ∈ WΦ and β0, . . . , βk−1 in Φ such
that αvi = βi for all 0 ≤ i < k, β0 = −αlong and (e) holds for all i < k. Put Ψ = Ψk−2 if
k ≥ 2 and Ψ = Φ if k = 1. Also put α = avk and β = βk−1. Note that β /∈ Ψ and φ ∈ Ψ.
Also since (e) holds for k− 2, Π∩Ψ is a system of simple roots for Ψ. Thus −β∗ induces a
dominant integral weight λ on Ψ. Note also that λ(α) = (φ,−β∗) = −(αk−1, αk) = 1.

Thus by 5.4.2 there exists ω ∈WΨ∩λ⊥ and βk, . . . , βm ∈ Ψ such that

1◦ [1]

(a) [1:a] αω = βk + . . .+ βm.

(b) [1:b] (βk, . . . , βm) has Bm−k or Gm−k diagram.

(c) [1:c] λ(βk) = 1 and λ(βi) for k ≤ i ≤ m.
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Note that ω fixes β0, β1, . . . bk−1. Put w = vω. Then (a) to (c) holds. Also since (e)
holds for i = k − 1, Ψk−1 ∩ Π is a system of simple roots for Ψk−1.

Suppose that k = m. Then bκ = awk and so (d) holds. Also −β∗k induces a dominant
integral weight on Ψk−1 ∩ Π. Also Ψk = Ψk−1 ∩ b⊥k we conclude from 5.2.8 that (e) holds.

Suppose next that k 6= m. Then α is not long and so X 6= A. Let Y be the diagram
type of (βk, . . . , βm). From (1◦)(a) we conclude that Y = B or Y = G. Thus (1◦)(c) implies
that (d) holds. Put δ = αwk = αω. Then Ψk = Ψk−1 ∩ δ⊥. From (1◦)(a) we conclude that
−δ∗ is a dominant integral weight on Ψk−1 ∩ Π \ {βk, . . . , βm}.

Suppose Y = B. Then δ is perpendicular to bk+1, . . . , bm. Now bκ 6∈ Ψk and thus −δ∗ is
a dominant integral weight on Ψk. Thus (e) follows from 5.2.8.

Suppose Y = G. Then X = G, Ψ = Φ, k = 1 and α0, α1 generate Φ. Hence Ψk = ∅ and
again (e) holds. �
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Chapter 6

Same Characteristic
Representations

This chapter is devoted to KG(F) modules, where K and F are fields in the same charac-
teristic and G(F) is a group of Lie type over a field K.

6.1 Lie Algebras

Let Φ be a root system. We continue to use the notation introduced in 5.

Definition 6.1.1 [chevalley basis] Let K be a field and g a Lie-algebra over K. A Cheval-
ley basis for g is a basis

(Gα, α ∈ Φ; Hγ , γ ∈ Π∗)

such that for all α, β ∈ Φ, γ, δ ∈ Π∗:

(a) [CB1] [Hγ ,Hδ] = 0.

(b) [CB2] [Hγ ,Gα] = (α, γ)Gα

(c) [CB3] [Gα,G−α] = Hα∗

where Hρ for ρ =
∑

γ∈Π∗ mγγ ∈ Φ∗ is define by Hρ :=
∑

γ∈Π∗ mγHγ.

(d) [CB4] [Gα,Gβ ] = ±(rαβ + 1)Gα+β if α+ β ∈ Φ.

(e) [CB5] [Gα,Gβ ] = 0 if 0 6= α+ β /∈ Φ.

Lemma 6.1.2 [nilpotent action for lie algebras] Let g be a Lie algebra over K and V
be a finite dimensional g-module.

(a) [a] Then there exists unique maximal ideal uv(g) which acts nilpotently on V .

(b) [b] Let d be an ideal in g, X a d-submodule of V and G ∈ g.

43
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(a) [a] Define T : X → V/X, x → Gx +X. Then T is a d-equivariant. In particular
GX +X is a d-submodule of V .

(b) [b] If V is irreducible for g then all composition factors for d on V are isomorphic.

(c) [c] If X is irreducible for d and GX 6≤ X then GX ∩X = 0 and AnnX(G) = 0.

Proof: (a) uV (g) is just the intersection of the annhilators of the composition factors of
g on V .

(b) Let D ∈ d and x ∈ X. Then [G,D]x ∈ dx ≤ X and so

T (Dx) = GDx+X = (DG + [G,D])x+X = D(Gx+X) = D(T (x))

So (b:a) holds.
For (b:b) let Y be a d-submodule maximal such that all composition factors for d on

Y are isomorphic. By (b:a) applied to Y , all composition factors of d on GY + Y/Y are
isomorphic to a composition factor of Y . Hence by maximality of Y , GY ≤ Y . Since G ∈ g

was arbitray and g acts irreducibly, V = Y .
For (b:c) note that the irreducibilty of X and (b:a) imply kerT = 0. �

We remark that under the assumption of part (b:b) of the preceeding lemma, V does
not need be completely reducible for d. For example let g = sl2(K) with char K = 2 and
V the natural 2-dimensional module. Then d := K〈Gα,Hα〉 is an ideal in sl2(K) and has a
unique proper submodule ( namely GαV ). This example also shows that an ideal does not
need to act faithfully on its proper submodules.

Lemma 6.1.3 [X+bX] Let g be a Lie algebra, a and b subspaces of g with g = a + b. Let
X be an a invariant subspace of V .

(a) [a] For all n ∈ N,
∑n

i=0 biX is a-invariant.

(b) [b]
∑∞

i=0 biX is g-invariant.

(c) [c] If X 6= 0 and V is irreducible as g-module, then V =
∑∞

i=0 biX.

Proof: (a) By induction on i it suffices to show that X + bX is a invariant. Note that
gX = (a + b)X ≤ X + bX. Let A ∈ a and B ∈ b. Then

(AB)X = (BA + [A,B])X ≤ B(AX) + gX ≤ X + bX.

So (a) holds.
(b) By (a)

∞∑
i=0

biX =
∞∪
n=1

(
n∑
i=0

biX)

is a invariant. Clearly it is also b invariant and so (b) follows from g = a + b.
(c) Follows from (b). �
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Proposition 6.1.4 [smith’s lemma] Let g be a Lie algebra, l, q+ and q− sub algebras and
V an irreducible g module. Suppose that

(a) [i] g = q+ + l + q−

(b) [ii] [l, q+] ≤ q+ and [l, q−] ≤ q−.

(c) [iii] q+ and q− both act nilpotently on V .

Then

(a) [a] l acts irreducible on AnnV (q+).

(b) [b] V = AnnV (q+) ⊕ Ann∗
V (q−), where Ann∗

V (q−) is smallest q− submodule of V
containing q−V .

(c) [c] V =
∑∞

i=0 qi− AnnV (q+).

Proof: Since q+ acts nilpotently on V , AnnV (q+) 6= 0. By (ii) AnnV (q+) is an l submod-
ule. Let X be a non-zero l-submodule of AnnV (q+) and Y =

∑∞
i=1 qi−X. Then X is an

q+ + l submodule of AnnV (q+) and Y ≤ Ann∗
V (q−). By 6.1.3,

(*) V = X + Y

Suppose that X̃ := AnnV (q+) ∩ Ann∗
V (q−) 6= 0. Since X̃ is l invariant, (*) applied

to X yields V = X̃ + Ann∗
V (q−) ≤ Ann∗

V (q−). Since q− acts nilpotently this implies
Ann∗

V (q−)) = 0, a contradiction to X̃ 6= 0.
Thus X̃ = 0. Hence also AnnV (q+) ∩ Y = 0 and so using (*)

AnnV (q+) = X + (AnnV (q+) ∩ Y ) = X

Since X was an arbitray l submodule of AnnV (q+) the lemma is proved. �

Lemma 6.1.5 [q- quadratic] Let g be a Lie algebra, l, q+ and q− subalgebras and V an
irreducible g-module. Suppose that

(a) [i] g = q+ + l + q+

(b) [ii] [l, q+] ≤ q+ and [l, q−] ≤ q−.

(c) [iii] q2
−V = 0 and q−V 6= 0.

(d) [iv] q+ acts nilpotently on V .

Then

(a) [a] V = AnnV (q+) ⊕ AnnV (q−).
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(b) [b] l acts irreducibly on both AnnV (q+) and AnnV (q−).

(c) [c] q2
+V = 0 and q+V 6= 0.

(d) [d] AnnV (q+) = q+V and AnnV (q−) = q−V .

Proof: Note that q−V ≤ AnnV (q−). By 6.1.4(a) ( applied with the roles of + and −
interchanged, AnnV (q−) is an irreducible l module. Thus

q−V = AnnV (q−) = Ann∗
V (q−)

Thus by 6.1.4(b) implies that (a) holds. In particular q++l acts irreducibly on V/AnnV (q+)).
Hence q+ annhilates V/Ann(q+) and the remaiing parts of the lemma are readily verified.
�

Comment:The preceeding lemma could be also used to in some later places
to avoid the use of the graph automorphism for An

Definition 6.1.6 [root faithful] Let V be a gΦ(K)-module. We say that gΦ(K) acts root
faithful on V if GαV 6= 0 for all α ∈ Φ.

Lemma 6.1.7 [ideal] Let λ 6= 0 be a p-restricted dominant weight and Φ a connected root
system with basis Π, gΦ(K) the Lie algebra of type Φ over K and V a gΦ(K)-module of
highest weight λ. Let α ∈ Φ and suppose that GαV = 0. Then the following holds.

(a) [a] Φ has two different root lengths and α is short.

(b) [b] (λ, β∗) = 0, for all short roots β ∈ Π.

(c) [c] char K = pΦ.

6.2 Groups of Lie Type and Irreducible Rational Represen-
tations

Let Φ be a connected root system, K a field, E the algebraic closure of K and GΦ(K) the
corresponding universial group of Lie type. Then GΦ(K) is generated by elements χα(t), α ∈
Φ, t ∈ K fulfilling the Steinberg Relations: For t ∈ K# define ωα(t) = χα(t)χα(t−1)χα(t)
and hα(t) := ωα(t)ωα(1)−1.

(a) [St1] χα(t)χα(s) = χα(t+ s)

(b) [St2] hα(u)hα(v) = hα(uv)

(c) [St3] If α∗ =
∑n

i=1 niβ
∗
i for some ni ∈ Z, βi ∈ Φ then hα(u) =

∏n
i=1 hβi

(uni).

(d) [St4] hα(u)χβ(t)hα(u)−1 = χα(u(β,α∗)t)
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(e) [ST5] ωα(1)χβ(t)ωα(1)−1 = χωα(β)(εαβt) for some εαβ = ±1.

(f) [ST6] If α+ β is not a root, and α 6= −β then [χα(t), χβ(s)] = 1.

(g) [ST7] If α+ β is a root then

[χα(t), χβ(s)] = χα+β(Nαβts)
∏
i,j>1

χiα+jβ(Cαβijtisj)

Let Hα = {hα(u) | u ∈ K#}, Xα = {χα(t) | t ∈ K#}, U =
∏
α∈Φ+ Xα, H =

∏
α∈P Hα

and B = HU .
Let V be a finite dimensional rational EGΦ(E) module. For g ∈ GΦ(E) denote by gV

the image of g ∈ EndE(V ). Slighty abusing notation we will often just write g for gV . Since
V is rational and finite dimensional we have

χα(t) =
dα∑
i=0

tiGα,i

for some dα ∈ N and some Gα,i ∈ EndE(V ). Note that Gα,0 = χα(0) = 1.
(We remark that, if V is obtained from a module in characteristic zero via an admissible

lattice and taking tensor products, then Gα,i = ( 1
i!G

i
α) ⊗ 1.)

Comment:It might be interesting to figure out what (ST1) means for the
Gα,i

Since E is infinite ( and so |E| > dα) it is easy to see that the subalgebra of EndE(V )
generated by Xα contains all of the Gα,i. Let GV

α = Gα,1 and gV the Lie subalgebra of
gl(V ) generated by the GVα . Let AV be the subalgebra of EndE(V ) generated by all the
Gα,i (As usual we will ommit the superscript V ). Then every GΦ(E) submodule of V is
also an g submodule and GΦ(E) and A have the same submodules. Comment: Maybe
One should define HV

α and verify the remaining relation for the Lie algebra )).
¿From (ST6)

[Gα,Gβ ] = 0

if α+ β is not a root and from (ST7)

[Gα,Gβ ] = NαβGα+β

if α+ β is a root. By (ST4)

hα(u)Gβ,ihα(u)−1 = ui(α
∗,β)Gβ

Let µ ∈ Λ and v ∈ V . We say that v is a weight vector for µ if

hα(u)v = u(α∗,µ)v

for all u ∈ K# and α ∈ Φ. Since E is infinite and every polynomial as at most finitely many
roots, two weights with a common non zero weight vector are equal. Let Vµ be the set of
all weight vectors for µ.
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Lemma 6.2.1 [Gb Vmu] Let β ∈ Φ, i ∈ N and µ ∈ Λ(Φ∗) and v ∈ Vµ

(a) [a] Gβ,iVµ ≤ Vµ+iβ.

(b) [b] Hβv = (β, µ)v.

Proof: (a): Let α ∈ Φ and u ∈ K]. Then

hα(u)Gβ,iv = ui(α
∗,β)Gβ,ihα(u)v = ui(α

∗,β)Gβ,iu
(α∗,µ)v = u(α∗,µ+iβ)Gβ,iv

(b) ???????? �

Since the different weight spaces are linear independent ( that is the sum of the weight
spaces is a direct sum) for a weight vector v that Xα fixes v if and only if Gα,iv = 0 for all
1 ≤ i ≤ ∞.

A weight vector is called a highest weight vector if uv = v for all u ∈ U . In the view
of the preceeding this means Gα,iv = 0 for all α ∈ Φ+. If V is irreducible there exists
a non-zero weight vector. Indeed, since U acts unipotenly Comment:why? CV (U) 6= 0.
Since H is abelian and E is algebraicly closed, there exists a one dimensional EH submodule
Kv in CV (U). Since V is rational it is easy to see that v is a weight vector for some weight
λ ∈ Λ. Now V = Av and so (∗∗) implies that V is the direct sum of its weight spaces.

A way to obtain the group GΦ(K) is to start with a faithful representation

π : gΦ(C) → gl(V )

of the Lie algebra gΦ(C) and to identify the complex vector space V with Cn via the
admissable Z-lattice Λ (in fact, Λ consists of all the weights of all the rational representations
of gΦ(C)). Then

GΦ(K) = 〈xa(t) | t ∈ K〉.

We obtain the quotients of GΦ(K) by following the same procedure but replacing Λ by any
admissable Z-lattice. Then GΦ(K) is the group of rational points of the algebraic group
G = GΦ(E). There is a well know method to relate a Lie-algebra L(G) to an algebraic
group G:
see for instance Humphreys. According to Borel [Bo, 3.3] the Lie algebras L(GΦ(E)) and
gΦ ⊗Z E = gΦ(E) are isomorphic as well as the Lie algebras L(GΦ(K)) = L(GΦ)(K) and
gΦ ⊗Z K = gΦ(K).

Let π : GΦ(K) → GL(W ) be an irreducible and faithful Fp-representation for GΦ(K),
where p = charK. Then π induces an irreducible, faithful and rational representation
π : GΦ(E) → GL(V ) for G = GΦ(E) on V = W ⊗EndFpG(V ) E (rational means that all the
weights λ of π are in the lattice Λ) and the differential dπ defines a representation

dπ : L(G) → gl(V )

of the to G related Lie algebra g ∼= L(g).
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Definition 6.2.2 [L]et λ be the highest weight of π. We say that π is p-restricted, if
λ =

∑
ciλi with 0 ≤ ci < p.

According to [Bo, 6.4] the following holds.

Theorem 6.2.3 (Curtis, Borel) If π is a p-restricted irreducible representation of G,
then dπ is an irreducible representation of g.

If V is an irreducible Fp-module for 2GΦ(K), then V is an irreducible Fp-module for
GΦ(K), as well, and therefore the following fact holds.

Theorem 6.2.4 [trans] If V (λ) is a p-restricted irreducible FpσGΦ(K)-module, then V (λ)⊗EndFpG(V )

E is an irreducible module for gΦ(E).

Later we will need some more information about the elements of a unipotent subgroup
U1 of 2F4(K). Here we follow the description given in the book of Carter [Ca, 13.6].

Lemma 6.2.5 [system F4] Let Φ be a root system of type F4 and Π = {α, β, γ, δ} a funda-
mental system of Φ where α, β are long and γ, δ short and where α and δ are perdendicular.
Let τ be a mapping of VΦ(K) into VΦ(K) defined by

τ(r) = f(r)σ(r), where

r is a root and σ(r) the permutation of Φ induced by the graph automorphism and

f(r) =

√
1
2

if r is short and f(r) =
√

2 if r is long.

Then τ is an isometrie of VΦ(K). Let W be the related Weyl group (the group generated by
the reflections on the hyperplanes perpendicular to the roots) and let W 1 = CW (τ). Then

W 1 = 〈wαwδ, (wβwγ)2〉 ∼= D16,

where for r a root, wr is the reflection on the hyperplane perpendicular to r. The orbits of
W 1 on Φ+ partition Φ+. These orbits are

S1 = {α, δ},

S2 = {α+ 2β + 2γ, β + 2γ + δ},

S3 = {α+ 2β + 2γ + 2δ, α+ β + 2γ + δ},

S4 = {a+ 2β + 4γ + 2δ, α+ 2β + 2γ + δ},

S5 = {β, γ, β + γ, β + 2γ},

S6 = {α+ β, γ + δ, α+ β + 2γ + 2δ, α+ β + γ + δ},
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S7 = {α+ β + 2γ, β + γ + δ, α+ 2β + 3γ + δ, α+ 3β + 4γ + 2δ},

S8 = {β + γ + 2δ, α+ β + γ, α+ 2β + 3γ + 2δ, 2α+ 3β + 4γ + 2δ}.

Let S = {Si | 1 ≤ i ≤ 8}. Notice that these orbits are either of type A1 × A1 or B2. If
Si = {r, s} is of type A1 ×A2 with r long and s short, then define

xSi(t) = xs(tθ)xr(t),

where t ∈ K and θ a field automorphism of K. In this case set

XSi = 〈xSi(t) | t ∈ K〉.

If Si is of type B2 and {r, s} is a fundamental system with r long and s short, then define

x(t, u) = xr(tθ)xs(t)xr+s(tθ+1 + uθ)x2s+r(u2θ),

where t, u ∈ K and θ a field automorphism of K. In this case set

XSi = 〈x(t, u) | t, u ∈ K〉.

Then
U1 =

∏
T∈S

X1
S .

6.3 Translation form the group to the Lie algebra

Comment:This is taking from Tim’s file, needs to be adapted

Lemma 6.3.1 [splitting field] Let K ⊆ k be a subfield of k and λ a dominant weight with
λ(α) < |K|, for all α ∈ Σ. Then A(λ) is irreducible as a kG(K)-module.

Proof: �

Let λ be a dominant p-restricted integral weight and V = V (λ) an irreducibleGF (p)GΦ(K)-
module with highest weight λ. Then by 6.2.4 V ⊗ E is an irreducible module for gΦ(E)
with E the algebraic closure of K.

Order Π in some way and then order the set of weights lexicographically. Comment:
mention positive, by carter we can choose the order to be compatible with the
height function

Definition 6.3.2 [u+]

(a) [a] U+
α = 〈Xβ | β ≥ α〉

(b) [b] U−
α = 〈Xβ | β > α〉. Note that U+

α = XαU
−
α .
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(c) [c] Vµ a weight space (as usual)

(d) [d] V +
µ =

⊕
γ≥µ Vγ

(e) [e] V −
µ =

⊕
γ>µ Vγ

Let P be a subgroup of a unipotent group U of GΦ(K) and let

ΦP = {α ∈ Σ+ | P ∩ U+
α 6≤ U−

α }.

For α ∈ ΦP , pick gα ∈ (P ∩ U+
α ) \ U−

α . Then gα = xα(t)uα for some uα ∈ U−
α and t 6= 0.

Lemma 6.3.3 [special order] Let P be a subgroup of a unipotent group U of 2G2(q),B2(q)
or 2F4(q). Then there is an ordering of Π such that ΦP consists only of short roots.

Proof: Assume first that Φ is of type B2. Then the elements of a unipotent subgroup U1

of 2B2(K) are
x(y, u) = xα(tθ)xβ(t)xα+β(tθ+1 + u)x2α+β(u2θ),

where Π = {α, β} with α short and β long and u, t ∈ K and θ a field automorphism, see for
instance [Ca, 13.6.1]. Choose the ordering on Φ such that α < β. Then ΦP is a subset of
{α, α+ β}, which is a set of short roots, the assertion.

Now assume that Φ is of type G2. The elements of a unipotent subgroup U1 of 2G2(K)
have the form

x(t, u, v) = xα(tθ)xβ(t)xα+β(tθ+1 + uθ)x2α+β(t2θ+1 + vθ)x3α+β(u)x3α+2β(v),

where Π = {α, β} with α short and β long, t, u, v ∈ K and θ an automorphism of K, see for
instance [Ca, 13.6.1]. We choose again the ordering on Φ such that α < β. Then ΦP is a
subset of {α, α+ β, 2α+ β}, which is again a set of short roots, the assertion.

Finally assume that Φ is of type F4. The elements of a unipotent subgroup U1 of 2F4(K)
are described in 6.2.5. We are going to use the same notation as in 6.2.5. We order Φ such
that β > γ > α > δ. Then ΦP is again a subset of a set of short roots. �

g =
∑
α∈ΦP

EGα +
∑
α∈ΦP

EHα.

Lemma 6.3.4 [L1]

1. g is a subalgebra of gΦ(E).

2. If P has nilpotent class m, then g has nilpotent class at most m.

3. If [P [P [ . . .︸︷︷︸
n−times

[P [P,A]] . . . ]]] = 0, then DnA = 0.
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4. dim(AnnA(D)) ≥ dim(CA(P )).

5. Suppose that there are α, β ∈ ΦD and k ∈ K such that α < β and (gα−1) ≡ k(gβ−1).
Then Gα ≡ 0.

Proof: Notice that [gα, gβ ]U−
α+β = [xα(tα), xβ(tβ)]U−

α+β = xα+β(Nαβtαtβ ]U−
α+β , where

[Xα, Xβ ] = Nα+βXα+β in gΦ(E). If Nα+β 6= 0, then [gαgβ ] ∈ U+
α+β \ U−

α+β . Hence,
α+ β ∈ ΦP , so D is a subalgebra of gΦ(E), proving (1).

Now [gα1 , gα2 , . . . , gαn ]U−
α1+α2+···+αn

= xα1+α2+···+αn(rtα1tα2 . . . tαn)U−
α1+α2+···+αn

. So if
[gα1 , gα2 , . . . , gαn ] = 1, then r = 0 and so [Xr1 , Xr2 , . . . , Xrn ] = rXr1+r2+···+rn = 0.

Now let a ∈ A+
µ with a = aµ + a−µ where aµ ∈ Aµ and aµ ∈ A−

µ .
Then

[xα(tα), a] =
∞∑
n=1

frac1n!tnαX
n
α)a ∈ tαXαaµ +A−

µ+α

So [gα, a] ∈ tαXαaµ +A−
µ+α, and in particular,

[gα1 [gα2 [. . . [gαn , a] . . . ]] ∈ tα1tα2 . . . tαnXα1Xα2 . . . Xαnaµ +A−
µ+α1+α2+···+αn

.

So, if [P [P [. . . [P,A] . . . ]] = 0, thenXα1Xα2 . . . Xαnaµ ∈ A−
µ+α1+α2+···+αn

∩Aµ+α1+α2+···+αn =
0.

Hence Xα1Xα2 . . . XαnA = 0. That is, DnA = 0, proving (2).
Choose Eµ ≤ Aµ so that CA+

µ
(P ) + A−

µ ≥ Eµ + A−
µ (Eµ = Aµ ∩ (CA+

µ
(P ) + A−

µ )). Let
E =

⊕
µEµ. Then dimk(E) = dimk(CA(P )).

Now, if a ∈ CA+
µ
(P ), then a = aµ+a−µ , so [gα, a] ∈ tαXαaµ+A−

µ+α implies that xαaµ = 0.
Hence, XαE = 0 and so DE = 0, proving (3).
It remains to show (5). Let a ∈ Aµ. By what was proved before
(gα − 1)a = [gα, a] ∈ tαGαaµ +A+

µ+α and (gβ − 1)a[= gβ , a] ∈ tβGβaµ +A+
µ+β ∈ A+

µ+α

Since (gα − 1) ≡ k(gβ − 1) we conclude that tαGαaµ = 0 and so Gαaµ = 0 and Gα ≡ 0,
hence (5).

�



Chapter 7

Quadratic Modules

7.1 Quadratic modules for g

For a root system Φ let pΦ := (α,α)
(β,β) where α is a long and β is a short root in Φ. Note

that if Φ is connected then pΦ ∈ {1, 2, 3}. If g = gΦ(K) and pΦ = char K, then gshort (the
subalgebra of g generated by {Gα |, α ∈ Φshort}) is an ideal in g. Note that this happens
for p = 2 and Φ of type Bn, Cn and F4 and for p = 3 and Φ of type G2. These cases will
require special attention throughout this section.

Definition 7.1.1 [def:quadratic] A module V for gΦ(K) is called quadratic if (Hα∗ −
1)GαV = 0 for all long roots α ∈ Φ.

The definition of a quadratic module is motivated by the following lemma:

Lemma 7.1.2 [quadratic in odd characteristic] Let V be a gΦ(K)-module and α ∈ Φ.

(a) [a] If (Hα∗ − 1)GαV = 0 then G2
α = 0.

(b) [b] If char K 6= 2, then G2
αV = 0 iff (Hα∗ − 1)GαV = 0.

(c) [c] Suppose that V comes from a module for UΦ(Z) and that G2
α
2 V = 0, then (Hα∗ −

1)GαV = 0.

Proof: (a) Since (Hα∗ − 1)GαV = 0 we have Hα∗Gα ≡ Gα and so

0 = [Gα,Gα] ≡ [Hα∗Gα,Gα] = [Hα∗ ,Gα]Gα = G2
α

(b) We compute
[G2

α,G−α] = [Gα,G−α]Gα+Gα[Gα,G−α] = = Hα∗Gα+GαHα∗ = [Gα,Hα∗ ]+2Hα∗Gα =
−2Gα + 2Hα∗Gα = 2(Hα∗ − 1)Gα. Thus

(∗) [G2
α,G−α] = 2(Hα∗ − 1)Gα

53
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So if G2
α ≡ 0 and char K 6= 2 we conclude that (Hα∗ − 1)Gα ≡ 0.

(c) Note that the (*) is also a valid equation in UΦ(Z). Thus in UΦ(Z) we have
[G2

α
2 ,G−α] = (Hα∗ − 1)Gα. Thus (??) holds. �

The irreducible quadratic modules for gΦK are fairly easily classified (see the next the-
orem). The remainder of the section will be devoted to show that some weaker conditions
already imply that a module is quadratic. If V is a module for g and G1,G2 ∈ g we write
G1 ≡ G2 if (G1 − G2)V = 0, that is if the image of G1 and G2 in End(V ) are equal.

Theorem 7.1.3 [classification of quadratic modules for Lie algebras] Let K be a field,
Φ a root system and g = gΦ(K) the corresponding algebra. Let V = V (λ) be the irreducible
restricted g-module of heighest weight λ 6= 0. Let α = αlong be the heighest long root of Φ.
Then the following are equivalent:

(a) [a] V is quadratic.

(b) [b] (Hα∗ − 1)GαV = 0

(c) [c] GβGαV = 0 for all β ∈ Φ with (β, α) > 0.

(d) [d] (λ, α∗) = 1.

(e) [e] −1 ≤ (ρ, α∗) ≤ 1 for all weights ρ for g on V .

Proof: We assume without loss that K is algebraicly closed.
(a)=⇒ (b): Obvious.

(b)=⇒ (c): Let β ∈ Φ with (β, α) > 0. If β = α then G2
α ≡ 0 by 7.1.2(a). Suppose that

β 6= α. Then (α∗, β) = 1 and so [Hα∗ ,Gβ ] = Gβ . Note that β is positive, so β + α 6∈ Φ be
the maximality of α. Thus GαGβ = GβGα. Also by assumption (Hα∗ − 1)Gα ≡ 0 and so
Hα∗Gα ≡ Gα. We compute:

GβGα = [Hα∗ ,Gβ ]Gα = Hα∗GβGα − GβHα∗Gα =

= Hα∗GαGβ − GβHα∗Gα ≡ GαGβ − GβGα = 0.

(c)=⇒ (d): Let v− be a lowest weight vector. Let u+ = gΦ+(K) and let ω0 ∈ W (Φ)

with ω0(Π) = −Π. Then v− has weight ω0(λ). The uv− = V (??). Since [u+, α] = 0 we
conclude that v− 6∈ Ann(Gα). Hence v := Gαv− 6= 0 is a non zero weight vector with weight
ω0(λ) + α. Let

qα = K〈Gβ | β ∈ φ, (α, β) > 0〉

and
lα = K〈Gβ | β ∈ φ, (α, β) = 0〉 + h
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By Smith’s Lemma 6.1.4 Ann(qα) is an irreducible module for lα. Since v+ is a highest
weight vector in Ann(qα) we conclude from ?? that all weights in Ann(qα) are of the form
λ+ µ for some µ ∈ N(Φ− ∩ α⊥).

Recall that with weight vectors we mean weight vectors for the Cartan subgroup H of
GK(Φ). In particular two weights in Λ which share a non-zero weight vector are equal. Thus

ω0(λ) + α = λ+ µ

for some µ ∈ Λ with (α, µ) = 0. Note also that ω0 has order two, peserves (·, ·) and
ω0(α) = −α. So we compute

(ω0(λ) + α, α∗) = (ω0(λ), α∗) + (α, α∗) = (λ, ω0(α∗)) + 2 = −(λ, α∗) + 2

On the other hand

(λ+ µ, α∗) = (λ, α∗) + (µ, α∗) = (λ, α∗)

The last three displayed equations imply 2(λ, α∗) = 2. Since this is a statement in Z we
conclude (λ, α∗) = 1.

(d)=⇒ (e):

(d)=⇒ (a): Suppose that (λ, α∗) = 1. Note that ρ = λ − φ for some φ ∈ NΦ∗. Also

(φ, α∗) ≥ 0 and so (ρ, α∗) ≤ (λ, α′∗) ≤ 1. Similarly as ρ = ω0(λ) ∗ ψ for some ψ ∈ NΦ∗ we
have (ρ, α∗) ≥ (ω0(λ), α∗) = −1 and so (e) holds.

(e)=⇒ (a): It suffices to show that (Hαd− 1)GαVµ0 for all weights µ on V . If GαVµ = 0

this is obvious. So suppose that GαVµ 6= 0. Thus both µ and µ+α are weights on V . Thus

(µ+ α, α∗) ≤ 1

On the other hand

(µ+ α, α∗) = (µ, α∗) + (α, α∗) ≥ −1 + 2 = 2

and we conclude that (µ+α, α∗) = 1. Hence 6.2.1(b) implies that (Hα∗ −1)Vµ+α = 0. Thus
(a) holds. �

Definition 7.1.4 [def:quadratic tuple] A quadratic tuple is tuple (Φ, p, λ, α, β) where Φ
is a connected root system, λ is a non-zero dominant integral p-restricted weight, α and β
are roots, and V = VK(λ) for some field K with char K = p such that

(a) [a] GβGαV = 0.

(b) [b] GαV 6= 0 6= GβV .

(c) [c] If α = β then p 6= 2.
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In the next few lemmas we will determine all the quadratic tuples. Comment:We
should once and for all introduce weight vectors for arbitrary fields: For the
algebraicly closed case define it by the action of H, in general v ∈ V (λ) is called
a weight vector if 1⊗K v is a weight vector in K̄⊗KV . Note that for p-restricted
weights, V will be the direct sum of the weight spaces.( just start with the
lowest weight vector and take images under the Gα’s

Lemma 7.1.5 [quadratic tuple for a=b long] Let (Φ, p, λ, α, β) be a quadratic tuple
with α = β and α long. Then V is a quadratic module.

Proof: By assumption p 6= 2. So the lemma follows from 7.1.2 �

Lemma 7.1.6 [quadratic tuples for (a,b) positive and a long] Let (Φ, p, λ, α, β) be a
quadratic tuple with α long, α 6= β and (α, β) > 0. Then V is a quadratic module.

Proof: Without loss α is the highest long root. Then β is positive. Let Ψ = 〈α, β〉, the
root subsystem generated by α and β. Then Ψ is of type A2, B2 or G2. In any case δ = α−β
is a root, α = δ + β, α+ β is not a root, GαGβ = GβGα ≡ 0 and rβδ + 1 = pΨ.

Suppose first that p 6= 2 and p 6= pΨ.
Since GβGα ≡ 0 taking the Lie bracket with Gδ gives ±pΨG2

α ≡ 0. Thus G2
α = 0 and

we are done by 7.1.5.

Suppose next that p = pΨ. Then Ψ is of type B2 or G2, p = pΦ and β is short. Let X
be an irreducible gshort-submodule in V . If GβX = 0 then also Hβ = [Gβ ,G−β ] annihilates
X. Thus by ??(bb), Hα acts nilpotently on V . But Hβ is semisimple on V and so HβV = 0.
Hence by ?? GβV = 0, a contrdiction to the definition of a quadratic tuple.

Thus GβX 6= 0. Since GαGβX = 0 we conclude AnnX(Gα) 6= 0 and so by ??(bc),
GαX ≤ X. By symmetry the same holds for any long root subalgebra of g and so gX ≤ X
and V = X. Thus gshort acts irreducibly on V . Let q = K〈Gµ | µ ∈ Φshort, (µ, α) > 0〉 and
l = K〈Gµ | µ ∈ Φshort ∩ α⊥〉. Then q + l + hshort is a parabolic subalgebra and so by 6.1.4
AnnV (q) is an irreducible l-module. Note that q is an ideal in qα + lα and so AnnV (q) is an
irreducible module for qα + lα. It follows that qα annihilates AnnV (q). On the other hand
W (Φ ∩ α⊥) acts transitively on {µ ∈ Φshort, (µ, α) > 0} and thus qGαV = 0 and so also
qαGαV = 0. Thus V is quadratic by 7.1.3.

Suppose now that Ψ is of type A2. We claim that GµGα ≡ 0 for all µ ∈ Φ with (µ, α) > 0.
This is obvious if µ = α or if (α, µ) is conjugate to (α, β) under W (Φ). If neither of this
holds then Φ is of type An. Let V ∗ be g-module dual to V . Then GαGβV

∗ = 0. Since Gα

and Gβ commute, GβGαV
∗ = 0. Now V ∗ ∼= V σ where σ is the graph automorphism of g.

Thus Gσ(β)Gσ(α)V = 0. Now (α, µ) is conjugate under W (Φ) to (σ(α), σ(β) and we again
conclude that GµGα ≡ 0. Thus V is quadratic by 7.1.3.
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Suppose finally that p = 2 and Ψ is of type G2. Then β is short. Let γ = β − δ. Then
γ is a root, rδβ = 3, and α+ γ is not a root.

0 ≡ [GβGα,Gγ ] = ±3Gβ+γGα

Thus Gβ+γGα ≡ 0. Using the action of W (Φ ∩ α⊥) we conclude that qαGα ≡ 0 and V is
quadratic. �

Lemma 7.1.7 [a long implies quadratic] Let (Φ, p, λ, α, β) be a quadratic tuple with α
long. Then V is quadratic.

Proof: Without loss α is the highest long root. If β = α we are done by 7.1.5. So we may
choose β ∈ Φ maximal with β 6= a, GβV 6= 0 and GβGαV = 0. If (β, α) > 0 we are done by
7.1.6. So we may assume that (α, β) ≤ 0.

Suppose first that β is long. If Φ is of typeA1 then β = −α and so 2G2
α = [GβGα,Gα,Gα] =

iv0. Thus G2
α ≡= 0 and V is quadratic by 7.1.3 ( Actually a moments thought even gives

a contradiction).
So assume that Φ 6= A1. If Φlong is connected there exists γ ∈ Π(Φlong) with β + γ ∈

Φlong. Then Nβγ 6= 0 and so Gβ+γGa = 0. The maximal choice of β implies β+γ = α. But
then (α, β) > 0.

So Φlo is disconnected, α ⊥ β,Φ is of type Cn and γ := 1
2(α − β) ∈ Φshort. Then

Nβγ 6= 0 and Gγ+αGα ≡ 0. The maximal choice of γ implies Gγ+αV = 0. In particular
p = 2, gshortV = 0 and [Hβ , g]V = 0. Thus Hβ acts as a scalar on V . Since α ⊥ b,
HβGα = [GβGα, G−β =≡ 0 and so HβV = 0 But then g acts nilpotent on V a contradiction.

Suppose next that β is not long. Note that the highest short root has positive inner
product with α. So β is not the highest short root. Assume Φshort is connect. Then we can
choose γ ∈ Π(Φshort) with β + γ ∈ Φshort and we get a contradiction to the maximal choice
of β. Hence Φshort is disconnected and Φ is of type Bn. If β is not perpendicular to α then
((b, a) < 0, Nβα 6= 0 and we get Gα+βGα = 0, contradiction the maximality of β. So β ⊥ α
and as above HβGα = 0. Let γ ∈ Π with β + γ ∈ Φ. If Nβγ 6= 0, we get a contradiction
to the maximality of β. Thus p = 2 and so [Hb, g] = 0 and Hβ centralizes V . But then
gshortV = 0, a contradiction as β is short and GβV 6= 0.

This settles the last case and the lemma is proved. �

Lemma 7.1.8 [quadratic tuples with GaGb not 0] Let (Φ, p, λ, α, β) be a quadratic
tuple with GαGβV (λ) 6= 0. The up to conjugacy under W Φ = An, α = e0 − en and either
β = −e0 + e1 and λ = λn or β = −e2 + en and λ = λ1.

Proof: Let V ∗ the dual of V . So V ∗ = V (ω0(λ)). Then GαGβV
∗ = 0 and we conclude

that λ 6= −ω(λ). Thus Φ = An or n ≥ 5, n is odd and Φ = Dn Also [Gα, Gb] 6= 0 and so
(α, β) < 0.
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But inDn for n > 3, W has a unique orbits on pairs of roots (γ, δ) with (γ, δ) < 0, namely
all are conjugate to (e1 + e2,−e1 + e3). Thus (αβ) is conjugate to (β, α) contradicting the
assumptions.

Thus Φ is of type An. By 7.1.7 V is quadratic and so by 7.1.3 λ = λi for some 1 ≤ i ≤ n.
Up to conjugation under W , we may assume α = e0 − en and either β = −e0 + e1 or

β = −e1+en. In view of the graph automorphismus it suffices to treat the case β = −e0+e1.
Let

Σ = 〈β,Φ ∩ α⊥〉 = {±(ei − ej) | 0 ≤ i < j ≤ n− 1}.

Then Σ is a closed root subsystem of type An−1. Also GαV is invariant under lα and Gβ

and so under gΣ. Since Gβ annihilates GαV and W (Σ) is tranisitive on Σ, gΣ annihilates
GαV . As v+ ∈ GαV we conclude that λ = λn and the lemma is proved. �

Lemma 7.1.9 [quadratic tuples for (a,b) not positive and a long] Let (Φ, p, λ, α, β)
be a quadratic tuple with α long, α 6= β and (α, β) ≤ 0. Then one of the following holds:

(a) [a] Φ = An, α = e0 − en and either

(a) [aa] λ = λ1 and β = e1 − e2 or −e2 + en or

(b) [ab] λ = λn and β = e1 − e2 or −e0 + e1.

(b) [b] Φ = Cn, λ = λ1, α = 2e1 and either β = 2e2 or p 6= 2, n > 2 and β = e2 − e3.

(c) [c] Φ = Bn, n ≥ 3, α = e1 + e2 and either

(a) [ca] λ = λn and β = e1 − e2 or

(b) [cb] λ = λ1, β = e2 − e3 or p 6= 2 and β = e2.

(d) [d] Φ = D4 α = e1 + e2 and one of the following holds:

(a) [da] λ = λ1 and β = e3 − e4 or e3 + e4.

(b) [db] λ = λ3 and β = e1 − e2 or e3 + e4.

(c) [dc] λ = λ4 and β = e1 − e2 or e3 − e4.

(e) [e] Φ = Dn, n ≥ 5,α = e1 + e2 and either

(a) [ea] β = e3 − e4 and λ = λ1 or

(b) [eb] β = e1 − e2 and λ = λn−1 or λn.

Proof: Without loss α is the highest root. Let Ψ be the closed root subsystem generated
by α and β. By 7.1.7 that V is quadratic and so by 7.1.3 λ = λµ for some δ ∈ Π with
n∗µ∗ = 1. Moreover, GαV = Ann(qα) and so GβGαV = 0 just means that Gβ annihilates
Vα := Ann(qα).
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Supose first that (β, α) = 0. Then Gb ≤ Annlα(Vα). If (µ, α) 6= 0 then all of lα annihilates
Vα and (a) or (b) holds. So suppose that (µ, α) = 0. Asume that Φ ⊥ α⊥ is connected.
Then GβVα = 0 implies that β is short and p = pΦ. On the otherhand GβV 6= 0 implies
that µ is short. But the µ is conjugate to β in W (Φ∩α⊥) and so GµVα = 0, a contradiction.

Thus Φ ⊥ α⊥ is not connected and so Φ is of type Bn, n > 2 or Dn, n ≥ 4. It is now
easu to see that one of (c), (d) or (e) holds, the assumption that p 6= 2 in some cases is to
make sure that GβV 6= 0.)

Suppose next that (β, α) < 0. If GαGβV 6= 0, then (a) holds by 7.1.8 So we may assume
that GαGβ ≡ 0. Then also [Gα,Gβ ] ≡ 0. Since (β, α) < 0, α + β is a root and since α is
long Nαβ 6= 0. It follows that Gα+β ≡ 0. Thus p = pΦ and α+ β is short. Since Gβ 6≡ 0, β
is long. But the sum of two long roots always long , a contradiction to α+ β short. �

Lemma 7.1.10 [p=pphi and a and b short] Let (Φ, p, λ, α, β) be a quadratic tuple and
suppose that p = pΦ and both α and β are short. Then Φ = Cn, p = 2 and λ = λ1 or
λ1 + λn. Moreover, V (λ) is as a module for gshort isomorphic to a direct sum of natural
modules.

Proof: Note that Φ is Bn, Cn, G2 or F4 and Φshort is of type An1 , Dn, A2 and D4 respec-
tively. Moreover W/W (Φshort) induces the full group of graph automorphisms on Φshort.

Let µ be the restriction of λ to Φ∗
short. Then all composition factors for gshort on V

are isomorphic to V (µ). Moreover (Φshort, µ, α, β) is a quadratic tuple. This easily rules
out the case Φshort = An1 . Hence Φshort is connected and so by 7.1.7 V (µ) is quadratic for
gshort. Since µ is invariant under all graph automorphism, 7.1.3 implies that Φshort = Dn

and µ = ”µ1”. Then λ = λ1 or λ = λ1 + λn. Note that V (λ1 + λn) ∼= V (λ1) ⊗ V (λn) and
gshort acts trivially on V (λn). So also the last statement of the lemma is proved. �

It remains to look at quadratic tuples where Φ has two root lengths, α and β are short
and p 6= pφ,

Lemma 7.1.11 [a=b short] Let (Φ, p, λ, α, β) be a quadratic tuple with α = β short and
p 6= pΦ 6= 1. Then V is minuscule. That is one of the following holds

(a) [a] Φ = Bn and λ = λn.

(b) [b] Φ = Cn and λ = λ1

Proof: Without loss α is the highest short root. Since α is not the highest long, there
exists γ ∈ Π with α + γ ∈ Φ. Since α is the highest short root, α + γ is long, Nαγ = ±pΦ

and neither α+ 2γ nor 2α+ γ are roots Thus

0 ≡ [G2
α,Gγ ] = ±2pΦGα+γGα
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Since α = β, p 6= 2. By assumtion p 6= pΦ and so Gα+γGα ≡ 0. Thus by 7.1.7 V is
quadratic. So λ = λδ for some δ ∈ Π so that δ∗ appears once in the highest short root
of Φ∗. A glance at the highest long root of Φ∗ shows that δ appears once or twice in α∗.
Thus (λ, α∗) ∈ {1, 2}. Note that there exists a composition factor for K〈Gα,HαG−α〉 with
heighest weight the restriction of λ. Since G2

a annihilates this composition factor (λ, α∗) = 1.
So λ is minuscule. �

Lemma 7.1.12 [a,b short, (a,b) not negative] Let (Φ, p, λ, α, β) be a quadratic tuple
with both α and β short, α 6= β, (α, β) ≥ 0 and p 6= pΦ 6= 1. Then up to conjugacy under
W ,

Φ = Cn, λ = λ1, α = e1 + e2 and β = e2 + e3 or β = e3 + e4.

Proof: Suppose that α+ β is a long root. Then Nαβ = pΦ 6= p. By 7.1.8 GβGα ≡ 0 and
so NαβGα+β ≡ 0. Thus Gα+β ≡ 0 a contradiction.

Thus α + β is not a long root. This rules out the case Φ = Bn and Φ = G2. It also
shows that (α, β) > 0 for F4. Also p 6= pφ = 2 and in view of 7.1.11 we will be done if we
can show that G2

α ≡ 0.
Suppose that (α, β) > 0. Then 〈α, β〉 is of type A2. So γ = β − α is a short root, α+ γ

is not a root and Nβγ = ±1 6= 0. Hence

0 ≡ [GβGα,Gγ ] = NβγG
2
α

and so G2
α ≡ 0.

Suppose next that (α, β) = 0. Then Φ = Cn, n ≥ 4 and without loss α = e1 + e2 and
β = e3 + e4. Let γ = e2 − e3. Then β + γ = e2 + e4 is a root, Nβγ = ±1 6= 0 and α + γ is
not a root and so

0 ≡ [GβGα,Gγ ] = NβγGβ+γGα

and so Gβ+γGα ≡ 0. Since (β + γ, α) > 0, we are done by the previous case. �

Lemma 7.1.13 [a,b short, (a,b) negative] Let (Φ, p, λ, α, β) be a quadratic tuple with
both α and β short, α 6= β, (α, β) < 0 and p 6= Φp 6= 1. Then up to conjugcay under W ,

Φ is of type G2, λ = λ1, p = 2, α = α1 + 2α2, β = α1 + α2

Proof: By 7.1.8 GαGβ ≡ 0 and so [Gα,Gβ ] ≡ 0.
Suppose that β = −α then [Gα,Gβ ] = Hα. By ?? Hα ≡ 0 implies Gα ≡ 0, a contradicion.
Thus β 6= −α and (α, β) 6= 0 implies that α+ β is a root. Hence NαβGαβ ≡= 0 and as

p 6= pΦ we conclude Nαβ = 0. p 6= pφ implies Nαβ = ±2, pφ 6= 2 and so Φ = G2 and p = 2.
Let Π = {α1, α2} with α1 short. Define

Σ+ = {α1, α1 + α2,−2α1 − α2}

and
Σ− = −Σ+
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Then Φshort = Σ+ ∪ Σ− and W (Φlong) acts transitively on Φlong,Σ+ and Σ−. Let
ε ∈ {+,−} and δ, µ ∈ Σε with δ 6= µ. Then (δ, µ) is conjugate under W (Φ) to (α, β) and so
GδGµ ≡ 0. Since p = 2 also G2

δ ≡ 0. Moreover [Gδ, Gµ] = ±2Gδ+µ = 0. Put

qε = K〈Gδ | δ ∈ Σε〉

We conclude that qε is an commuative subalgebra of g and that

q2ε ≡ 0

Also Gα2 commutes with Gα1+α2 and with G−2α1−α2 and [Gα2 ,Gα1 ] = ±Gα1+α2 . Thus
[Gα2 , q+] ≤ q+. Let l = glong. The action of W (Φlong) implies [l, q+] ≤ q+. Since W (Φ)
interchanges Σ+ and Σ− we also have [l, q−] ≤ q−. Thus we can apply ?? conclude that

V = V+ ⊕ V−

where Vε = AnnV (qε).
Since Vε is H invariant, v+ ∈ Vε for some ε ∈ {+,−}. Hence v+ is annihilated by qε and

u = K〈Gδ | δ ∈ Φ+〉. It is easy to see that g is (as a Lie algebra) generated by q− and u.
Thus v+ =∈ V+ and v+ is annihilated by q+ and u. In particular G±(2α1+α2)v+ = 0 and so
H2α1+α2v+ = 0. Since (2α1 + α2)∗ = 2α∗

1 + 3α∗
2 and p = 2 we have H2α1+α2 = Hα2 . Thus

Hα2v+ = 0 and so λ = λ1. �

Comment:there probably exists more direct proof for the preceeding lemma,
but I like the proof since it treats G2 for p = 2 like an A3

Theorem 7.1.14 [all quadratic tuples] The following table lists all quadratic tuples:

Φ p λ α, β

any any quadratic α long, β 6= α, (α, β) > 0
any odd quadratic α = β long

classical any natural
α long, β 6= α, (α, β) = 0

not α = ±ei ± ej , β = ±ei ∓ ej
An any λ1 (natural) α = ei − ej , β = ej − ek
An any λn (natural) α = ej − ek, α = ei − ej
Cn odd natural α = β short

Cn any λ1 or (for p=2)λ1 + λn
α, β short, (α, β) ≥ 0

not α = ±ei ± ej , β = ±ei ∓ ej
Bn, Dn any spin α = ±ei ± ej , β = ±ei ∓ ej
Bn odd spin α = β short

D4 any λm,m ∈ {3, 4} (spin)
α = ±ei ± ej , β = ±ek ± el

number of− = m− 1 mod 2
G2 2 λ1 α, βshort??, <α, β> = −1
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Proof: This is just a summary of the results of this section �

Next we list a lower bound d for the dimensions of GαV for α the longest root of Φ and
V a quadratic module for g or α short, p = 2 and Φ = G2. In the table w0 is the longest
word in the root system Φ. In the before last column the weights of GαV are written down.

Theorem 7.1.15 [images quadratic action]

Φ p λ w0(λ) α GαV d

An any λi, ?? e0 − en λWα
i

(
n−1
i−1

)
1 ≤ i ≤ n

Bn any λ1 −λ1 e1 + e2 e1, e2 2
λn −λn

1
2 (−e1 − e2 ± e3 ± · · · ± en) 2n−2

Cn any λi, −λi 2e1 e1 +
∑i

j=2 ±ej 2i−1

1 ≤ i ≤ n
Dn any λ1 −λ1 e1 + e2 e1, e2 2
nodd λn−1 −λn

∏
εi = −1, 1

2 (e1 + e2ε3e3 · · · εnen) 2n−3

nev −λn−1

E6 any λ1 −λ6 λ2
1
6a+ 1

2 (e3 + e4 + e5 + e6 − e7),−e7 − 1
3a, 6

ek − 1
3a, 3 ≤ k ≤ 6

a := e1 + e2 + e8
E7 any λ1 −λ1 −a −1

2a− ek, 2 ≤ k ≤ 7 12
a := e1 + e8

G2 2 λ1 −λ1 3a+ 2b a+ b, 2a+ b 2
F4 any λ1 −λ1 e1 + e4 e1, e4,±ei, 2 ≤ i ≤ 3 6

Φ λ

An λi = 1
n+1((n+ 1 − i)(e0 + . . .+ ei−1) − i(ei − . . .− en), 1 ≤ i ≤ n

Bn λ1 = e1
n ≥ 2 λn = 1

2(e1 + . . .+ en)
Cn λi = e1 + · · · + ei, 1 ≤ i ≤ n
Dn λ1 = e1
Dn λn−1 = 1

2(e1 + · · · + en−1 − en)
E6 λ1 = e3 − 1

3a, a := e1 + e2 + e8
E7 λ1 = 1

2a+ e2, a := e1 + e8
G2 λ1 = λa = 2a+ b
F4 λ1 = e4

Theorem 7.1.16 [quadratic subalgebras] Let K be a field of characteristic p ≥ 0, Φ
a connected root system and g = gΦ(K) the corresponding algebra. Let V = V (λ) be the
irreducible restricted g-module of heighest weight λ 6= 0. Let ∅ 6= Ψ ⊆ Σ such that GαV 6= 0
for all α ∈ Ψ. Suppose that gΨ is quadratic on V , that is g2

ΨV = 0. Then
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(a) [a] If V is quadratic but neither natural nor spin, then one of the following holds:

1. [a] There exists a tuple (α0, α1, . . . , αk) of roots with diagram ∆ such that Ψ =
{α0, α0 + α1, . . . , α0 + . . . αk}. Moreover, either

1. [a] All roots in Ψ are long, and ∆ = Ak+1.
2. [b] Ψ contains a unique short root, p = 2, ∆ = Bk+1 or Gk+1 and Φ = Cn, F4

or G2

2. [b] All roots in Ψ are short, Φ = G2, p = 2, |Ψ| = 2 or 3 and <α, β> = −1 for all
α 6= β ∈ Ψ.

Proof: (a): Let β0, . . . , βm be the long roots in Ψ. Then by 7.1.14 <bi, bj> = 1 for all
1 ≤ i < j ≤ m. Put α0 = β0 and αi = βi − βi−1 for all 1 ≤ i ≤ m. Then clearly
(α0, α1, . . . , αm) has diagram Am+1. If Ψ contains only long roots we conclude that (a:1:1)
holds. Suppose next that Ψ contains a unique root β which is not long. Then by 7.1.14
<βi, β> = 1 for all 1 ≤ i ≤ m. Put αm+1 = β−βm. Then <bi, am+1> = 0 for all 0 ≤ i < m
and <β, βm> = −1. Thus <am+1, ai> = 0 for all 0 ≤ i < m and <am+1, am> = −1. Note
also that am+1 is short and so (a:1:2) holds.

Suppose finally that Ψ contains two distinct roots α and β which are not long. Then
by 7.1.14, p = 2, Φ = G2 and <α, β> = −1. If |Ψ| = 2, then (a:2) holds. So assume
δ ∈ Ψ \ {a, β}. Suppose that δ is long, then by 7.1.14, <α, δ> = <β, δ> = 1 and so
<α+ β, δ> = 2. But α+ β is a short root and we obtain a contradiction.

So δ is short. Thus by 7.1.14 we get <α, δ> = <β, δ> = −1 and so <α+ β, δ> = −1.
Hence δ = −(α+ β), δ is unique, |Ψ| = 3 and (a:2) holds.

(??): �

7.2 Quadratic modules for Groups of Lie Type

Definition 7.2.1 [A] quadratic system is a tuple (M,V,A,D, p) such that

(a) [a] M is a finite group.

(b) [b] p is a prime and V an irreducible faithful GF (p)M -module.

(c) [c] D is a p-subgroup of M with A ≤ Z(D) and |D| > 2.

(d) [d] M = 〈AM 〉D.

(e) [e] [V,A,D] = 0.

The purpose of this section is to study and (under some extra assumptions) classify quadratic
system.

Lemma 7.2.2 [[V,D,A]=0] Let (V,M,A,D, p) be a quadratic system. Then
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(a) [a] [V,D,A] = 0.

(b) [b] M = Op(M)D.

Proof: (a) By the definition of a quadratic system [V,A,D] = 0 and A ≤ Z(D). Thus
[A,D, V ] = 0 and the Three Subgroup Lemma 2.0.1 implies [D,V,A] = 0.

(b) Since M = 〈AM 〉D, M = 〈DM 〉. So (b) follows from 2.0.2 applied to M/Op(M). �

Lemma 7.2.3 [imprimitive quadratic systems] Let (M,V,A,D, p) be a quadratic sys-
tem and suppose that ∆ is a system of imprimitivity for M on V . Then

(a) [a] p = 2 and A acts non-trivially on ∆.

(b) [b] |D/CD(W )| = 2 = |WQ| for all W ∈ ∆ with A � NM (W ).

(c) [c] Op(M) acts transitively on ∆.

Proof:
Since V is faithful and V =

∑
∆, there exists W ∈ ∆ with [W,A] 6= 0. Suppose

first that A acts trivially on ∆. Then 0 6= [W,A] ≤ CW (D) and so D normalizes W .
Since M = 〈AM 〉D = CG(∆)D we conclude that M normalizes W , a contradiction to the
irreducibility of V .

So A acts non-trivially on ∆. Let W with A � NM (W ). [W,A,D] = 0 implies
|WA| = WD| = p = 2. Also [W,ND(W )] ≤ CW (A) and so [W,ND(W )] = 0. Therefore
|D/CD(W )| = 2.

Suppose that Op(M) does not act transitively on ∆. Replacing ∆ by {
∑
WOp(M) |

W ∈ ∆} we may assume that Op(M) acts trivially on ∆. Thus by 7.2.2(b) M = CM (∆)D.
Hence ∆ = WM = WD, |∆| = 2, CD(∆) = CD(W ) ≤ CM (V ) = 1 and so |D| = 2 a
contradiction to the assumption. �

Lemma 7.2.4 [e-linear] Let (M,V,A,D, p) be a quadratic system and suppose that there
exists a field E such that V is a vector space over E and M acts E-semilinear on V . Then
M is E-linear on V .

Proof: Let 1 6= a ∈ A and let σ be the (maybe trivial) field automorphism induced by a
on E. Let Eσ be the fixed field of σ in E. As a is quadratic on V , e− eσ ∈ Eσ for all e ∈ E.
It easy to see that this implies that E = Eσ or p = 2 and E has dimension 2 over Eσ has
index two in F . Moreover, [V, a] is an Eσ-subspace centralized by D. So D is Eσ-linear and
we may assume that Eσ 6= E. Since [V,CD(E)] is an E-space centralized by a, CD(E) = 1.
Thus D is isomorphic to a subgroup of AutEσ(E) ∼= C2, a contradiction to |D| ≥ 2. �

Lemma 7.2.5 [OpM irreducible in quadratic system] Let (M,V,A,D, p) be a quadratic
system. Then Op(M) acts irreducibly on V .
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Proof: By 7.2.3 Op(M) is homogenous on V . So the lemma follows from the facts that V
contains precisely qn − 1 irreducible Op(M)-submodules and that M/Op(M) is ap-group,
see also ??. �

Definition 7.2.6 [dtendec] Let K be a field, H a group and V a KH-module. Then a
tensor decomposition of V for H is a tuple (F, Vi, i ∈ I) such that

(a) [a] F ≤ EndK(V ) is a field with K ≤ F .

(b) [b] H acts F -semilinear on V .

(c) [c] Put E = CH(F ) ( the largest subgroup of H acting F -linear on V ). Then Vi is an
FE-promodule.

(d) [d] As FE-modules, V and
⊗

F {Vi | i ∈ I} are isomorphic.

Lemma 7.2.7 [qtp] Comment:need to allow the case that D acts on I, giving
O+

4 (q) Let D be a group with |D| ≥ 3. 1 6= A ≤ Z(D), K a field with charK = p, p a
prime, V a faithful KD-module with [V,A,D] = 0 and (F, Vi, i ∈ I) a tensor decomposition
of V for D. Then D acts F -linear and one of the following holds:

1. [1] There exists i ∈ I so that [Vi, A,D] = 0 and D acts trivially on all other Vj’s.

2. [2] p = 2, D is F -linear and there exist i, j ∈ I, ak ∈ EndF (Vk) with a2
k = 0 (k=i,j)and

a monomorphism λ : D → (F,+) so for q ∈ D,

(a) [a] For k = i, j, q acts on Vk as 1 + λ(q)ai.

(b) [b] D centralizes all Vs’s with s 6= i, j.

Proof: Note first that as A acts quadratically on V , A is an elementary abelian p-group.
Also [V,A,D] = 0 and [D,A] = 1. So the three subgroup lemma implies that [V,D,A] = 1.

By 7.2.4 M acts F-linear on V . Since A is a p-group, we may assume that the Vi’s are
actually FA-modules and not only promodules. If D acts trivially on some Vk, V is a direct
sum of copies of the FD-module

⊗
F {Vi | i ∈ I − k}. So the latter has the same properties

as V . Thus we may assume fom now on that D acts non-trivially on each Vi. If |I| = 1,
then 1. holds

Suppose next that |I| = 2 and say I = {1, 2}. Note that

[CV1(A) ⊗ V2, A] = CV1(A) ⊗ [V2, D].

D acts as scalars on [V2, A] and [V1, A]. Hence we may choose the promodules V1 and
V2 so that [Vi, A,D] = 0 for i = 1, 2. For q ∈ D let qi be the endomorposim q − 1 of Vi.
Then ziqi = 0. Moreover, in EndF (V1 ⊗ V ),

z − 1 = (1 + z1) ⊗ (1 + z2) − 1⊗ = z1 ⊗ 1 + 1 ⊗ z2 + z1 ⊗ z2.
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Thus [V, z, q] = 0 implies

z1 ⊗ q2 = −q1 ⊗ z2

If z1 = 0 then as V is faithful, z2 6= 0. Thus the previuos equation implies q2 = 0 for
q, a contradcition to the assumption that D does not centalize V2. Hence both z1 and z2
are not zero. Choosing q = z we see that p = 2. Hence for arbitray q, q1 = λ(q)z1 and
q2 = λ(q)z2 for some λ(q) ∈ F . Thus 2. holds in this case.

Suppose now that |I| ≥ 3. Say 1, 2 ∈ I and but W =
⊗

F {Vi | i ∈ I \ {1, 2}. Then
V ∼= (V1 ⊗ V2)×W . Then by the prviuos case D acts faithfully on V1 ⊗ V2 z − 1 and q − 1
are linear dependent on V1 ⊗ V2. Let λ = λ(q) be as above. Then on v1 ⊗ v2

q − 1 = (1 + λz1) ⊗ (1 + λz2) − 1 ⊗ 1 = λ(z1 ⊗ 1 + 1 ⊗ z2 + λz1 ⊗ z2).
On the otherhand z − 1 = z1 ⊗ 1 + 1 × z2 + z1 ⊗ z2 and we conclude that λ = 0, 1 and

so |D| = 2, a contradiction. �

Lemma 7.2.8 [quadratic on exterior powers] Let F be a field with p := char F ≥ 0, A
a group, V a faithful, finite dimensional FA-module. Put n = dimF V , let 2 ≤ m ≤ n−2 and
suppose that A acts unipotenly on V and quadratically on

∧m V . Then A is an elementary
abelian p-group and one of the follwing holds.

1. [a] dim[V,A] = 1.

2. [b] dimV/CV (A) = 1.

3. [c] p = 2, m ∈ {2,dimV − 2} and A ⊆ 1 + Ft for some t ∈ EndF(V ) with t2 = 0.

4. [d] p = 2, V = X ⊕ Y , where X and Y are FA-submodules of V with dimX = 4 and
[Y,A] = 0. Moreover, put U = CX(A). Then U = [V,A] is 2-dimensional and A is
contained in an isotropic subspace of EndF(X/U,U).

5. [e] p = 2, m = 2, dimV = 4 and A acts cubic but not quadratic on V .

6. [f] p = 2 = |A|.

Proof: Suppose first that all elements in A are transvections. Then (1) or (2) holds. So
we may assume that there exists d ∈ A with dim[V, d] ≥ 2.

Suppose A does not act quadratically on V . Then there exists D ≤ A and an FD
submodule X in V such that D is not quadratic on V and if we put k = dimU , then either
p = 2, |D| = 4 and k = 4 or p 6= 2, D is cylic and k = 3. Let l = k−1 if m ≥ k−1 and l = 1
if m < k. Then D does not act quadratically on

∧lX. Suppose that m− l ≤ n− k. Then∧lX ⊗
∧m−1 V/X is isomorphic to an FD section of

∧m V and we obtain a contradiction
to 7.2.7. Thus n−3− l ≥ m− l−1 ≥ n−k ≥ n−4. Thus l = 1, n−2 = m and k = 4. Sy by
choice of l, m ≤ k− 2 = 2. Hence n = 4. Let D = 〈a, b〉. Then CV (D) is 1-dimensional and
so CV (D) = CV (A). Moreover, [V,D] = CV (a)+CV (b) and CV (a)/CV (A) is 1-dimensional.
Thus [V,D,A] ≤ CV (A), A is cubic on V and (5) holds.
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So we may assume from now on that A acts quadratically on V .
Suppose that p 6= 2. Let X be 2-dimensional non-trivial F〈d〉-submodule in V . Then

d acts quadratically on X
⊗ ∧m−1 V/X and we conlude from 7.2.7 that d centralizes∧m−1 V/X and so also V/X. Thus [V, d] ≤ CX(d) and so [V, d] is 1-dimensional, a contra-

diction to the choice of d.
Thus p = 2 and we may assume that |A| ≥ 4. Let 1 6= a, b ∈ A and put D = 〈a, b〉.

Suppose that CV (a) � CV (b). Then there exists a non-trivial 2-dimensional FD-subspace
X in V with [X, a] = 1. Since D acts quadratically on X

⊗∧m−1 V/X we conclude from
7.2.7 that a centralizes V/X. Thus [V, a] ≤ CX(A) = [X, b]. Since this hold for all such X
we get [V, a] = [CV (a), b], a is a transvection and dim[V, b] ≤ 2. In particular, a 6= d and so
CV (d) = CV (A). By a dual argument, [V, d] = [V,D]. If [V, d] is 2-dimensional it is easy to
verify that (4) holds.

So assume that dim[V, d] ≥ 3. Hence d 6= a. If CV (a) 6= CV (d) we conclude that
CV (a) � CV (d), a contradiction. Thus CV (a) = CV (d) for all 1 6= a ∈ A.

Replacing V by V ∗ and m by n−m if necessary we may assume that n ≥ 2m.
Let t = d− 1 ∈ EndF(V ).
Suppose that A ⊆ Fd. Then V = V0⊕V1⊕Vk, where A centralizes V0, k ≥ 3 and V1, . . . Vk

are pairwise isomorphic non-trivial 2-dimensional FA-submodules. If m ∈ {2, n − 2}, then
(3) holds. So suppose for a contradiction that 3 ≤ m ≤ n − 3. Let Y = V0 + V3 + . . . Vk.
Then dimY = n− 6 ≥ 2m− 6 ≥ m− 3. Thus

∧m V has a section isomorphic to V1 ⊗ V2 ⊗
V3 ⊗

∧m−3 Y and we obtain a contradiction to 7.2.7.
So we may assume that there exists a ∈ A with a /∈ Fd. Thus there exists x ∈ V with

F[x, a] 6= F[x, d]. Put D = 〈a, d〉. Since CV (a) = CV (d) we conclude that X := F〈xD〉 is 3-
dimensional. Since n ≥ 2m we have dimV/X = n−3 ≥ 2m−3 ≥ m−1. Moreover, equality
holds only for n = 2m and m = 2. But n ≥ 2 dim[V, d] ≥ 6 and so m − 1 < dimV/X.
Since X ⊗

∧m−1 V/X is a section of
∧m V we conclude from 7.2.7 that D centralizes V/X.

Thus [V,D] ≤ CX(D) and [V,D] is at most 2-dimensional. This contradiction completes
the proof of 7.2.8. �

Definition 7.2.9 [strong quadratic] Let M ∈ Liep and V a faithful FpM -module. Then
V is called strongly quadratic if there exists A ≤ D ≤M such that

(i) [a] (M,V,A,D, p) is a quadratic system.

(ii) [b] If p = 2 then |ΦAg | ≥ 2 for some g ∈ M̂ with Ag ∈ U .

Let (M,V,A,D, p) be a quadratic system, where M is a group of Lie type. Then we
may assume that D is a subgroup of the unipotent group U . As in ?? for X = D,A let

ΦX = {α ∈ Φ+ | X ∩ U+
α 6≤ U−

α }

and
TX =

∑
α∈ΦX

KGα ≤ gΦ(K).
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Theorem 7.2.10 [same characteristic quadratic systems ] Let M ∈ Liep and V an
irreducible, strongly quadratic FpM -module. Then M and V are as listed below.

1. [1] M is a quotient of SLn(K) or SUn(K) and λ = λi for some 1 ≤ i ≤ n.

2. [2] M ∼= Ω2n+1(K), p 6= 2 and λ = λ1 or λn and M ∼= Spin2n+1(K).

3. [3] M ∼= Sp2n(K) and λ = λi for some 1 ≤ i ≤ n.

4. [4] M ∼= Ω±
2n(K) and λ = λ1, λn−1 or λn.

5. [5] M ∼= 3D4(K) and λ = λ1.

6. [6] M ∼= E6(K) and λ = λ1 or λ6 or 2E6(K) and λ = λ1.

7. [7] M ∼= E7(K) and λ = λ1.

8. [8] M ∼= G2(K) and λ = λ1 or p = 3 and λ = λ1 or λ2.

9. [9] M ∼= F4(K) and λ = λ1 or p = 2 and λ = λ1 or λ4.

Proof: The strategy of the proof is to translate the fact that we have a quadratic
system into the fact that we have a quadratic tuple for a Lie algebra related to M and then
to use the classification of quadratic tuples.

Let F = EndFpM (V ) and set W = V ⊗F E where E is the algebraic closure of F. Then
W is an irreduzible and faithful EM -module, therefore W = W (λ) for some weight λ and

W ∼= ⊗a−1
i=0W (µi)(p

i),

where |K| = q = pa and λ =
∑a−1

i=0 p
iµi with µi p-restricted weights for 0 ≤ i ≤ a− 1, see ...

By 6.2.4 the modules W (µi)(p
i) are irreducible modules for gΦ(E), for 0 ≤ i ≤ a−1. We

claim that we may assume that W1 := W (µ1) is a root faithful module for gΦ(E).
Assume that W1 is not a root faithful module for gΦ(E). Then Φ is of type Bn, Cn, F4 and
p = 2 or Φ is of type G2 and p = 3, see 6.1.7. In all these cases there exists an automorphism
of M which induces a bijection from Φ onto Φ∗. The Lie algebra gΦ∗(E) acts faithfully on
W1, see 6.1.7. Therefore we may assume that gΦ(E) acts root faithfully on W1.

Now 7.2.7 implies that either

(a) [1] V ∼= V (µi)(p
i) for some p-restricted weight µi or

(b) [2] p = 2 and V ∼= V (µi)(p
i) ⊗ V (µj)(p

j).

Assume that (2) holds. Then, as p = 2, in fact |ΦD| ≥ 2. Let α and β be two different
elements in ΦD such that α < β and let gα and gβ be elements in D such that gα ∈ U+

α \U−
α

and gβ ∈ U+
β \ U−

β . Then by 7.2.7 there exists kα, kβ ∈ K and al ∈ EndK(Vl) such that gx

acts on Vl as 1 + kxal for x ∈ {α, β} and l ∈ {i, j}. Hence gα acts on V (pi)
i and on V (pj)

j as

kα
kβ

(gβ − 1).
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Now 6.3.4(5) implies that Gα acts trivially on both, Vi and Vj . As we saw above we may
assume that Gα does not act trivially on both, Vi and Vj , which is a contradiction. Hence
(1) holds.

Thus W is a p-restricted EM -module and by 6.2.4 it is a root faithful and irreducible
gΦD

(E)-module, as well, which admits by 6.3.4a quadratic tuple. If ΦD contains a long root,
then by 7.1.7 W is quadratic. Hence if ΦD contains a long root, then by 7.1.3 we have the
possibilities (1.) – (9.) of the assertion.

If M is a twisted group and of type B2, F4 or G2, then by our choice of the ordering on
Φ, the set ΦD consists only of short roots, see 6.3.3.

Hence we may assume that ΦD consists only of short roots. Then by 7.1.10, 7.1.11,
7.1.12 and 7.1.13 p = pΦ, Φ is of type Cn, n ≥ 3 and λ = λ1 or λ = λ1 + λn or p 6= pΦ,
Φ is of type Bn, Cn or G2 and λ = λn, λ1, λ1, respectively. If Φ is of type Cn, 6= 3 and
λ = λ1 + λn, then by ?? V (Λ) ∼= V (λ1) ⊗ V (λn), which is not possible as we saw above.

These cases are listed in (2.), (3.) and (8.) of the assertion. �

Theorem 7.2.11 [same characteristic quadratic systems with outer automorphism]
Let (M,V,D,A, p) be a quadratic system such that

(a) [a] F ∗(M) is a quotient of σGΦ(K) and charK = p.

(b) [b] D 6≤ F ∗(M).

Then p = 2, M = Oε2n(Kσ) and V is the corresponding natural module.

Proof:
Let H = F ∗(M). By 7.2.5 we have that H acts irreducibly on V . Let F = EndH(V ).

Then by 7.2.4, M acts F-linear on V . Let E be the algebraic closure of F and W = V ⊗F E.
Then W is a simple FH-module.

By the Strong Steinberg Tensor Product Theorem ?? W is as an EH-module isomorphic
toW =

⊗
σ∈I V (λσ)σ, where I is a set of Frobenius automorphisms of L and λσ is a non-zero

p-restricted weight. Moreover, the extension M̂ of M preserves this tensor decomposition
and I is invariant under D via right multiplication.

Suppose first that D acts non-trivial on I. Then by 7.2.7 we conclude that |I| = 2
and dimV (λσ) = 2 for all σ ∈ I. Thus Φ = A1, N := V (λσ) is the natural module for
Ĥ and F = K. Since CD(I) acts E-linear on N we have that CD(I) ≤ H. So the outer
automorphism group induced by D on H is generated by a field automorphism τ of order
2. Since I = {σ, στ} we conclude that W = (N ⊗N τ )σ and so M ∼= O−

4 (Kτ ) and V is the
natural O−

4 (Kτ ))-module.
Suppose next that D acts trivially on I but |I| ≥ 2. Then by ?? |I| = 2 and D acts

linearly dependently on Vσ for all σ ∈ I. By induction on |I| we conclude that Φ = Dn, p = 2
and V (λσ) is the natural module. It follows, if a ∈ D, then [V (λ), a] is even dimensional
if and only if a ∈ H. As |DH/H| = 2 and |D| ≥ 3 we have D ∩H 6= 1. And we obtain a
contradiction to the linear dependency of D.
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Suppose finally that |I| = 1. It follows from ?? the outer automorphism group induced
by H is a standard graph automorphism of order p. Also Φ is of type An, Dn or En.In
particular, |DH/H| = p and p ∈ {2, 3}. Moreover, the extensions of the EH-module W to
G = GΦ(E) and to the Lie-algebra gΦ(E) are invariant under M .

Since D is a p-group we may assume that D ≤ U〈g〉, where U =
∏
α∈Φ+ Xα is the

standard maximal unipotent subgroup of G and g is the standard graph automorphism.

1◦ [1] Suppose that W is a strong quadratic module for G. Then Φ = Dn, n ≥ 3 and
W is natural or Φ = A2m−1 and λ = λm.

Since λ = λg this follows immediately from ??.

2◦ [2] If p = 3, then A ≤ H.

Note that A acts quadratically on W . As p is odd, it follows that A centralizes the
abelian group NG(U)/U . Since g acts non-trvial on NG(U)/U we conclude that A ≤ H.

3◦ [3] D ∩H 6= 1.

This follows immediately from |D| > 2 and (2◦).

In particular, there exists 1 6= b ∈ D ∩H with |b| = p and a d ∈ D \H. If A ≤ H we
choose b ∈ A and if A � H we choose d ∈ A. So in any case [W, b, d] = 0. For 1 ≤ i ≤ |Π|,
let Hi be the maximal parabolic subgroup of H corresponding to Π \ {αi}. Also let Ui be
the unipotent radical of Hi. We now split the analysis into four different cases:

Case 1 [d4] The case p = 3 does not occur.

Suppose that p = 3 and so Φ = D4. Suppose that b 6∈ U2. Then 7.2.7 applied to
some chief factor for M2/U2〈d〉 on W gives a contradiction. Thus b ∈ U2. It is easy to
[U2/Z(U2), d] is at least 4 dimensional over E. On the other hand, CU2(b)/Z(U2) has codi-
mension at most 1 in U2/Z(U2) and thus [CU2(b), d] � EdZ(U2). Since [W, b, [CU2(b), d]] = 0
we conclude that W is strongly quadratic.

Case 2 [dn] Suppose that p = 2 and Φ = Dn with n ≥ 3. Then V is the natural
module.

Suppose that b ∈ U1. If [CH1(b), d]∩U1 � Kb, then W is strongly quadratic and we are
done by (1◦). So we may assume that [CH1(b), d] ∩ U1 ≤ Kb. In particular, [U1, d] ≤ Kb,
d induces a transvection with center Kb on the orthorgonal space U1, b is non singular in
U1 and [d,CH1(b)] ≤ U1. Thus [CH1(b), d] ≤ Kb. Let B/Kb = Z(CH1(b)/Kb). Then either
(n, q) 6= (3, 2) and |B| = 2|K|, or (n, q) = (3, 2) and B ∼= D8. In either case all involutions
in B \ Kb are transvections on the natural module N for H. If |d| = 2 we conclude that
〈bCH(d)〉 contains a long root element c with c ∈ U1. Then [V, c, d] = 0 and the preceeding
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argument applied with c in place of b and realizing that c is not singular in U1 we get that
W is strongly quadratic.

If d has order four, then (n, q) = (3, 2) and |CN (d)| ≥ 8. Since d is not an involution,
CN (d) is not isotropic and so d centralizes non-degenerate 2-space in N . Thus d is contained
in a subgroup L of M isomorphic to Oε4(2). Let T be a subgroup of L such that d normalizes
T and T hasof order 32 and 5 if ε = + or −, respectively). Let W1 be an faithful irreducible
T 〈d〉-submodule of W . Then W1 has four different T -eigenspaces which are permuted
transitively by d. Therefore, [W, b, d] 6= 0.

Suppose next that b /∈ U1. By ?? we have that [U1, b] is even dimensional, while [U1, d]
is odd dimensional. Thus CU1(b) 6= CU1(d). Suppose first that CU1(b) � CU1(d). As
[W, [CU1(b), d], b] = 0 we conclude that W is strongly quadratic, and we are done. Thus
suppose CU1(b) ≤ CU1(d). Then there exists an element t ∈ CU1(d) \ CU1(b) and we can
replace b by [t, b]. Since [t, b] ≤ U1 we are done by the preceeding paragraph.

Case 3 [an] Suppose that p = 2 and Φ = An with n ≥ 2. Then Φ = A3 = D3

Put Z = U1 ∩ U2. Suppose that n = 2. Then all the involutions in U are contained in
U1 ∪ U2. Since b is an involution centralized by d and Ud1 = U2 we get that b ∈ Z. Thus
[W, [U1, b], b] = 0 and W is strongly quadratic, a contradiction.

Thus n 6= 2 and we may assume for contradiction that n ≥ 4. Suppose that b /∈ U1Un.
Then by induction we see that every non-central chief factor for H1 ∩ Hn〈g〉 is a natural
orthogonal module and n = 5. Moreover as b has order two, 2 dimCU1(b) ≥ dimU1 = n ≥ 4
and so CU1(b) � Z. Thus [CU1(b), d] 6= 1 and W is strongly quadratic. Thus by (1◦),
λ = λ3. But then M1 ∩M5 has a 4-dimensional composition factor.

Thus b ∈ U1Un.
Suppose that b ∈ Z. Then [W, [U1, g], b] = 0 and so W is strongly quadratic. Thus

by ?? λ = λm where n = 2m − 1. But then d acts non-trivially on CW (U1Un)) and
CW (U1Un) = [W, b], a contradiction.

Thus b /∈ Z and so also b /∈ U1. Thus CU1(b) has codimension 1 in U1 and since n ≥ 4,
T := [CU1(b), d] � FbZ. Since [W,T, b] = 0, W is strongly quadratic and again λ = λm,
where n = 2m − 1. In particular, n is odd and so n ≥ 5 and m = n + 1 − m ≥ 3. Let
N be the natural module for H. Then dim[N, b] = 2 and 7.2.8 shows that CN (b) ≤ CT (b)
and [N,T ] ≤ [N, b]. It follows that TU1/U1 is contained in a 1-dimensional subspace of
U1Un/U1, a contradiction to n ≥ 4. �

7.3 Some random results

Lemma 7.3.1 [half quadratic] Let F be a field with charF = p > 0 and p 6=, let A be a
finite abelian group, F an FA-module D the set of non-trivial quadratically acting elements
in A. Suppose that |D| ≥ |A#|

2 . The one of the following holds:

1. [1] A acts quadratically on V .
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2. [2] p = 3 and |A/B| = 9 where B = CA([V,A]).

Let E be a maximal quadratic subgroup of A. If E = A then (1) holds. So suppose
A 6= E. Let |A/E| = pn. For a ∈ D \ E and put Ea = {e ∈ E | ea ∈ D}. Let e ∈ Ea.
Then by ?? 〈e, a〉 is quadratic and we conclude that Ea = CE([V, a]). In particular, Ea is a
subgroup of Ea. Note also that Ea〈a〉 is quadratic and contains all the quadratic elements
in E〈a〉 not contained in E. In particular, by maximality of E, Ea 6= E. Thus Eaa contains
at most 1

p |E| quadratic elements.
Hence

|D| ≤ |E| − 1 +
pn − 1
p

|E|

On the otherhand
|D| ≥ 1

2
|A#| =

1
2
(pn|E| − 1)

Hence
1
2
(pn|E| − 1) ≤ |E| − 1 +

pn − 1
p

|E|

(pn+1 − 2pn − 2 − 2p) ≤ − p

|E|
≤ 0

(p− 2)(pn − 2) ≤ 6

Thus p = 3 and n = 1. So A = E〈a〉 and Ea centralizes both [V,E] and [V, a]. Thus
Ea ≤ B. If Ea < B, then A = EB or A = B〈a〉 and in both cases A acts quadratically,
contradicting the maximal choice of E. Thus B = Ea and (2) holds. �
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FF–modules

8.1 FF-modules for Lie algebras

Definition 8.1.1 [FF Lie algebra] A module V for gΦ(K) is called FF if there exists
Ψ ⊆ Φ such that

1. [1] GαV 6= 0 for all α ∈ Ψ.

2. [2] GβGαV = 0 for all α, β ∈ Ψ.

3. [3] dim gΨV ≤ |Ψ| with gΨ =
∑

α∈ψ Gα.

Next we classify the FF-modules for groups of Lie type.

Theorem 8.1.2 [quadratic for Lie algebra] Let K be a field of characterstic p > 0, Φ
a connected root system and g = gΦ(K) the corresponding algebra. Let V = V (λ) be the
irreducible restricted g-module of highest weight λ 6= 0. If V is an FF-module for g, then
one of the following holds.

1. [1] Φ = An, λ = λ1, λ2, λn−1, λn.

2. [2] Φ = Bn, λ = λ1; n = 2, λ = λ2; n = 3, λ = λ3 or n = 4, λ = λ4 and Ψ =
{e1 + e2, e1 − e2, e1, e1 + e3}.

3. [3] Φ = Cn, λ = λ1; n ≥ 7, p = 2 and λ = λ1 + λn.

4. [4] Φ = Dn, λ = λ1; n = 4, λ = λ3, λ4; n = 5, λ = λ4, λ5.

5. [5] Φ = G2, λ = λ1 and p = 2.

Proof: Suppose first that V is a quadratic module for g. Then according to 7.1.16 either
V is natural or spin or all roots in Ψ are short, Φ = G2, p = 2, |Ψ| = 2 or 3, or 7.1.16(a) 1.
holds.

73
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The before last is 5 of the assertion. Assume that V is the natural module for g. Then
we need to rule out Φ = E6, E7 and F4 (see 5.3.2). In these cases Ψ consists of long roots and
whenever α, β ∈ Phi with α 6= β, then 〈α, β〉 = 1. As in (the proof of) 7.1.16 we get a tuple
of roots (α0, . . . , αk) with k = |Ψ| with diagram Ak+1. Now ?? implies that (α0, . . . , αk)
is conjugate under the Weyl group to a tuple (β0, . . . , βk) with diagram Ak+1 such that
β0 = −α, α the longest root and βi, 1 ≤ i ≤ k, are elements of a chosen fundamental system
of Φ. Hence if Φ = E6, E7 or F4, then k ≤ 5, 7, 3. In all cases we get a contradiction to
8.1.1 3 (see 7.1.15).

Now let V be a spin module. Then the same argumentation as above yields for Φ = Bn
or Dn that n− 1 ≥ 2n−2 or n− 1 ≥ 2n−3 and therefore n ≥ 3 or n ≤ 5, respectively, as in
2 or 4. If 7.1.16(a) 1. holds, then we again get the assertion with 5.3.2, ?? and 8.1.1. Now
assume that V is not quadratic.

If Φ = Cn p = 2 and Ψ only consists of short roots, then λ = λ1 + λn, gshort is a Lie
algebra of type Dn and V is restricted to gshort the direct sum of two natural modules, see
??. Then 8.1.1 implies the second statement of 3. If Φ = B4, V is the spin module and Ψ
is as in 2., then 7.1.14 and 8.1.1 yields the assertion.

Now assume that V is a module which is not in the statement of the theorem. Then
Φ = Bn, n ≥ 5 or Dn, n ≥ 6 and V is a spin module, see 7.1.14. If Φ = Dn and n ≥ 5, then
either 〈α, β〉 > 0 for all α, β ∈ Ψ or Ψ = {α, β) with 〈α, β〉 = 0 and we obtain in both cases
a contradiction to 8.1.1. If Φ = Bn, then Ψ contains a long root and either 〈α, β〉 > 0 for
all α, β ∈ Ψ or for all α, β ∈ Ψ except for one pair of long roots. Hence we see as above
that |Ψ| ≤ n and therefore 2n−2 ≤ n and n = 4, a contradiction. �

Now we study FF-modules for groups of Lie type.

Definition 8.1.3 [FF Lie group] Let M ∈ Liep and V a faithful FpM -module. Then V
is called FF if there exists a non-trivial elementary abelian subgroup A in G such that
|V/CV (A)| ≤ |A|.

The group A will then be called an offending subgroup or an offender. By Thompson
replacement there is an offending subgroup A with [V,A,A] = 1. We call such an offender
quadratic.

Theorem 8.1.4 [quadratic for Lie groups] Let M ∈ Liep and V an irreducible FF
FpM -module. Then M and V are as listed below.

Proof: The strategy of this proof is the same as for quadratic modules. Let V be an
irreducible FF FpM -module and E := EndFpM (V ). Then we consider again the Mk-module
V ⊗E k, where k is the algebraic closure of Fp.
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