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Abstract

This draft (which still will be split into parts) is the classification of
the loop envelopes of the finite Bol Loops of exponent 2, see Theorem 2.
It contains the reduction arguments to finite simple groups (reduction to
passive groups) in Theorem 5 as well as the classification of the passive
groups, see Theorem 1. A main tool for that is the connectivity of certain
commuting graphs. This, which will be shown in Section 4, is of interest
on its own.

1 Introduction

(Finite) Bol loops of exponent 2 were long considered to be soluble. M. As-
chbacher studied the minimal non-soluble finite simple Bol loops of exponent 2,
the so called N -loops [Asch], see Definition 6.19. Using the classification of finite
simple groups, he could restrict the structure of the related groups considerably,
see Theorem 4. In particular, he showed G/O2(G) ∼= PGL2(q), q = 9 or q is a
Fermat prime. The smallest N -loop was found by B. Baumeister and A. Stein
and independently by G. Nagy in 2007. Furthermore, G. Nagy produced an
infinite family of simple Bol loops of exponent 2.

Notice, that in all the known N -loops q = 5.
The notation, which at many places follows [Asch], will be introduced in the

next section.

Definition 1.1 A finite nonabelian simple group S is called passive, if when-
ever (G,H,K) is a loop folder of a Bol loop of exponent 2 with F ∗(G/O2(G)) ∼=
S, then G = O2(G)H.

We show the following theorem, which then implies that every nonabelian
simple group is either passive or isomorphic to PSL2(q), q = 9 or q ≥ 5 a Fermat
prime.

Theorem 1 Let (G,H,K) be a loop folder to a Bol loop of exponent 2 such
that F ∗(G/O2(G)) is quasisimple. Then either

• G = O2(G)H or

• there is an integer q, q ≥ 5, a Fermat prime or q = 9 such that

(a) G = G/O2(G) ∼= PGL2(q) or G ∼= PΓL2(q) (only if q = 9)

(b) |G : H| = q + 1
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(c) K consists of the identity 1 and all the involutions in PGL2(q) which
are not in PSL2(q).

Using this theorem we are then able to show the following.

Theorem 2 Let (G,H, K) be a loop envelope of a Bol loop of exponent 2 Then
the following holds.

(a) G := G/O2(G) ∼= D1 ×D2 × · · · ×Dk for some non-negative integer k

(b) Di
∼= PGL2(qi) for qi ≥ 5 a Fermat prime or qi = 9

(c) Di ∩ HO2(G)/O2(G) ∼= qi : (qi − 1) is a Borel subgroup in Di of index
qi + 1

(d) F ∗(G) = O2(G)

(e) K is the set of involutions in G \G
′

Roughly speaking, the enveloping group of a Bol loops of exponent 2 looks as
if it is a direct product of the enveloping groups of some N -loops. The question
of the existence of N -loops with q > 5 is still open. Our results do not depend
on an answer to this question.

As a consequence to this theorem we get the following result on the general
structure of a finite Bol loop of exponent 2.

Corollary 1.2 Let (G,H, K) is a loop folder of a Bol loop X of exponent 2.
Then the following holds.

(a) (O2(G), O2(G) ∩ H, O2(G) ∩ K) and (O2(G)H,H, O2(G) ∩ K) are loop
folders of the same soluble Bol subloop of X.

(b) (Sylow’s Theorem for p = 2) There exists a Sylow-2-subgroup P of G,
such that (P, P ∩ H, P ∩ K) is a loop folder to a subloop of X of size
|G : H|2 = |K|2. Every soluble subloop of X is contained in an H-
conjugate of such a subloop.

(c) Lagrange’s Theorem holds on X.

2 Notation

Definition 2.1 A (right) Bol loop (X, ·) of exponent 2 is a loop such that

• for all x, y, z ∈ X the (right) Bol identity holds:

x · ((y · z) · y) = ((x · y) · z) · y,

and

• the loop is of exponent 2: for all x ∈ X, x · x = 1.
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Remark 2.2 Bol loops can be translated into the language of group theory, as
has been observed by R. Baer [Baer]:

Given a Bol loop of exponent 2, we define for x ∈ X ρ(x) : X → X, y 7→ y ·x,
G := RMult(X) := 〈ρ(x) : x ∈ X〉 ≤ Σ(X), the enveloping group of X,
H := StabG(1),
K := {ρ(x) : x ∈ X} ⊆ G and
κ : K → X : ρ(x) 7→ x. Then (G,H, K) is the loop envelope of the loop X and
it satisfies the following properties:

(1) K is a set of representatives for the set of right cosets for all conjugates
of H.

(2) H is core free.

(3) G = 〈K〉.
(4) for all x, y ∈ K: x−1 ∈ K and xyx ∈ K.

(5) K is a union of G-conjugacy classes of involutions.

Definition 2.3 A triple (G,H, K) with G a group, H ≤ G and K ⊆ G is called

• a loop folder, if it satisfies (1),

• a faithful loop folder, if it satisfies (1) and (2),

• a loop envelope, if it satisfies (1) and (3),

• a loop folder of a Bol loop , if it satisfies (1) and (4) and

• a loop folder of a Bol loop of exponent 2, if it satisfies (1), (4) and
(5).

Baer also observed that given a loop folder we can construct a loop, see
Remark 1.1 of [Asch]. We generalize this observation as follows: Given a loop
folder and a bijection κ from K into some set X we obtain a loop on X by
defining κ(k1) · κ(k2) = κ(k12) with k12 the unique element in K ∩ Hk1k2.
Denote the inverse map to κ by R, that is κ(R(x)) = x for all x ∈ X and
R(κ(k)) = k for all k ∈ K. We call X the loop of the loop folder. So, by our
definition, the loop of a loop folder is only unique up to a bijection.

The distinction between K and elements of X is useful: the symmetric group
on X with its subgroups RMult(X), Aut(X), LMult(X) etc. acts naturally
on X. The group G projects into this action, if we identify the elements of X
with the cosets of H and define an action xg for x ∈ X, g ∈ G by the equation
HR(xg) = HR(x)g. Notice, that this homomorphism from G into Σ(X) covers
RMult(X).

On the other hand G acts naturally by conjugation on K, but these two
actions are different: The action on X is transitive, while the action on K is
not in general. So there are natural actions of G on X and K, but κ does not
provide an permutation isomorphism between them.

The folder (G,H, K) comes from a Bol loop if and only if (G,H,K) satisfies
(4) and from a Bol loop of exponent 2 if and only if it satisfies (4) and (5).
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Subsets K of G with property (4) are called twisted subgroups in the
literature.

Notice, that conditions (1) and (5) imply the condition KK ∩H = 1, which
is a useful condition in its own right.

Subloops, homomorphisms, normal subloops, factor loops and simple loops
are defined as usual in universal algebra: A Subloop is a nonempty subset
which is closed under loop multiplication. Homomorphisms are maps which
commute with loop multiplication. The map defines an equivalence relation
on the loop, such that the product of equivalence classes is again an equiva-
lence class. Normal subloops are preimages of 1 under a homomorphism and
therefore subloops. A normal subloop defines a partition of the loop into blocks
(cosets), such that the set of products of elements from two blocks is again a
block. Such a construction gives factor loops as homomorphic images with the
block containing 1 as the kernel. Simple loops have only the full loop and the
1-loop as normal subloops.

Loop folders, which do not satisfy (2) and (3) occure naturally, if one con-
siders embeddings of subloops in larger loops. For more elementary facts and
proofs see [Asch].

Finally we recall the definition of a soluble loop given in [Asch]. A loop X
is soluble if there exists a series 1 = X0 ≤ · · · ≤ Xn = X of subloops with Xi

normal in Xi+1 and Xi+1/Xi an abelian group.

3 Useful Facts

3.1 Facts from Number Theory

The following lemmata are consequences of Zsygmondy’s theorem.

Lemma 3.1 Let p be a prime.
If n ∈ N with Φn(p) a power of 2, then n = 1 and p is 2 or a Fermat prime or
n = 2 and p is a Mersenne prime.
If n ∈ N with Φn(p) a power of 3, then p = 2 and n ∈ {1, 2, 6}.
If n ∈ N with Φn(p) a power of 3 times a power of 5, then p = 2 and n ∈
{1, 2, 4, 6}.

(Φn(x) ∈ Z[x] is the n-th cyclotomic polynomial.)

Proof. If n > 2 and (p, n) 6= (2, 6) by Zsygmondy’s theorem there exists a
prime r dividing Φn(p), which does not divide Φm(p) for m < n. Since 3 divides
(p − 1)p(p + 1) = Φ1(p)pΦ2(p) we have r > 3. So in the first two cases the
question reduces to those primes p, for which p− 1 (in case n = 1) or p + 1 (in
case n = 2) is a 2-power or a 3-power. For the third case observe, that n | r−1,
so n ∈ {1, 2, 4} in this case and we have to determine those primes p, for which
one of p − 1, p + 1 or p2 + 1 is a 3-power times a 5-power. Since in particular
Φn(p) is odd, p = 2. The statement is immediate. 2

Lemma 3.2 Let q be a prime power.

(i) If q − 1 is a 2-power, then q = 2, q = 9 or q is a Fermat prime.
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(ii) If q + 1 is a 2-power, then q is a Mersenne prime.

(iii) If q2 − 1 is a 2-power, then q = 3.

(iv) If q2 − 1 is a 2-power times a 3-power, then q ∈ {2, 3, 5, 7, 17}.
(v) If q2 − 1 is a 3-power times a 5-power, then q ∈ {2, 4}.

Proof. Let q = pe. Remember the formulas

(pe)n − 1 =
∏

d|en

Φd(p)

and
(pe)n + 1 =

∏

d|2en
d-en

Φd(p).

For n = 1 we get e ≤ 2 in (i) and (ii) by 3.1.
For n = 2 we get (iii) again by 3.1.
Since 3 divides exactly one of q − 1, q, q + 1, we get q = 2 or q a Mersenne or
Fermat prime by (i) and (ii).
For Mersenne primes p = 2r−1 we have p−1 = 2(2r−1−1), which is a 2-power
times a 3-power for r ≤ 2 only by the formula mentioned and 3.1.
For Fermat primes p = 2m+1 we can again use the formula on p+1 = 2(2m−1+1)
and 3.1. Finally (v) is a consequence of the above product formula together with
3.1. 2

Definition 3.3 Let q be a power of a prime p and r 6= p another prime. Denote
with

dq(r) := min{i ∈ N : r | qi − 1}.
So dq(r) is the order of q modulo r.

Lemma 3.4 Let q be a power of the prime p and r 6= p another prime.
Then dq(r)|r − 1 by Lagrange.

3.2 Facts from group theory

Lemma 3.5 Let G be a group and a ∈ G some involution. If a inverts in
G/O2(G) some element of odd prime order p, then a inverts in G some element
of order p.

Proof. This is 8.1 (1) of [Asch], a consequence of the Baer-Suzuki-theorem. 2

Lemma 3.6 Assume p is an odd prime, a is an involution in G, X is an a-
invariant subgroup of G and X = X/O2(X) = Y × Y

a
for some Y ≤ X with

p ∈ π(Y ). Then a inverts an element of order p in X.

Proof. This is 8.2 of [Asch]. By 3.5 w.l.o.g. G = 〈a,X〉 and O2(G) = 1. Let
y ∈ Y be of order p. Then yy−a is inverted by a. 2
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3.3 Properties of alternating and sporadic groups

These lemmata seem quite trivial, but have powerful implications on the non-
existence of certain loops.

Lemma 3.7 Let G ∼= Altn and x ∈ G of odd prime order p.

(1) Op(CG(x)) contains p-cycles.

(2) If x is a p-cycle, then:

(a) If p + p < n, then the commuting graph on xG is connected.

(b) F ∗(CG(x)) ∼= 〈x〉 ×An−p, unless n− p = 4.

(c) If p is not a Fermat prime, then |NG(〈x〉) : CG(x)| is divisible by
some odd prime r dividing p− 1.

(d) If p + 3 ≤ n, then CG(x) contains a 3-cycle.

Proof. The centralizer of an element of order p acts on the fixed points and per-
mutes the cycles of lenght p. This gives (1),(2b) and (2d). For (2c) we observe,
that in Σn all powers of x are conjugate, as they have the same cycle structure.
Remains (2a): For a p-cycle x let M(x) ⊆ {1, ..., n} be the orbit of length p.
Now, if for p-cycles x, y: |M(x) ∩ M(y)| = p − 1, then x, y are connected in
the commuting graph: Since |M(x) ∪ M(y)| = p + 1 ≤ n − p, some p-cycle z
exists with M(x) ∩M(z) = ∅ = M(y) ∩M(z), so [x, z] = 1 = [y, z]. But now,
given any two p-cycles x, y, we can find p-cycles zi with: z0 := x, zk = y and
|M(zi) ∩M(zi+1)| = p − 1 for 0 ≤ i < k. Therefore the commuting graph on
xG is connected. 2

Lemma 3.8 Let G be a sporadic simple group and x ∈ G an element of prime
order p > 2. Then |NG(〈x〉) : CG(x)| is not a 2-power, unless p is a Fermat
prime. Thus in the non-Fermat case there exists an odd prime s | p − 1 with
s | |NG(〈x〉) : CG(x)|.

Proof. This lemma can easily verified using the character tables in [ATLAS].
The index |NG(〈x〉) : CG(x)| determines the number nx of conjugacy classes of
elements of order p in 〈x〉. Recall, that nx = p−1

|NG(〈x〉):CG(x)| and can be read
off from the character tables, as the corresponding conjugacy classes have the
same size and are powers of each other. ) 2

4 Commuting graphs

The purpose of commuting graphs is to concentrate informations about certain
simple groups in useful properties, which can be applied for instance in problems
about Loops.
Originally we studied commuting graphs in simple groups, to divide a long proof
into short parts. But we also get a better understanding of our original problem:
We see in this section, how simple groups look like from the inside.
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Later we get results, how groups to loops have to look like.
The combination of these results gives then our final result, that these struc-
tures rarely fit together.

We use the following sources about maximal subgroups of groups of Lie type:
[KL] for classical groups , [LSS] and [CLSS] for exceptional groups of Lie type.
Furthermore the papers [Coo], [K3D4] and [Malle] were useful.

Definition 4.1 Let G be a finite group and X ⊆ G a normal subset, so for all
x ∈ X, g ∈ G : xg ∈ X.
The undirected graph ΓX,G = ΓX is the graph on X with edges (x, y) iff [x, y] =
1 ∈ G.
For x ∈ X let Cx ⊆ X be the connected component of ΓX containing x.
Furthermore let Hx be the stabilizer of Cx in G.
For some integer n let π(n) be the set of prime divisiors of n,
for a group G let π(G) := π(|G|).
For G a group and ρ a set of integers let Eρ(G) := {x ∈ G|o(x) ∈ ρ}.
The graph ΓO is defined as above on the set O := Eπ(G)−{2}(G), the set of all
elements of odd prime order. Similarly we define for ρ ⊆ π(G) the graph Γρ on
Eρ(G).

The following lemma contains trivial observations on commuting graphs,
which we later use freely without reference.

Lemma 4.2 (1) G acts as a group of automorphisms on ΓX .

(2) Let g ∈ G. Then xg and x are connected or equal, iff g ∈ Hx.

(3) Cx ⊆ Hx.

A special case is, if a connected component of ΓO contains a G-conjugacy
class:

Lemma 4.3 Let X = Eπ0(G) for a subset π0 ⊆ π(G). Suppose there exists
some x ∈ G, such that xG ⊆ Cx, where Cx is the connected component of x in
ΓX .
If y ∈ Cx with o(y) = r, then E{r}(G) ⊆ Cx.

Proof. Let z ∈ X be of order r. We show, that x and z are connected in ΓX .
Let R ∈ Sylr(G) with z ∈ R and g ∈ G with yg ∈ R.
Then yg and z are connected via Z(R) 6= 1, as Er(G) ⊆ X.
Therefore (y, zg−1

),(x, zg−1
) and (xg, z) are connected.

As xG ⊆ Cx, (x, xg) are connected, so (x, z) are connected. 2

Corollary 4.4 Let ∅ 6= X ⊆ O a subset, such that ΓX is connected and for all
g ∈ G, x ∈ X: xg ∈ X.
Then a subset ρ ⊆ π(G)− {2} with {o(x) : x ∈ X} ⊆ ρ exists, such that Eρ(G)
is the connected component in ΓO containing X.

Definition 4.5 We call a connected component of ΓO big, if it contains a
conjugacy class of G and small otherwise.
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Lemma 4.6 Let G be a group, p a prime and P ∈ Sylp(G). Suppose there
exists a set U of subgroups of P , with G = 〈Op′(NG(U)) : U ∈ U〉.
Then the commuting graph on Ep(G) is connected.

Proof. Let x ∈ Z(P ), o(x) = p and Cx the connected component of the com-
muting graph on Ep(G) containing x. Then P ≤ Hx, so for all U ∈ U : U ≤ Hx.
Let Q ∈ Sylp(NG(U)) for U ∈ U . Then Z(Q) ∩ U 6= 1, so Q ≤ Hx. Therefore
Op′(NG(U)) ≤ Hx. Now by assumption G ≤ Hx. As the graph has |G : Hx|
connected components, it is connected. 2

Corollary 4.7 Let G be a simple group of Lie type in characteristic p > 2, q a
p-power, but G not of type A1(q), 2A2(q) or 2G2(q).
Then ΓO has a big connected component containing all elements of order p.

Proof. This follows from the Steinberg relations for G and 4.6. 2

4.1 Connected conjugacy classes

We determine some conjugacy classes xG in some groups of Lie type in charac-
teristic 2, such that ΓxG is connected. In this section q is a 2-power.

Lemma 4.8 Let G ∼= PSL3(q) for q > 4, q even. Then G has a connected
conjugacy class of elements of order r for r > 3 some prime divisor of q − 1.

Proof. Notice, that such an r exists. Then there exist elements a, b ∈ GF(q)
with 1 6= a, ar = 1 and b2 = 1

a .
Let x1 the image of Diag(a, b, b) in G and x2 the image of Diag(b, b, a) in G.
Then [x1, x2] = 1, x1, x2 are conjugate in G and 〈x1, x2〉 ∼= Zr × Zr.
Moreover Hx1 , the stabilizer of the connected component of x1 in ΓxG

1
, contains:

CG(x1) ∼= Zq1 × PSL2(q), CG(x2) ∼= Zq1 × PSL2(q) and NG(〈x1, x2〉) ∼= (Zq1 ×
Zq−1) : Σ3 with q1 := q−1

(q−1,3) . From the list of maximal subgroups therefore
Hx1 = G and ΓxG

1
is connected. 2

Lemma 4.9 Let G ∼= PSL4(q) for q > 4, q even. Then G has a connected
conjugacy class of elements of order r for r > 3 some prime divisor of q − 1.

Proof. Notice, that such an r exists. Then there exist elements a, b ∈ GF(q)
with 1 6= a, ar = 1 and b3 = 1

a .
Let x1 the image of Diag(a, b, b, b) in G, x2 the image of Diag(b, a, b, b) in G and
x3 the image of Diag(b, b, a, b) in G.
Then [x1, x2] = 1 = [x1, x3] = [x2, x3], the x1, x2, x3 are conjugate in G and
〈x1, x2, x3〉 ∼= Zr × Zr × Zr.

Moreover Hx1 , the stabilizer of the connected component of x1 in ΓxG
1
, con-

tains:
CG(x1) ∼= Zq−1.PSL3(q).Zd, CG(x2) ∼= Zq−1.PSL3(q).Zd, CG(x3) ∼= Zq−1.PSL3(q).Zd

and NG(〈x1, x2, x3〉) ∼= (Zq−1 × Zq−1 × Zq−1) : Σ4 with d = (q − 1, 3).
From the list of maximal subgroups therefore Hx1 = G and ΓxG

1
is connected. 2
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Lemma 4.10 Let G ∼= PSLn(q) for n ≥ 5.
Then G has a connected conjugacy class of elements of order r for r any prime
divisor of q2 − 1.

Proof. There exists a maximal subgroup M of type L2(q) ⊕ Ln−2(q). Let
M1,M2 be the components of M with M1

∼= SL2(q) and M2
∼= SLn−2(q).

As SLn(q) acts transitively on 2-subspaces of its natural module, there exists
some g ∈ G, such that Mg

1 ⊆ M2. Let r be a prime divisor of q2 − 1 and
x ∈ M1 be some element of order r. We claim, that the conjugacy class xG is
connected:
Let y := xG ∈ M2. Then Hx contains CG(x), so M2 and CG(y), so M1, so
M ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M , so Hx = G and ΓxG is connected.

2

Lemma 4.11 Let G ∼= PSU3(q) for q > 2, q even. Then G has a connected
conjugacy class of elements of order r for r some prime divisor of q + 1.

Proof. For q > 8 and q = 4 an r > 3 exists with r | q + 1. Then there exist
elements a, b ∈ GF(q2) with 1 6= a, ar = 1 and b2 = 1

a .
For q = 8 there exist elements a, b ∈ GF(64) with 1 6= a, a9 = 1 6= a3 and
b2 = 1

a . Set r = 3 in this case.
Let x1 the image of Diag(a, b, b) in G and x2 the image of Diag(b, b, a) in G.
Then [x1, x2] = 1, x1, x2 are conjugate in G and 〈x1, x2〉 ∼= Zr × Zr.
Moreover Hx1 , the stabilizer of the connected component of x1 in ΓxG

1
, contains:

CG(x1) ∼= Zq1 × PSL2(q), CG(x2) ∼= Zq1 × PSL2(q) and NG(〈x1, x2〉) ∼= (Zq1 ×
Zq+1) : Σ3 with q1 := q+1

(q+1,3) . From the list of maximal subgroups therefore
Hx1 = G and ΓxG

1
is connected. 2

Lemma 4.12 Let G ∼= PSU4(q) for q > 4, q even. Then G has a connected
conjugacy class of elements of order r for r some prime divisor of q + 1.

Proof. For q > 8 an r > 3 exists with r | q + 1. Then there exist elements
a, b ∈ GF(q2) with 1 6= a, ar = 1 and b3 = 1

a .
For q = 8 there exist an element b ∈ GF(64) with 1 6= b, b3 = 1. Set r = 3 and
a = 1 ∈ GF(64) in this case.
Let x1 the image of Diag(a, b, b, b) in G, x2 the image of Diag(b, a, b, b) in G and
x3 the image of Diag(b, b, a, b) in G.
Then [x1, x2] = 1 = [x1, x3] = [x2, x3], the x1, x2, x3 are conjugate in G and
〈x1, x2, x3〉 ∼= Zr × Zr × Zr.

Moreover Hx1 , the stabilizer of the connected component of x1 in ΓxG
1
, con-

tains:
CG(x1) ∼= Zq+1.PSU3(q).Zd, CG(x2) ∼= Zq+1.PSU3(q).Zd, CG(x3) ∼= Zq+1.PSU3(q).Zd

and NG(〈x1, x2, x3〉) ∼= (Zq+1 × Zq+1 × Zq+1) : Σ4 with d = (q + 1, 3).
From the list of maximal subgroups therefore Hx1 = G and ΓxG

1
is connected. 2

Lemma 4.13 Let G ∼= PSUn(q) for n ≥ 5.
Then G has a connected conjugacy class of elements of order r for r any prime
divisor of q2 − 1.
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Proof. There exists a maximal subgroup M of type U2(q) ⊥ Un−2(q). Let
M1,M2 be the components of M with M1

∼= SL2(q) and M2
∼= SUn−2(q).

As SUn(q) acts transitively on nondegenerated 2-subspaces of its natural mod-
ule, there exists some g ∈ G, such that Mg

1 ⊆ M2.
Let r be a prime divisor of q2 − 1 and x ∈ M1 be some element of order r. We
claim, that the conjugacy class xG is connected:
Let y := xG ∈ M2. Then Hx contains CG(x), so M2 and CG(y), so M1, so
M ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M , so Hx = G and ΓxG is connected.

2

Lemma 4.14 Let G ∼= Sp4(q) for q > 2.
Then G has no connected conjugacy class of elements of odd order, though the
graph on Eπ(q2−1)(G) is connected.

Proof. We show first, that the commuting graph on Eπ(q2−1)(G) is connected.
There exist two classes of maximal subgroups M1,M2 of type (PSL2(q)×PSL2(q)).2,
which are interchanged by a graph automorphism.
We can choose M1 to be of type (Sp2(q) ⊥ Sp2(q)) : 2, the normalizer of a
2-space decomposition and M2 to be of type O+

4 (q).
Notice, that these two subgroups contain Sylow-subgroups for all primes divid-
ing q2 − 1.
Let r be a prime dividing q2− 1 and x ∈ M1 some element of order r, such that
the centralizer of x contains a PSL2(q)-component. Then Hx contains M1, as
the commuting graph of elements of odd prime order in M1 is connected. By
conjugation of Sylow-groups we may assume, that x ∈ M2 too. The commuting
graph of elements of odd order in M2 is connected too, so M2 ≤ Hx, therefore
G = 〈M1,M2〉 ≤ Hx.
By Sylow’s Theorem G is transitive on the Sylow-r-subgroups. The elements
of order r in one Sylow-r-subgroup are in only one connected component of
the graph. Therefore G acts transitively on the connected components. As
|G : Hx| = 1, there is only one component, so the graph is connected.

Further analysis reveals, that for the elements of odd order in Eπ(q2−1)(G)
we have only the following isomorphism types for a centralizer:
tori of size (q − ε)2 or subgroups of type (q − ε)× L2(q).
But only the classes with centralizer of type (q− ε)×L2(q) could be connected.
Let x ∈ G be an element of prime order r with r | q2 − 1.
The component X1 from CG(x) has a unique centralizing component X2 with
x ∈ X2, so x is in a unique group X = X1X2 of type PSL2(q)×PSL2(q), which
is either in a subgroup conjugate to M1 or to M2.
By Burnside’s Lemma, as Sylow-r-subgroups are abelian, all G-conjugates of x
in a Sylow-r-subgroup R are already conjugate in N := NG(R). From the list
of maximal subgroups we conclude NG(R) ≤ NG(X) and |NG(R) : CG(R)| = 8.
As |CN (x)| = 2|CG(R)|, there are exactly 4 conjugates of x in R:
R has two subgroups of order r, which are intersections with the components
X1, X2 of X. Each of these subgroups contains two conjugates of x. In partic-
ular for all y ∈ xG ∩R we have: CG(y) ≤ X, so the commuting graph on xG is
not connected. 2
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Lemma 4.15 Let G ∼= Sp2n(q) for n ≥ 3.
Then G has a connected conjugacy class of elements of order r for r any prime
divisor of q2 − 1.

Proof. There exists a maximal subgroup M of type Sp2(q) ⊥ Sp2n−2(q). Let
M1,M2 be the components of M with M1

∼= SL2(q) and M2
∼= Sp2n−2(q).

As Sp2n(q) is transitive on nondegenerate 2-spaces, there exists some g ∈ G,
such that Mg

1 ⊆ M2.
Let r be a prime divisor of q2 − 1 and x ∈ M1 be some element of order r. We
claim, that the conjugacy class xG is connected:
Let y := xG ∈ M2. Then Hx contains CG(x), so M2 and CG(y), so M1, so
M ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M , so Hx = G and ΓxG is connected.

2

Lemma 4.16 Let G ∼= Ωε
2n(q) for n ≥ 3, ε ∈ {+,−}.

Then G has a connected conjugacy class of elements of order r for r any prime
divisor of q2 − 1.

Proof. There exist maximal subgroups M+ of type O+
2 (q) ⊥ Oε

2n−2(q) and
M− of type O−

2 (q) ⊥ O−ε
2n−2(q).

Let r be an odd prime divisior of q − 1, so q > 2.
Then M+ contains a cyclic normal subgroup M+

1 of size q − 1. Furthermore
there exists a g ∈ G, such that M+

2 := E(M+) ∼= Ωε
2n−2(q) contains (M+

1 )g. Let
x ∈ M+

1 be an element of order r. Then the conjugacy class of xG is connected:
Let y := xG ∈ M+

2 . Then Hx contains CG(x), so M+
2 and CG(y), so M+

1 , so
M+ ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M+, so Hx = G and ΓxG is connected.
Let r be an odd prime divisior of q + 1.
Then M− contains a cyclic normal subgroup M−

1 of size q + 1. Furthermore
there exists a g ∈ G, such that M−

2 := E(M−) ∼= Ω−ε
2n−2(q) contains (M−

1 )g. Let
x ∈ M−

1 be an element of order r. Then the conjugacy class of xG is connected:
Let y := xG ∈ M−

2 . Then Hx contains CG(x), so M−
2 and CG(y), so M−

1 , so
M− ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M−, so Hx = G and ΓxG is connected.

2

Lemma 4.17 Let G ∼= G2(q) for q > 2, q even.
Then G has a connected conjugacy class of elements of order r for r 6= 3 any
prime divisor of q2 − 1.

Proof. Let q > 4. We use the list of maximal subgroups in [Coo]. Let
ε ∈ {+,−} with r a divisor of q − ε. There exist two classes of subgroups
of type (q − ε) × PSL2(q) in a maximal subgroup of type PSL2(q) × PSL2(q).
Let C1, C2 be representatives of the two classes and x1 ∈ Z(C1), x2 ∈ Z(C2)
with o(x1) = r = o(x2).
Notice, that there is only one class of maximal subgroups M isomorphic to
Aε

2(q).2 ∼= SLε
3(q).2 for each ε. We can choose i ∈ {1, 2}, such that M does not

contain a conjugate of Ci, as M contains a unique class of such subgroups.
Now Hxi contains Ci, but also a subgroup N of shape (q − ε)2 : D12 ≤ M . So
Hxi ≥ 〈Ci, N〉 ≥ G and the class xG

i is connected. For q = 4 we use [ATLAS].
Let x ∈ G be of order 5. There exists a subgroup PSU3(4) and a subgroup
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Alt5× Alt5. Both subgroups are contained in Hx, as they both contain Sylow-
5-subgroups and big connected components containing elements of order 5, see
4.11. Therefore G = Hx. 2

Lemma 4.18 Let G ∼= 3D4(q) for q > 4, q even. Then G has a connected
conjugacy class of elements of order r for r 6= 3 a prime divisor of q2 − 1.

Proof. We use the list of semisimple centralizers and maximal subgroups in
[K3D4]. Let ε ∈ {+,−} with r a divisor of q − ε. There exists a subgroup M1

of type PSL2(q)× PSL2(q3). Let x ∈ M1 with CG(x) ∼= (q − ε)× L2(q3). Then
CG(x) ≤ Hx. But there exists a subgroup M2 of type (q2+εq+1).Aε

2(q).fε.2 with
fε = (3, q−ε), which contains a torus normalizer N of shape (Zq3−ε×Zq−ε).D12.
Now Hx contains such a torus normalizer, thus Hx ≥ 〈CG(x), N〉 ≥ G, so xG is
connected. 2

Lemma 4.19 Let G ∼= 2F4(q) for q > 2.
Then G has a connected conjugacy class of elements of order r for r any prime
divisor of q2 + 1.

Proof. We use the list of maximal and maximal local subgroups in [Malle].
Notice, that 5 | q2 + 1 in this case.
We can factorize q2 + 1 = (q − √2q + 1)(q +

√
2q + 1). Let ε ∈ {+,−}, such

that r is a divisor of q + ε
√

2q + 1 and let x ∈ G be an element of order r with
CG(x) ∼= Zq+ε

√
2q+1 × 2B2(q). Such an element exists in a maximal subgroup

M1 of type (2B2(q)× 2B2(q)).2. Notice, that the outer involution interchanges
the components, as 2B2(q) has no outer automorphism of order 2. This gives
M1 ≤ Hx.
But there exists a subgroup N of type (Zq+ε

√
2q+1 × Zq+ε

√
2q+1).[96], which is

maximal for q > 8 or r > 5, while contained in 2F4(2) for q = 8 and r = 5.
Then N ≤ Hx, so from the list of maximal subgroups Hx = G and xG is con-
nected. 2

Lemma 4.20 Let G ∼= F4(q) for q even. Then G has a connected conjugacy
class of order r for r any prime divisor of q2 − 1.

Proof. By [LSS], G has two classes of maximal subgroups M1,M2 isomorphic
to Sp8(q) ∼= C4(q).
By 4.15, each Mi has a connected conjugacy class for a prime r | q2 − 1.
We may choose x ∈ M1 of order r with CG(x) = CM1(x) ∼= (q − ε) × Sp6(q)
for for some ε ∈ {+,−}. (The fact, that CG(x) = CM1(x) comes from the list
of maximal subgroups, which contain a centralizer, see the main theorem of
[CLSS].)
Then x is contained in a torus T of type (q − ε)4, with W (F4), the full Weyl
group, acting on it. As this torus normalizer is not contained in Sp8(q) (but in
Ω+

8 (q).Σ3), we have Hx = G:
Hx contains M1 as seen in 4.15 and NG(T ), but 〈M1, NG(T )〉 = G, as M1 is a
maximal subgroup not containing NG(T ). Therefore the commuting graph on
xG is connected. 2
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Lemma 4.21 Let G ∼= E6(q), 2E6(q), E7(q) or E8(q) for q even. Then G has
a connected conjugacy class of order r for r any prime divisor of q2 − 1.

Proof. By [LSS] there are maximal subgroups M with components M1
∼=

PSL2(q) and M2
∼= PSL6(q), PSU6(q),Ω+

12(q) resp. E7(q), such that a g ∈ G
exists with Mg

1 ⊆ M2. The existence of g and these subgroups can also be seen
from the Steinberg relations.
Let r be a prime divisor of q2 − 1 and x ∈ M1 be some element of order r. We
claim, that the conjugacy class xG is connected:
Let y := xG ∈ M2. Then Hx contains CG(x), so M2 and CG(y), so M1, so
M ≤ Hx. Furthermore g ∈ Hx, but g 6∈ M , so Hx = G and ΓxG is connected.

2

4.2 Connected components in ΓO
We unify results in even and odd characteristic. Notice, that we consider 2 NOT
as a Fermat prime.

Lemma 4.22 Let G ∼= PSL3(q). Then one of the following holds:

(i) q−1
(q−1,3) is not a 2-power. Then ΓO has a unique big connected component,
containing all elements of order r with r some odd prime divisor of (q −
1)q(q + 1).

(ii) q−1
(q−1,3) is a 2-power and q is odd. Then ΓO has a unique big connected
component, which contains only elements of order p.

(iii) q ∈ {2, 4} and ΓO has no big connected componet.

Proof. If q is even, q > 4, by 4.8 there is a connected conjugacy class yG,
o(y) = r for r 6= 3 some prime divisor of q − 1. As q − 1 is not a 3-power, such
a y exists. By 4.4 and construction of y, Cy contains Eπ(q2−1)(G).
If q is odd, by 4.7, Ep(G) is connected. Centralizers of semisimple elements are
either tori or of type q−1

(q−1,3) · L2(q).2. If q−1
(q−1,3) is a 2-power, centralizers of

semisimple elements contain a characteristic abelian subgroup, which contains
all elements of odd order of this centralizer. Therefore the connected component
Cx of a semisimple element x contains only the elements of odd prime order of
CG(x), thus (ii) holds. If q−1

(q−1,3) is not a 2-power, we may find some element
x ∈ G, o(x) = r for some odd prime r 6= p such that CG(x) contains a compo-
nent isomorphic to SL2(q). We may find x also in the normalizer of a torus T

of size (q−1)2

(q−1,3) , which contains a Σ3 acting on top of the torus. Therefore Hx

contains CG(x) and NG(T ). As G = 〈CG(x), NG(T )〉, the connected component
Cx is big and we get (i).
The case (iii) follows from the centralizer size in [ATLAS]. Notice, that for all q

a torus of size q2+q+1
(q−1,3) is self centralizing, so gives small connected components.

2
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Lemma 4.23 Let G ∼= PSL4(q). Then G has a unique big connected compo-
nent.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) q is a Mersenne prime and dq(r) = 4.

(ii) q is a Fermat prime or q = 2 and dq(r) = 3.

Proof. Suppose q > 4 is even. By 4.9, there is a connected conjugacy class yG,
o(y) = r for r 6= 3 some prime divisor of q − 1. As q − 1 is not a 3-power, such
a y exists. Let ρ ⊆ π(G) from 4.4. By construction of y, π(PSL3(q))−{2} ⊆ ρ.
There exists a subgroup Z q4−1

q−1
from the GL2(q2). As it contains elements of

order s for s some prime divisor of q + 1, ΓO is connected.
In case q = 4, we have to consider the primes 3 = q − 1, 5 = q + 1, 7 = q3−1

9
and 17 = q2 + 1. There are abelian subgroups of sizes 3 · 5, 5 · 17, 3 · 7, so
the stabilizer of a connected component contains Sylow-subgroups for all odd
primes. As no such proper subgroup exist, the graph ΓO is connected.

In case q = 2, we use the isomorphism SL4(2) ∼= Alt8 and 3.7.

There exists a subgroup M1 of type L2(q) ⊕ L2(q). If q is odd, by 4.7, a
big connected component containing all elements of odd prime order s with s a
divisor of |PSLn−2(q)| exists.
In case of dq(r) = 3, let M2 be a subgroup of type L1(q) ⊕ L3(q). The struc-
ture of M2 is described by Proposition 4.1.4 of [KL]. In particular Z(F ∗(M2))
contains elements of odd order, if q−1

(q−1,4) is not a 2-power. This is exactly the
case, if q is not a Fermat prime. Then Z(F ∗(M2)) contains elements of order s
for s some odd prime divisor of q − 1. As the torus of type q3 − 1 is contained
in M2, we get x contained in the big connected component, if dq(r) = 3 and q
not Fermat. If q is a Fermat prime, we have (ii).
If dq(r) = 4, let M3 be a maximal subgroup of type L2(q2). The structure of
M3 is described by Proposition 4.3.6 of [KL]. In particular Z(F ∗(M3)) has size
(q−1,2)(q2−1)
(q−1)(q−1,4) , so contains elements of odd prime order, if q is not a Mersenne
prime. As F ∗(M3) contains a torus of type q4 − 1, either x is contained in the
big connected component or (ii) holds. 2

Lemma 4.24 Let G ∼= PSLn(q) for n ≥ 5. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) q = 3, n = 5, r = 5.

(ii) n− 1 is a prime, q−1
(q−1,n) is a 2-power and dq(r) = n− 1

(iii) n is a prime and dq(r) = n.

Proof. Let q odd. There exists a subgroup M1 of type L2(q) ⊕ Ln−2(q). By
4.7, a big connected component containing all elements of prime order s with s
a divisor of |PSLn−2(q)| exists.
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If q is even, by 4.10, there is a connected conjugacy class yG, o(y) = r for r
some prime divisor of q2 − 1. Let ρ ⊆ π(G) from 4.4.
As there exists a subgroup of type GL2(q)⊕GLn−2(q), r 6∈ π(SLn−2(q)).
So dq(r) ≥ n− 1 in both cases.

Suppose r | qn − 1.
If n is a prime, we have (iii), so suppose n = a · b with a 6= 1 6= b and b a prime.
If n is not a 2-power, we choose b odd.
There exists a subgroup M2 of type Ln/b(qb) in class C3.
By Proposition 4.3.6 of [KL], this subgroup is local with a cyclic normal sub-
group of size (q−1,n/a)(qb−1)

(q−1)(q−1,n) .
By Zsygmondy, some odd prime t | qb − 1 exists with dq(t) = b, unless b = 2
and q is a Mersenne prime. If Z(F ∗(M2)) contains elements of odd prime order,
then as F ∗(M2) contains a section isomorphic to PSL2(q), and a torus of type
qn − 1, x is contained in the big connected component.
If n is a 2-power, then n ≥ 8 and there exists a subgroup M3 ≤ M2 of type
Ln/4(q4).
Now Z(F ∗(M3)) has elements of odd order, as there exists a Zsygmondy-prime t
with dq(t) = 4. As F ∗(M3) contains a torus of type qn−1 and PSL2(q)-section,
again x is in the big connected component.

Suppose now r | qn−1 − 1. There exists a subgroup M1 of type L1(q) ⊕
Ln−1(q). By Proposition 4.1.4 of [KL], Z(F ∗(M4)) contains elements of odd
order s with s | q− 1, if q−1

(q−1,n) is not a 2-power. In that case F ∗(M4) contains
a torus of type qn−1 − 1, so x is contained in the big connected component.
If Z(F ∗(M4)) contains no elements of odd prime order, F ∗(M4) contains a
component of type Ln−1(q). The connected components of the commuting
graph for F ∗(M4) can be determined by induction. We have to distinguish the
case n = 5, where we use 4.23 and n > 5.

If n = 5, the exception (ii) in 4.23 is handled by M1. The exception (i)
occurs only, if q is a Mersenne prime. The case q = 3 is (i). If q > 3, then q− 1
is divisible by 3, so Z(F ∗(M4)) contains elements of order 3 and x is in the big
connected component.

If n > 5, exceptions of type (i) and (ii) in F ∗(M4) are handled by the sub-
group M1. Exceptions of type (iii) in F ∗(M4) produce (ii). 2

Lemma 4.25 Let G ∼= PSU3(q) for q > 2. Then one of the following holds:

(i) q+1
(q+1,3) is not a 2-power. Then ΓO has a unique big connected component,
containing all elements of order r with r some odd prime divisor of (q −
1)q(q + 1).

(ii) q+1
(q+1,3) is a 2-power. Then ΓO has no big connected component.

Proof. If q is even, by 4.11 there is a connected conjugacy class yG, o(y) = r
for r some prime divisor of q + 1. By 4.4 and construction of y, Cy contains
Eπ(q2−1)(G), so (i) holds.
So let q odd. The Borel subgroup B is strongly p-embedded, so Ep(G) is not
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connected. Therefore big connected components contain semisimple elements.
Centralizers of semisimple elements are either tori or of type q+1

(q+1,3) ·L2(q).2. If
q+1

(q+1,3) is a 2-power, centralizers of semisimple elements contain a characteristic
abelian subgroup, which contains all elements of odd order of this centralizer.
Therefore the connected component Cx of a semisimple element x contains only
the elements of odd prime order of CG(x), thus (ii) holds.
If q+1

(q+1,3) is not a 2-power, we may find some element x ∈ G, o(x) = r for some
odd prime r 6= p such that CG(x) contains a component isomorphic to SL2(q).
We may find x also in the normalizer of a torus T of size (q+1)2

(q+1,3) , which contains
a Σ3 acting on top of the torus. Therefore Hx contains CG(x) and NG(T ). As
G = 〈CG(x), NG(T )〉, the connected component Cx is big and we get (i).
Notice, that for all q a torus of size q2−q+1

(q+1,3) is self centralizing. 2

Lemma 4.26 Let G ∼= PSU4(q) for q > 2. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) q is a Fermat prime and dq(r) = 4.

(ii) q is a Mersenne prime and dq(r) = 6.

Proof. Consider first q > 4, q even. By 4.12, there is a connected conjugacy
class yG, o(y) = r for r some prime divisor of q + 1. Let ρ ⊆ π(G) from 4.4. By
construction of y, π(PSU3(q)) − {2} ⊆ ρ. There exists a subgroup Z q4−1

q+1
in a

Levi complement of a parabolic subgroup of type q4 : GL2(q2). This subgroup
contains elements of order s for s some prime divisor of q−1, so ΓO is connected.

In case q = 4 we have to consider the primes 3 = q−1, 5 = q+1, 17 = q2 +1
and 13 = q3+1

q+1 . There are abelian subgroup of sizes 3 · 5, 5 · 13, 17 · 3, so the
stabilizer of a connected component is of 2-power index. As no such proper
subgroup exists, the graph ΓO is connected.

So q is odd. There exists a subgroup M1 of type U2(q) ⊥ U2(q). By 4.7, a
big connected component containing all elements of odd prime order s with s a
divisor of |PSLn−2(q)| exists.
So remain the cases dq(r) ∈ {4, 6}.
In case of dq(r) = 6, let M2 be a subgroup of type U1(q) ⊥ U3(q). The struc-
ture of M2 is described by Proposition 4.1.4 of [KL]. In particular Z(F ∗(M2))
contains elements of odd order, if q+1

(q+1,4) is not a 2-power. This is exactly the
case, if q is not a Mersenne prime. Then Z(F ∗(M2)) contains elements of order
s for s some odd prime divisor of q + 1. As the torus of type q3 + 1 is contained
in M2, we get x contained in the big connected component, if dq(r) = 6 and q
not Mersenne. If q is a Mersenne prime, we have (ii).
If dq(r) = 4, let M3 be a maximal subgroup of type GL2(q2) in class C2.
The structure of M3 is described by Proposition 4.2.4 of [KL]. In particular
Z(F ∗(M3)) has size (q−1)(q+1,2)

(q+1,4) , so contains elements of odd prime order, if q

is not a Fermat prime. As F ∗(M3) contains a torus of type q4 − 1, either x is
contained in the big connected component or (ii) holds. 2
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Lemma 4.27 Let G ∼= PSUn(q) for n ≥ 5. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) q = 3, n = 5, r = 5.

(ii) n− 1 is a prime, q+1
(q+1,n) is a 2-power and dq(r) = 2(n− 1)

(iii) n is a prime and dq(r) = 2n.

Proof. If q even, by 4.13, there is a connected conjugacy class yG, o(y) = r for
r some prime divisor of q2 − 1.
If q is odd, by 4.7, a big connected component exists, containing all elements of
order p.
There exists a subgroup M1 of type U2(q) ⊥ Un−2(q). Therefore a big connected
component exists, which contains all elements of prime order s with s a divisor
of |PSUn−2(q)|.
So r | (qn − (−1)n)(qn−1 − (−1)n−1).

Suppose n even and r | qn − 1.
There exists a torus of type qn − 1 in a subgroup M2 of type GLn/2(q2).2 in
class C2. If n/2 is even, then n/2 ≥ 4. Let t be some Zsygmondy prime with
dq(t) = 4.
If n/2 is odd and (q, n) 6= (2, 6), let t be some Zsgmondy prime with dq(t) = n/2.
If (q, n) = (2, 6) let t = 3. Now the torus of type qn − 1 contains elements of
order t, but t | |SUn/2(q)|, so x is in the big connected component.

Suppose n odd, but not a prime and r | qn + 1. Let n = a · b with a 6= 1 6= b
and b a prime.
There exists a subgroup M3 of type Un/b(qb) in class C3.
By Proposition 4.3.6 of [KL], this subgroup is local with a cyclic normal sub-
group of size (q+1,n/a)(qb+1)

(q+1)(q+1,n) .
By Zsygmondy, some odd prime t | qb − 1 exists with dq(t) = b.
So Z(F ∗(M3)) contains elements of odd prime order, while F ∗(M3) contains a
PSL2(q)-section and a torus of type qn + 1. Therefore x is contained in the big
connected component.
If n is a prime and r | qn + 1, we have case (iii) or r | q + 1 and x is contained
in the big connected component.

Suppose now r | qn−1 − (−1)n. There exists a subgroup M4 of type U1(q)⊕
Un−1(q). By Proposition 4.1.4 of [KL], Z(F ∗(M4)) contains elements of odd
order s with s | q + 1, if q+1

(q+1,n) is not a 2-power. In that case F ∗(M4) contains
a torus of type qn−1− (−1)n, so x is contained in the big connected component.

If Z(F ∗(M4)) contains no elements of odd prime order, F ∗(M4) contains a
component of type Un−1(q). We use the knowledge about the commuting graph
of that component, but have to distinguish the case n = 5 with q > 2, where
we use 4.26, the case n > 5 and (q, n) = (2, 5).

If n = 5, q > 2, the exception (ii) in 4.26 is handled by M1. The exception
(i) occurs only, if q is a Fermat prime. The case q = 3 is (i). If q > 3, then q +1
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is divisible by 3, so Z(F ∗(M4)) contains elements of order 3 and x is in the big
connected component.

If n > 5, exceptions of type (i) and (ii) in F ∗(M4) are handled by the sub-
group M1. Exceptions of type (iii) in F ∗(M4) produce (ii).

If n = 5 and q = 2, elements of order 5 commute with elements of order 3,
so are contained in the big connected component. 2

Lemma 4.28 Let G ∼= PSp4(q) for q > 2. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then r | q2 + 1.

Proof. If q is even, by 4.14, the subset Eπ(q2−1)(G) is connected.
If q is odd, by 4.7 there exists a big connected component, containing all ele-
ments of order p. There exists a subgroup of type Sp2(q) ⊥ Sp2(q). Therefore,
if r | (q − 1)q(q + 1), then x is in the big connected component.
Notice, that self centralizing subgroups of size q2+1

(q−1,2) exist. 2

Lemma 4.29 Let G ∼= PSp2n(q) for n ≥ 3. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) n is a 2-power and r | qn + 1.

(ii) n is a prime, q is a Fermat prime or q = 2 and dq(r) = n.

(iii) n is a prime, q is a Mersenne prime and dq(r) = 2n.

Proof. If q is odd, by 4.7 there exists a big connected component, containing
all elements of order p.
If q is even, by 4.15 there is a big connected component containing all elements
of prime order r for r a divisor of q2 − 1.
There exists a subgroup M1 of type Sp2(q) ⊥ Sp2n−2(q). Therefore, if r |
|Sp2n−2(q)|, then x is in the big connected component.
So r | (qn−1)(qn +1). If n is even, then r | qn +1, else Spn(q) contains elements
of order r.
Let n = a · b with a a 2-power and b odd. If b = 1, we have (i). There exists a
subgroup M3 of type Sp2b(qa). This subgroup contains a subgroup M4 of type
GLb(qa), which contains a torus of type qn− 1, and M5 of type GUb(qa), which
contains a torus of type qn +1. The structure of M4 is described by Proposition
4.2.5, while those of M5 is described by 4.3.7 for q odd and 4.3.18 for q even.
In particular Z(F ∗(M4)) contains no elements of odd order, iff q is a Fermat
prime or q = 2 and a = 1.
Furthermore Z(F ∗(M5)) contains no elements of odd order, iff q is a Mersenne
prime and a = 1. Both subgroups contain a PSL2(q)-section. If a > 1, then x
is in the big connected component. Remains the case of a = 1 and b composite,
so b ≥ 9. We use 4.24 and 4.27 for the connected components of F ∗(M4) and

18



F ∗(M5) and get x is in the big connected component. 2

Lemma 4.30 Let G ∼= PΩ+
2n(q) for n ≥ 4. Then G has a unique big connected

component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) n is a prime, q a Fermat prime or q = 2 and dq(r) = n.

(ii) n− 1 is a prime, q is a Fermat prime or q = 2 and dq(r) = n− 1.

(iii) n− 1 is a prime, q is a Mersenne prime and dq(r) = 2n− 2.

(iv) n− 1 is a 2-power, q is a Mersenne prime and dq(r) = 2n− 2.

Proof. Notice, that the statement is also true for n = 3 by 4.23.
If q is odd, by 4.7 there exists a big connected component, containing all elements
of order p. There exists a subgroup M1 of type O3(q) ⊥ O2n−3(q), so r |
(qn − 1)(qn−1 − 1)(qn−1 + 1).
If q is even, by 4.16, there exists a connected component containing all elements
of prime order r for r some divisor of q2 − 1. Let M1 in class C1 of type
O−2 (q) ⊥ O−2n−2(q). By the structure of M1, elements of order r are in the big
connected component, if r is a prime divisor of |Ω−2n−2(q)|.
So remain primes r, which divide (qn − 1)(qn−1 − 1).
Let n even.

Suppose r | qn − 1. If q is odd, then qn − 1||Ωn+1(q)| and n + 1 ≤ 2n− 3. If
q is even, then qn − 1||Ω−n+2| and n + 2 ≤ 2n− 2 This implies, that x is in the
big connected component by M1 in both cases.

Suppose r | qn−1−1. A torus of type qn−1−1 can be found in a subgroup M2

of type GLn(q).2 in class C2. The structure of M2 is described by Proposition
4.2.7 of [KL]. If q is not a Fermat prime and q > 2, then Z(F ∗(M2)) contains
elements of odd order, so x is in the big connected component.
We use 4.23 and 4.24 for the connected components of M2, if q is a Fermat
prime. Therefore n− 1 is a prime and we have (ii).

Suppose r | qn−1 + 1, so q odd. A torus of type qn−1 + 1 is contained in a
subgroup M3 of type GUn(q) in class C3. The structure of M3 is described by
Proposition 4.3.18. If q is not a Mersenne prime, Z(F ∗(M3)) contains elements
of odd order and x is in the big connected component. We use 4.26 and 4.27
for the connected component of M3, if q is a Mersenne prime. Therefore n− 1
is a prime and we have (iii).

Let n odd.
Suppose r | qn − 1. A torus of type qn − 1 can be found in a subgroup M4

of type GLn(q).2 in class C2. The structure of M4 is described by Proposition
4.2.7 of [KL]. If q is not a Fermat prime and q > 2, then Z(F ∗(M4)) contains
elements of odd order, so x is in the big connected component.
We use 4.23 and 4.24 for the connected components of M4, if q is a Fermat
prime or q = 2. Therefore n is a prime and we have (i).

Suppose r | qn−1− 1. If q is odd, then qn−1− 1||Ωn(q)| and n ≤ 2n− 3. If q
is even, then qn−1 − 1||Ω−n+1| and n + 1 ≤ 2n− 2 This implies, that x is in the
big connected component by M1 in both cases.
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Suppose r | qn−1 + 1, so q is odd. Let n − 1 = a · b with a a 2-power and
b odd. Notice, that a 6= 1 and b = 1 gives (iv). We can find a torus of type
qn−1 + 1 in a subgroup M5 of type GUb(qa). This subgroup is contained in
a subgroup M6 of type O−2b(q

a), which is contained in a subgroup M7 of type
O−2 (q) ⊥ O−

2n−2(q). If q is not a Mersenne prime, then Z(F ∗(M7)) contains el-
ements of odd order and x is in the big connected component. The structure of
M5 is described by Proposition 4.3.18 of [KL]. By Zsygmondy, Z(F ∗(M5)) con-
tains elements of odd order s with s | qa +1. As q2a +1 | |Ω2a+1(q)|, a ≤ n

3 and
n ≥ 4, we have 2a+1 ≤ 2n−3, so x is in the big connected component by M1. 2

Lemma 4.31 Let G ∼= PΩ−2n(q) for n ≥ 4. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) n is a prime, q a Mersenne prime and dq(r) = 2n.

(ii) n is a 2-power and dq(r) = 2n.

(iii) n− 1 is a prime, q = 3 and dq(r) ∈ {n− 1, 2n− 2}.
(iv) n− 1 is a 2-power, q is a Fermat prime or q = 2 and dq(r) = 2n− 2.

Proof. Notice, that the statement is also true for n = 3 by 4.26.
If q is odd, by 4.7 there exists a big connected component, containing all ele-
ments of order p.
There exists a subgroup M1 of type O3(q) ⊥ O2n−3(q), so r | (qn + 1)(qn−1 −
1)(qn−1 + 1).
If q is even, by 4.16, there exists a connected component containing all elements
of prime order r for r some prime divisor of q2 − 1.
Let M1 in class C1 be of type O−2 (q) ⊥ O+

2n−2(q). By the structure of M1,
elements of order r are in that connected component, if r | |Ω+

2n(q)|, so remain
primes r, which divide (qn + 1)(qn−1 + 1).

Let n even.
Suppose r | qn + 1. Let n = a · b with a a 2-power and b odd. Notice, a 6= 1
and b = 1 gives (ii). A torus of type qn + 1 is contained in a subgroup M2

of type GUb(qa), which is contained in a subgroup M3 of type O−2b(q
a). The

structure of M2 is described by Proposition The structure of M2 is described
by Proposition 4.3.18 of [KL]. By Zsygmondy, Z(F ∗(M2)) contains elements of
odd order s with s | qa + 1. As F ∗(M2) contains a PSL2(q)-section, x is in the
big connected component.

Suppose r | qn−1 − 1, so q is odd. A torus of type qn−1 − 1 can be found
in a subgroup M4 of type O−2 (q) ⊥ O+

2n−2(q). If q is not a Mersenne prime,
Z(F ∗(M4)) containes elements of odd order, so x is in the big connected com-
ponent. Else we may use 4.30 for the connected components of F ∗(M4). This
gives one case of (iii).

Suppose r | qn−1 + 1. A torus of type qn−1 + 1 can be found in a subgroup
M5 of type O+

2 (q) ⊥ O−
2n−2(q). If q is not a Fermat prime and q > 2, Z(F ∗(M5))

containes elements of odd order, so x is in the big connected component. Else
we use induction for the connected components of F ∗(M5). This gives the other
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case of (iii).

Let n odd. Suppose r | qn + 1. A torus of type qn + 1 can be found in a
subgroup M6 of type GUn(q). The structure of M6 is described by Proposition
4.3.18 of [KL]. If q is not a Mersenne prime, then Z(F ∗(M6)) contains elements
of odd order and x is contained in the big connected component. We use 4.26
and 4.27 for the connected components of F ∗(M6). This gives (i).

Suppose r | qn−1 − 1, so q is odd. As qn−1 − 1 | |Ωn(q)| and n ≤ 2n− 3, x is
in the big connected component by M1.

Suppose r | qn−1 + 1. A torus of type qn−1 − 1 can be found in a subgroup
M7 of type O+

2 (q) ⊥ O−2n−2(q). If q is not a Fermat prime and q > 2, then
Z(F ∗(M7)) contains elements of odd order, so x is in the big connected compo-
nent.
Else we get the structure of the connected components of F ∗(M7) by induction.
This gives (iv). 2

Lemma 4.32 Let G ∼= PΩ2n+1(q) for n ≥ 3, so q is odd. Then G has a unique
big connected component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) n is a prime, q a Mersenne prime and dq(r) = 2n.

(ii) n is a prime, q a Fermat prime and dq(r) = n.

(iii) n is a 2-power and dq(r) = 2n.

Proof. Notice, that the statement is also true for n = 2 by 4.28.
By 4.7 there exists a big connected component, containing all elements of order
p.
There exists subgroup M1 of type O3(q) ⊥ O+

2n−2(q) and M2 of type O3(q) ⊥
O−2n−2(q) so r | (qn − 1)(qn + 1).
Suppose r | qn−1. A torus of type qn−1 can be found in a subgroup M3 of type
O1(q) ⊥ O+

2n(q). We use 4.30 for the structure of the connected components of
F ∗(M3). The exception (i) gives (ii), while the other exceptions are handled by
M1.
Suppose r | qn+1. A torus of type qn+1 can be found in a subgroup M4 of type
O1(q) ⊥ O−2n(q). We use 4.31 for the structure of the connected components of
F ∗(M4). The exceptions (i) and (ii) give (i) and (iii), respectively. The other
exceptions are handled by M1.
Compare this with 4.29. 2

Lemma 4.33 Let G ∼= G2(q) for q 6= 2. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) 3 - q − 1 and dq(r) = 3.

(ii) 3 - q + 1 and dq(r) = 6.
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Proof. If q odd, by 4.7 there exists a big connected component, containing all
elements of order p.
If q even, by 4.17, there is a connected conjugacy class yG, o(y) = r for r 6= 3
some prime divisor of q2 − 1. By [LSS] there exists a subgroup M1 of type
SL2(q) ◦ SL2(q). Therefore dq(r) ∈ {3, 6}.

Suppose dq(r) = 3. By [LSS] there exists a subgroup M2 of type SL3(q),
which has a nontrivial center, if 3 | q − 1. This gives (i).

Suppose dq(r) = 6. By [LSS] there exists a subgroup M3 of type SU3(q),
which has a nontrivial center, if 3 | q + 1. This gives (ii). 2

Lemma 4.34 Let G ∼= 3D4(q) for q odd. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then dq(r) = 12.

Proof. If q is odd, by 4.7 there exists a big connected component, containing
all elements of order p.
If q is even, by 4.18, there is a connected conjugacy class yG, o(y) = r for r 6= 3
some prime divisor of q2 − 1. By [LSS] there exists a subgroup M1 of type
SL2(q) ◦ SL2(q3). Therefore dq(r) = 12. 2

Lemma 4.35 Let G ∼= 2F4(q) for q > 2, q even. Then G has a unique big
connected component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then dq(r) = 12.

Proof. Recall, that 3 | q + 1 and 5 | q2 + 1, as q is an odd power of 2.
By 4.19, there is a connected conjugacy class yG, o(y) = r for r some prime
divisor of q2 + 1. Let ρ ⊆ π(G) from 4.4. By [Malle], subgroups of type SU3(q),
2B2(q)×2B2(q) and Sp4(q) ≥ PSL2(q)×PSL2(q) exist. Therefore π(q2+1) ⊆ ρ,
so π(q − 1) ⊆ ρ, so π(q + 1) ⊆ ρ, so 3 ∈ ρ, so π(q3 + 1) ⊆ ρ. As self centralizing
subgroups of size q2 +

√
2q3 + q +

√
2q + 1 and q2 −

√
2q3 + q −√2q + 1 exist

with (q2 +
√

2q3 + q +
√

2q + 1)(q2 −
√

2q3 + q −√2q + 1) = q4 − q2 + 1, the
proof is complete. 2

Lemma 4.36 Let G ∼= F4(q) for q odd. Then G has a unique big connected
component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then dq(r) ∈ {8, 12}.

Proof. If q is odd, by 4.7 there exists a big connected component, containing
all elements of order p.
If q is even, by 4.20 we have a unique connected component containing all ele-
ments of order r for r some divisor of q2 − 1.
By [LSS] there exist subgroup M1 of type Ω9(q) (q odd) or Sp8(q) (q even) and
M2 of type 3D4(q). From the group order formula, r | |M1||M2|. By 4.32,4.29
and 4.34, dq(r) ∈ {8, 12}. 2
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Lemma 4.37 Let G ∼= E6(q), 2E6(q), E7(q) or E8(q) for q odd. Then G has a
unique big connected component.
Let x ∈ G be of prime order r. If x is not contained in this big connected
component, then one of the following cases holds:

(i) G ∼= E6(q) and dq(r) = 9

(ii) G ∼= 2E6(q) and dq(r) = 18.

(iii) dq(r) = 8 and (G, r) ∈ {(E6(3), 41), (E6(7), 1201), (2E6(2), 17), (2E6(3), 41), (2E6(5), 313)}.
(iv) G ∼= E7(q), q a Mersenne prime and dq(r) ∈ {14, 18}.
(v) G ∼= E7(q), q a Fermat prime or q = 2 and dq(r) ∈ {7, 9}.
(vi) G ∼= E8(q) and dq(r) ∈ {15, 24, 30}.
(vii) G ∼= E8(q), 5 - q2 + 1 and dq(r) = 20.

(viii) G ∼= 2E6(2), r = 13.

Proof. If q is odd, by 4.7 there exists a big connected component, containing
all elements of order p.
If q is even,By 4.21 there exists a connected component containing all elements
of order r for r some prime divisor of q2 − 1.
Consider G ∼= E6(q). By [LSS] there exists a subgroup of type SL2(q) ◦ SL6(q).
Therefore dq(r) ∈ {8, 9, 12}.

Suppose dq(r) = 12. By [LSS] there exists a subgroup of type (3D4(q) ◦
q2+q+1
(q−1,3) , therefore x is in the big connected subgroup.

Suppose dq(r) = 8. By [LSS] there exists a subgroup of type Ω+
10(q)× (q−1)

(q−1,3) .
We use 4.30 for the connected components of this group, if q−1

(q−1,3) is a 2-power.
We get x centralized by a subgroup of size (q + 1) q−1

(q−1,3) . This is a 2-power, iff
q = 3 or q = 7 by 3.2.

The case dq(r) = 9 is (i).
Consider G ∼= 2E6(q). By [LSS] there exists a subgroup of type SL2(q)◦SU6(q).
Therefore dq(r) ∈ {8, 12, 18}.

Suppose dq(r) = 12. By [LSS] there exists a subgroup of type (3D4(q) ◦
q2−q+1
q+1,3 ), therefore x is in the big connected subgroup, except q = 2 in case

(viii).
Suppose dq(r) = 8. By [LSS] there exists a subgroup of type Ω−10(q)× q+1

(q+1,3) .
We use 4.31 for the connected components of this group, if q+1

(q+1,3) is a 2-power.
We get x centralized by a subgroup of size (q − 1) q+1

(q+1,3) . This is a 2-power, iff
q = 2, 3 or q = 5 by 3.2.

The case dq(r) = 9 is (ii).

Consider G ∼= E7(q). By [LSS] there exists a subgroup of type SL2(q) ◦
Ω+

12(q). This gives dq(r) ∈ {7, 9, 12, 14, 18}. By [LSS] there exists a subgroup
of type PSL2(q3)× 3D4(q), which shows x in the big connected component for
dq(r) = 12.
A subgroup of type PSL2(q7) gives parts of (iv) and (v) for dq(r) ∈ {7, 14}.
Subgroups of type E6(q) ◦ (q − 1) and 2E6(q) ◦ (q + 1) complete (iv) and (v).
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For the existence of these subgroups we use [LSS].

Consider G ∼= E8(q). By [LSS] there exists a subgroup of type SL2(q)◦E7(q).
This gives dq(r) ∈ {15, 20, 24, 30}. So we have (vi) or dq(r) = 20. By [LSS] there
exists a subgroup of type SU5(q2), which contains a torus of type q10+1

q2+1 and has
a nontrivial center, if 5 | q2 + 1. This gives (vii). 2

5 Special centralizers

We later have to consider centralizers of elements of order 3 and 5 in the classical
groups over GF(2).

Lemma 5.1 Let G ∼= SLn(2), Spn(2), Ω±n (2) for n ≥ 2, x ∈ G, o(x) = 3 or 5,
V the natural n-dimensional GF(2) module for G.

Then V = U0 ⊕ U1 ⊕ ...⊕ Uk with U0 = CV (x) and Ui irreducible for i > 0.
Moreover in the symplectic and orthogonal case, the direct summands can be
choosen in such a way, that Ui ⊥ Uj for i 6= j and the Ui are nondegenerate.

Proof. By coprime action the module splits into a direct sum of irreducibles.
So suppose we have a nontrivial symplectic or quadratic form.
We use induction on dim V . By coprime action we have [V, x] ⊥ CV (x) = U0,
so CV (x) = 0 by induction.

Now o(x) determines the minimal polynomial of x uniquely:
It is x2 + x + 1 for o(x) = 3 and x4 + x3 + x2 + x + 1 for o(x) = 5.

Let U be some irreducible x-submodule of V = [V, x]. As U is irreducible,
either U ∩ U⊥ = 0 and U is nondegenerate or U ∩ U⊥ = U , so U is totally
singular.
Now U⊥/U is a x-module, but the extension splits over U , as x acts semisimple.
So there exists an x-invariant complement W ≤ U⊥, which is nondegenerate as
U⊥ = U ⊥ W .
By induction W = 0, else we can produce the Ui from proper subspaces W and
W⊥.

Therefore dim V = 4 for o(x) = 3 and dim V = 8 for o(x) = 5.
By inspection of the groups Ω±4 (2), Sp4(2), Ω±8 (2) and Sp8(2), see [ATLAS],
these groups contain at most one class of fixed point free elements of order 3
resp. 5, except in case of Ω+

8 (2). In this case, there are three classes of elements
of order 5, which are transitively permuted by Out(G) ∼= Σ3. In particular
there is one class of elements of order 5, with CV (x) 6= 0 and two fixed point
free classes. One of them comes from the O−4 (2) ⊥ O−

4 (2)-decomposition, so for
this element we have the above decomposition. But the other class is an image
under the graph automorphism of order 2, which preserves the module and form
of G, so we get a decomposition in this case too.
Therefore there are irreducible and nondegenerate subspaces U1, U2 ≤ V with
V = U1 ⊥ U2. 2

We get the following corollaries from basic representation theory:
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Corollary 5.2 Let G ∼= GLn(2) and x, y ∈ G with o(x) = 3, o(y) = 5, m =
dim[V, x], k = dim[V, y].
Then CG(x) ∼= GLm/2(4)×GLn−m(2) and CG(y) ∼= GLk/4(16)×GLn−k(2).

Corollary 5.3 Let G ∼= Spn(2) and x, y ∈ G with o(x) = 3, o(y) = 5, m =
dim[V, x], k = dim[V, y].
Then CG(x) ∼= GUm/2(2)× Spn−m(2) and CG(y) ∼= GUk/4(4)× Spn−k(2).

In case of the orthogonal groups we formulate a weaker statement to avoid
difficulties with automorphisms.

Corollary 5.4 Let G ∼= Ω+
n (2) and x, y ∈ G with o(x) = 3, o(y) = 5, m =

dim[V, x], k = dim[V, y].
Then O2(CG(x)) ∼= (GUm/2(2))′ × Ωε1

n−m(2) and O2(CG(y)) ∼= GUk/4(4) ×
Ωε2

n−k(2) with ε1 = (−1)m/2 and ε2 = (−1)k/4.

Corollary 5.5 Let G ∼= Ω−n (2) and x, y ∈ G with o(x) = 3, o(y) = 5, m =
dim[V, x], k = dim[V, y].
Then O2(CG(x)) ∼= (GUm/2(2))′ × Ωε1

n−m(2) and O2(CG(y)) ∼= GUk/4(4) ×
Ωε2

n−k(2) with ε1 = (−1)1+m/2 and ε2 = (−1)1+k/4.

We now consider elements of order 3 and 5 in the groups PGUn(2).
The situation is a bit more complicated. Let V be the natural n-dimensional
GF(4)-module of GUn(2) and ω ∈ GF(4) with ω2 + ω + 1 = 0.

Lemma 5.6 Let x ∈ GUn(2), such that x ∈ PGUn(2) has order 3. Then either

(i) o(x) = 3 and x is diagonalizable.
The eigenspaces to 1, ω and ω2 are nondegenerate.

(ii) o(x) = 9, x3 ∈ Z(GUn(2)) and x has minimal polynomial x3−ω or x3+ω.
There exist subspaces U1, ..., Uk, dim Ui = 3 and V = U1 ⊥ U2... ⊥ Uk,
n = 3k and the Ui are nondegenerate.

Proof. Consider case (i) and let u, v ∈ V eigenvectors to different eigenvalues
λ, µ. Then (u, v) = (u, v)x = (ux, vx) = (λu, µv) = λµ(u, v). If λ 6= µ and
λ, µ ∈ {1, ω, ω2} this implies (u, v) = 0, so the eigenspaces to different eigenval-
ues are orthogonal. As x is diagonalizable, V is the sum of these eigenspaces,
so each one is nondegenerate.
Consider now case (ii). As 1 6= x3 ∈ Z(GUn(2)), there are only the two choices
x3 = ωId or x3 = w2Id with Id the identity matrix. Therefore the minimal
polynomial is one of the two choices. As it is irreducible we have n a multiple
of 3, so SUn(2) already contains Z(GUn(2)). Notice, that in this case there
are such elements, which come from the embedding GUn/3(23).3 ≤ GUn(2), so
there is a conjugacy class of elements, which satisfies (ii). We show, that this
subspace decomposition exists in general, by induction over n:
Let U be some irreducible x-submodule of V . Then either U ∩ U⊥ = 0 or
U ≤ U⊥, as U is irreducible. If U ∩ U⊥ = 0, we may proceed by induction on
U⊥.
If dim U⊥ > 3, U⊥ has an x-invariant complement to W to U , as x acts semisim-
ple. Then we may proceed by induction on both W and W⊥, as W ∩W⊥ = 0.
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So dim V = 6. By [ATLAS] there exists a unique conjugacy class of elements
of order 9 in GU6(2) with the property x3 ∈ Z(GU6(2)). It is class 3G. But
there is a class, which allows a decomposition into an orthogonal sum of two
nondegenerate subspaces, so the statement is proven. 2

Corollary 5.7 Let x ∈ G = GUn(2) with x3 ∈ Z(GUn(2)). Then one of the
following holds.

(i) o(x) = 3. Then CG(x) ∼= GUn1(2) × GUn2(2) × GUn3(2) with n = n1 +
n2 + n3.

(ii) o(x) = 9. Then CG(x) ∼= GUn/3(8).

We now consider elements of order 5.
Notice, that x5+1

x+1 = x4 + x3 + x2 + x + 1 = (x2 + ωx + 1)(x2 + ω2x + 1).

Lemma 5.8 Let x ∈ G = GUn(2) with o(x) = 5. Then there exist x-invariant
subspaces U,Xi, Yi, i ∈ {1..k}, n = dim U + 4k, with

• U = CV (x)

• dim Xi = 2 = dim Yi,

• x is irreducible on Xi and Yi,

• x has on Xi the minimal polynomial x2 + ωx + 1,

• x has on Yi the minimal polynomial x2 + ω2x + 1,

• Xi ≤ X⊥
i and Yi ≤ Y ⊥

i ,

• (Xi ⊕ Yi) ∩ (Xi ⊕ Yi)⊥ = 0,

• V = U ⊥ (X1 ⊕ Y1) ⊥ ... ⊥ (Xk ⊕ Yk)

Proof. The proof proceeds by induction on dim V . So we may assume, that
dim U = dim CV (x) = 0.
Let X be some irreducible x-submodule, so x is 2-dimensional. Then X ≤ X⊥,
as otherwise X ∩X⊥ = 0, but |GU3(2)| is not divisible by 5.
Let W be an x-invariant complement to X in X⊥. Then W is nondegenerate,
so if W 6= 0 the result holds by induction on both W and W⊥, so on V .
If W = 0, then G = GU4(2) and |GU4(2)|5 = 5. An easy callculation shows the
statement in this case. 2

Corollary 5.9 Let x ∈ G = GUn(2), o(x) = 5. Then CG(x) ∼= GUk(2) ×
GU(n−k)/4(4) with k = dim CV (x).

Proof. This is a consequence of 5.8. 2
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6 Results on loop folders

If not otherwise explictely defined, G is defined as G := G/O2(G) and for subsets
X ⊆ G we denote with X the image of X under the natural homomorphism
from G to G.

6.1 Classic facts from loop theory

The following arguments can be found already in [Asch] or [Hei], we just split
them up for better quotation later on. These results should be well known in
loop theory. We don’t give references, as the statements are presented here
in the not so widely used language of loop folders. Furthermore most of the
statements have very elementary proofs, which a reference may hide.
In addition parts of these statements can be seen as exercises, to make the reader
familiar with terms and arguments used throughout this paper.

Lemma 6.1 In a Bol loop, the order of every element divides the loop order.
Therefore a Bol loop of exponent 2 has even size or size 1.
If (G,H,K) is a loop folder to a Bol loop of exponent 2, then |G : H| is 1 or
even.

For a proof the reader should be aware, that we defined only ’order 2 of an
element’.
What the general problem is and where the Bol property comes into play, for all
these questions we point at the basic theory of loops, see for instance [Bruck].

Lemma 6.2 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. A
subgroup U ≤ G gives rise to a subloop, iff U = (U ∩ H)(U ∩K), the subloop
folder being (U,U ∩H, U ∩K), the size of the subloop being |U : U ∩H|.
In particular overgroups of H and of 〈K〉 satisfy this condition.

Hint: we did not define the term subloop folder.

Lemma 6.3 Let (G,H,K) be a loop folder to a Bol loop of exponent 2. Let
a ∈ K, h ∈ H and g ∈ G. If (hg)a = (hg)−1, then h2 = 1.

Proof. Suppose hga = (hg)a = (hg)−1 = (h−1)g. Let b = gag−1 ∈ K. Then
hb = h−1 or [h, b] = h−2 ∈ H. But [h, b] = h−1bhb = bhb ∈ KK. Since
KK ∩H = 1 by the loop folder property, h2 = 1. 2

Lemma 6.4 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. Then
O2′(G) ≤ CH(〈K〉).
If (G,H,K) is a faithful loop folder, then O2′(G) = 1.
If (G,H,K) is a loop envelope, then O2′(G) ≤ Z(G) ∩H.

Proof. O2′(G)H gives rise to a subloop by 6.2, but |O2′(G)H : H| is odd, so
by 6.1, |O2′(G)H : H| = 1. By 6.3 then [〈K〉, O2′(G)] = 1. 2

Lemma 6.5 Let (G,H, K) be a loop folder to a Bol loop of exponent 2 and
U ≤ G with H ≤ U . Then |G : U | is even or 1.
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Proof. Assume |G : U | to be odd. Then U contains a Sylow-2-subgroup
of G, so every element of K is conjugate to some element of U ∩ K. Then
|{kg : k ∈ K ∩ U, g ∈ G}| ≤ 1 + (|U : H| − 1)|G : U | = 1 + |G : H| − |G : U |.
Since |G : H| = |K| = |{kg : k ∈ K ∩ U, g ∈ G}| this forces |G : U | = 1. 2

Corollary 6.6 H is a 2-group iff G is a 2-group.

Proof. If H is a 2-group, then H is a contained in 2-Sylow M of G, so by 6.5
|G : M | = 1 and G is a 2-group. 2

Corollary 6.7 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. Then
O2,2′(G)H = O2(G)H.

Proof. O2(G)H is of odd index in O2,2′(G)H, so the statement is a consequence
of 6.5 and 6.2. 2

Lemma 6.8 Let (G,H, K) be a faithful loop envelope to a soluble Bol loop L
of exponent 2. Then |L| = |G : H| is a 2-power.

Proof. In a soluble Bol loop of exponent 2 we find a sequence of subloops
L = L1 > L2 > · · ·Lk = 1 with |Li+1| = 2|Li|. 2

Lemma 6.9 Let (G,H, K) be a loop envelope to a Bol loop of exponent 2 and
|G : H| be a 2-power. Then G is a 2-group.

Proof. As |L| = |G : H| is a 2-power, H contains Sylow subgroups for all odd
primes p. But then the product of any two elements of K has to be of 2-power
order: else we may find some elements k1, k2, such that k1k2 has odd prime
order, which is inverted by k1. By 6.3 this is not possible. By the Baer-Suzuki
theorem then 〈K〉 = G is a 2-group. 2

Theorem 3 Let (G,H,K) be a loop folder to a Bol loop of exponent 2. Assume
G is soluble. Then 〈K〉 ≤ O2(G) is a 2-group.

Proof. Let G = G/O2(G). By 6.7, F ∗(G) = F (G) ≤ H. Let k ∈ K. If
k acts nontrivially on F (G), it inverts some element of odd prime order p in
F (G). By 3.5, k inverts some element of order p in the preimage of F (G), but
H contains a Sylow-p-subgroup of that preimage. By 6.3 we get a contradiction.
Therefore elements of K act trivially on F (G), but since CG(F (G)) ≤ Z(F (G)),
k ∈ O2(G), so 〈K〉 ≤ O2(G). 2

Lemma 6.10 Let (G,H,K) be a loop folder to a Bol loop of exponent 2,N E G
with N ≤ H and G = G/N . Then (G, H, K) is a loop folder to the same loop.

Proof. The loop folder property is clearly inherited to the factor group. The
two loops are natural isomorphic from the definition of the loop: the multipli-
cation depends only on the action of K on the H-cosets and N is in the kernel
of this action. 2
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Lemma 6.11 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. Let
G = G/O2′(G). Then (G, H,K) is a loop folder to the same loop.

Proof. By 6.4, O2′(G) ≤ H, so 6.10 gives the result. 2

6.2 Universal covering group and loop embeddings

The following section was included to understand, if Y is a subloop of X, how
the group RMult(Y ) is embedded in RMult(X). The result is, that RMult(X)
in general contains only a central extension of RMult(Y ) as a subgroup. The
only, but crucial application of this section is 6.30.

We begin with a well known technical lemma from loop theory.

Lemma 6.12 Let (G, H, K) be a loop envelope to a finite loop X. Then H =
〈R(x)R(y)R(x · y)−1 : x, y ∈ X〉.
Proof. Let H0 = 〈R(x)R(y)R(x · y)−1 : x, y ∈ X〉 ≤ H. Notice, that since
H is the stabilizer in G of 1 ∈ X (in the permutation action of G on X), all
generators fix 1 ∈ X.
We show G = H0K, so |H : H0| = 1. As G = 〈K〉, any element of G is a finite
product of elements of K. For x ∈ G, we show by induction over the minimal
length of such a word, that x = hxkx for some hx ∈ H0 and some kx ∈ K: If
the minimal length is less than 2, nothing is to show, as all those elements are
in K. Else we can write x = hk1k2 with k1, k2 ∈ K and h ∈ H0. Let k1 = R(x)
and k2 = R(y). Then x = hR(x)R(y)R(x · y)−1R(x · y) = hh1R(x · y) with
h1 = R(x)R(y)R(x · y)−1 ∈ H0 and R(x · y) ∈ K. 2

Notice, that the Bol identity

x · ((y · z) · y) = ((x · y) · z) · y
can be written using the right translations as

ρ((y · z) · y) = ρ(y)ρ(z)ρ(y).

Definition 6.13 Let X be a Bol loop of exponent 2. Let Ĝ = Ĝ(X) be the
image of the free group F with free generators βx : x ∈ X with relation kernel
generated by the following types of relations: β2

x = 1 for all x ∈ X, x 6= 1, β1 = 1
and βxβyβx = β(x·y)·x for all x, y ∈ X.

Lemma 6.14 If X is finite, then Ĝ is finite.

Proof. The relations of type βxβyβx = β(x·y)·x can be transformed into βxβy =
β(x·y)·xβx, using β2

x = 1. In this way the translation can be used to reduce a
word in the βx : x ∈ X: If in such a word a generator βx occurs twice, we can
use these relations to moves the first of these generators next to the other gener-
ator. Then the relation βxβx cancels out these two generators, and reduces the
length of the word. Therefore the group Ĝ has only finitely many irreducible
words, so it is of finite order. 2
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Lemma 6.15 Let Ĥ = 〈βxβyβx·y : x, y ∈ X〉 and K̂ = {βx : x ∈ X}. Then
(Ĝ, Ĥ, K̂) is a loop envelope to X. It is even a universal loop envelope in the
following sense: if there is another loop envelope (G, H, K) to X, then a group
homomorphism γ : Ĝ → G exists, which maps Ĥ to H and K̂ to K.

Proof. Using the generators of Ĥ, every word in generators of Ĝ can be writ-
ten as a product of an element of Ĥ and an element of K̂, using the method
as seen in the proof of 6.12. Notice, that RMult(X) is an image of Ĝ, such
that Ĥ maps to the group H of inner mappings of X. Therefore Ĥ has in-
dex exactly |K̂| = |X|. From the relations of Ĝ it is clear, that K̂ is a union
of Ĝ-conjugacy classes of involutions with 1, which forms a transversal to Ĥ.
Therefore (Ĝ, Ĥ, K̂) is a loop envelope to a Bol loop of exponent 2. (It satisfies
(1),(3),(4) and (5) of 2.3, but in general not (2). )
Let (G,H, K) be another loop envelope to X with bijection κ between the ele-
ments of K and the loop elements of X.
Define a map γ from K̂ to K through κ(γ(βx)) = x for all x ∈ X.
We show, that this map extends to a group homomorphism from Ĝ to G, which
maps Ĥ to H. But for the homomorphism property we just need, that the
elements γ(βx) satisfy the relations for the βx, as Ĝ was a quotient of a free
group.
Surely γ(βx)γ(βx) = 1 for all x ∈ X, x 6= 1. But the identity γ(βx)γ(βy)γ(βx) =
γ(β(x·y)·x)) comes from the (right) Bol identity in X, written in (right) trans-
lations. So if (G,H, K) is a loop folder to X, the elements of K satisfy this
identity.
As H is the stabilizer in G of the loop element 1 ∈ X, it contains the elements
γ(βx)γ(βy)γ(βx·y), as these elements stabilize 1 ∈ X. By the transversal prop-
erty of K then the image of Ĥ is H. 2

Lemma 6.16 Ĝ is a central extension of RMult(X), which is generated by
involutions, so O2′(Ĝ) = Ĝ. If X is soluble, then Ĝ is a 2-group.

Proof. The relations of type βxβyβx = β
βy
x = β(x·y)·x describe the fusion of

Ĝ of the set K̂, so they define the permutation action of Ĝ on K̂. Notice that
we get the same permutation action of RMult(X) on the set {R(x) : x ∈ X}
by the Bol identity. As Ĝ is generated by K̂ and RMult(X) is generated by
{R(x) : x ∈ X}, we conclude:

Ĝ/Z(Ĝ) ∼= RMult(X)/Z( RMult(X)),

as the kernel of the action is in the center of the group.
As RMult(X) is an image of Ĝ, we see, that the kernel of this homomorphism
is in the center of Ĝ. 2

Remark 6.17 Let Y be a subloop of a loop X and (G,H, K) be a loop folder
to X. Let DY := 〈R(y) : y ∈ Y 〉 ≤ G. Then DY is an image of the universal
group Ĝ(Y ) as defined above: (DY , DY ∩H, DY ∩K) is a loop folder to Y and
6.15 applies.

30



6.3 Selected Aschbacher’s results

We will later make heavy use of the following fact, which produces lots of
subloops in a Bol loop of exponent 2. From knowledge on the structure of
these subloops we get strong restrictions on the local group structure.

Lemma 6.18 Let (G,H,K) be a loop folder to a Bol loop X of exponent 2.

(i) Let L ≤ H. Then (NG(L), NH(L), CK(L)) and (CG(L), CH(L), CK(L))
are loop folders to a (the same) subloop of X.

(ii) Let H ≤ U ≤ G. Then (U,H, U ∩K) is a loop folder to subloop of X.

(iii) Let U ≤ G with |U | ≥ |U ∩H||U ∩K|. Then (U,U ∩H,U ∩K) is a loop
folder to a subloop of X.

(iv) Let U ≤ G with U = (U ∩H)(U ∩K). Then (U,U ∩H, U ∩K) is a loop
folder to a subloop of X.

Proof. (i) is (11.1)(4) of [Asch]. The main argument was, that Bol loops of
exponent 2 are Ar-loops, so L acts as a group of automorphisms on X. The
elements, which are fixed by every l ∈ L form a subloop, which is the subloop
in question. This is Aschbachers (4.3).
(ii) is immediate as each H-coset contains exactly one element of K.
(iii) and (iv) are (3.3) in [Asch]. These conditions more or less state, that each
coset of U ∩H in U contains at least one element of K. As U ∩H-cosets are
contained in H-cosets, they contain at most one element of K. 2

For quotation we repeat the following from Aschbachers paper [Asch]:

Definition 6.19 An N -loop is a finite Bol loop of exponent 2 such that the
enveloping group of X is not a 2-group, but for all proper sections S of X, the
enveloping group of S is a 2-group.

Aschbacher’s main theorem stated:

Theorem 4 Let X be a finite Bol loop of exponent 2 which is an N -loop. Let
(G,H, K) be a faithful loop envelope to X, J = O2(X) and G∗ = G/J . Then

(1) G∗ ∼= PGL2(q) with q = 2n +1 ≥ 5 ,H∗ is a Borel subgroup of G∗ and K∗

consists of the involutions in G∗ − F ∗(G∗).

(2) F ∗(G) = J .

(3) Let n0 = |K ∩ J | and n1 = |K ∩ aJ | for a ∈ K − J . Then n0 is a power
of 2, n0 = n12n−1 and |K| = (q + 1)n0 = n12n(2n−1 + 1).

The following lemma is another formulation of Aschbachers [Asch] (12.5)(2),
which was based on an idea of S.Heiss and/or G.Nagy.:
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Lemma 6.20 Let (G,H,K) be a loop folder to a Bol loop of exponent 2 and
N E G. Let ai, i ∈ {1, ..., r} be representatives for the orbits of G = G/N on
K

]
, mi := |{ai

G}|, ni = |K ∩ aiN | and n0 := K ∩N . Then

|K| = n0 +
r∑

i=1

nimi.

Proof. Let Ki := {a ∈ K : a ∈ ai
G} and K0 := K∩N . Then {Ki : i ∈ {0, .., r}}

is a partition of K with |K0| = n0 and |Ki| = nimi for i ∈ {1, .., r}. 2

6.4 Additional results

The following is a corollary to 6.20.

Corollary 6.21 Let (G,H, K) be a loop folder to a Bol loop of exponent 2 and
G = G/O2(G). Suppose O2(H) = 1 and there exists an odd prime p dividing
|G|, such that mi ≡ 0 (mod p) for all i ∈ {1, .., r}, with mi as in 6.20 for
N = O2(G). Then p does not divide |K| = |G : H|, so Sylp(H) ⊆ Sylp(G).

Proof. Since O2(H) ⊆ O2(G), we have O2(O2(G)H) = O2(G). Now
(O2(G)H,H, O2(G)H∩K) gives a soluble subloop folder by 6.9, as |O2(G)H : H|
is a 2-power. Therefore |O2(G)H ∩ K| is a 2-power, but 〈O2(G)H ∩ K〉 ≤
O2(O2(G)H) = O2(G), so n0 := |O2(G) ∩K| is a 2-power. By 6.20 now p does
not divide |K|. 2

There exists a slight extension of the previous lemma:

Corollary 6.22 Let (G,H, K) be a loop folder to a Bol loop of exponent 2 and
G = G/O2(G). Suppose H ∩ K = 1 and there exists an odd prime p dividing
|G|, such that mi ≡ 0 (mod p) for all i ∈ {1, .., r}, with mi as in 6.20 for
N = O2(G). Then p does not divide |K| = |G : H|, so Sylp(H) ⊆ Sylp(G).

Proof. As seen in 6.21, we can show O2(G)H∩K = O2(G)∩K, since H∩K = 1.
The proof of 6.21 continues.
In theory, K may contain involutions, which map into H. In this case H ∩K is
weakly closed in H, as otherwise elements of K invert elements of odd order in
H.
A G-conjugacy class of involutions from H ∩ K has to lift in G to different
conjugacy classes, one for the elements of K and one for the elements of H. 2

Lemma 6.23 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. Let
x ∈ K, y ∈ G and G = G/O2(G). If y has odd order and yx = y−1, then for
every z ∈ G: yz /∈ H, so y /∈ O2(G)H.

Proof. Assume otherwise. Since 〈y, x〉 is a dihedral group with all involutions
conjugate, we may assume w.l.o.g that o(y) is some odd prime p, by replacing
y with some suitable element from 〈y〉. Now x inverts some element of prime
order p in O2(G)〈y〉, by 3.5 then x inverts some element of prime order p in
O2(G)〈y〉. But O2(G)〈y〉 ≤ O2(G)H and H contains a p-Sylow-subgroup of
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O2(G)H. So x inverts some element of odd order, which is conjugate into H, a
contradiction to 6.3. 2

Corollary 6.24 Let (G,H, K) be a loop folder to a Bol loop of exponent 2.
Let C be a component of G = G/O2(G). If C ≤ H, then [C, 〈K〉] = 1 and
C ∩ 〈K〉 ≤ Z(C).

Proof. Let x ∈ K. If x 6∈ O2(〈x,C)〉), by the Baer-Suzuki theorem some y ∈ G
exists with y ∈ H, yx = y−1, o(y) odd. But by 6.23 this is impossible.
So [〈K〉, C] = 1. Since [C,C] = C 6= 1, C 6≤ 〈K〉. Since 〈K〉 E G, C ∩ 〈K〉 E C,
so C ∩ 〈K〉 ≤ Z(C). 2

Corollary 6.25 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. If
F ∗(G) = F (G), then G = H.

Proof. We have F (G) ≤ H by 6.7. By 6.23, no element of K acts nontrivially
on F (G). Therefore 〈K〉 ≤ CG(F (G)) ≤ Z(F (K)), so 〈K〉 = 1 and G = H. 2

In a nonsoluble loop therefore G has components. The next lemma shows a
strategy, how to get rid of the center of E(G).

Lemma 6.26 Let (G,H, K) be a loop folder to a Bol loop of exponent 2. Then
a loop folder (Ĝ, Ĥ, K̂) to a Bol loop of exponent 2 exists with Ĝ ∼= G/Z(E(G))
and |G : H| = |Ĝ : Ĥ|.
Proof. By 6.7 O2,2′(G)H = O2(G)H, so Z(E(G)) ≤ H. Let Z ≤ H with
Z = Z(E(G)), but |Z| odd. By a Frattini argument now G = O2(G)NG(Z), Us-
ing Dedekind’s identity, we get O2(G)H = O2(G)(NG(Z)∩H) = O2(G)NH(Z).
Now G/O2(G) ∼= NG(Z)/NO2(G)(Z), with O2(G)H mapping to the image of
NH(Z) in NG(Z)/NO2(G)(Z).
Notice NO2(G)(Z) = CO2(G)(Z) ≤ CG(Z) as [NO2(G)(Z), Z] ≤ O2(G) ∩ Z = 1.
Let G1 := NG(Z), H1 := NH(Z) and K1 := K ∩ NG(Z) = K ∩ CG(Z). Now
O2(G1) = O2(G) ∩ G1 = CO2(G)(Z), since O2(G1/CO2(G)(Z)) = 1. Remember
(G1,H1, K1) is a subloop folder by 6.18(i).
From the above isomorphism G = G/O2(G) ∼= NG(Z)/NO2(G)(Z) = G1/O2(G1) =
G1 we conclude:
|G1 : H1| = |G : H|. But now Z E G1, even Z ≤ O2′(G1). Using 6.11
we get the loop folder (Ĝ, Ĥ, K̂) in Ĝ = G1/Z. Since Z ≤ H1, we have
|G : H| = |G1 : O2(G1)H1| = |Ĝ : O2(Ĝ)Ĥ| = |Ĝ : Ĥ|. Notice, that F ∗(G1)
covers F ∗(G2), since Z = Z(E(G1)) ≤ Φ(E(G1)) ≤ Φ(G1). As G ∼= G1 and
Ĝ ∼= G1/Z, we have Ĝ ∼= G/Z(E(G)). 2

The following lemma is useful for soluble subloops, as it makes quite a lot
of elements of H visible in local subgroups.

Lemma 6.27 Let (G,H, K) be a loop folder to a Bol loop of exponent 2, G =
G/O2(G) and U ≤ G be a subgroup with the following properties:
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(i) U = (U ∩H)(U ∩K), so U is a group to a subloop.

(ii) O2(U) ∩O2(U) ≤ O2(G) or equivalently [O2(U), O2(U)] = 1.

(iii) 〈U ∩K〉 ≤ O2(U), so the subloop to U is soluble.

Then O2(U) ≤ O2(G)H or equivalently O2(U) ≤ H.

Proof. Let u ∈ U be of odd order. We can write u = hk with h ∈ H ∩ U and
k ∈ K ∩ U by (i).
Now k ∈ 〈K ∩ U〉 ≤ O2(U) by (iii). By (ii) we have [u, k] ∈ [O2(U), O2(U)] ≤
O2(G). Looking at G = G/O2(G), we have u of odd order commuting with k
of order 1 or 2. But this gives a contradiction if k has order 2, so k = 1, so
k ∈ O2(G) and u ∈ HO2(G). 2

There exists a generalization to nonsoluble subloops:

Lemma 6.28 Let (G,H, K) be a loop folder to a Bol loop of exponent 2, G =
G/O2(G) and D := 〈K〉. Then O2(CG(D)) ≤ H.

Proof. Let x ∈ G be of odd order, such that [D, x] = 1. We can write x = hk
with h ∈ H, k ∈ K. As k ∈ O2(G)D, [k, x] = 1. As x = hk, [h, k] = 1, so k = 1
as x has odd order. Therefore x = h ∈ H. 2

Definition 6.29 A Bol loop L of exponent 2 is called a 2N-loop, iff L is not
soluble, but every proper subloop is soluble.

Remark: We introduced this term, since it allows us some ignorance: We
don’t have to care, whether the loop itself is simple or not. There may or may
not exist nonsplit extensions of soluble subloops with N -loops.

Lemma 6.30 Let (G,H,K) be a loop envelope to a 2N -loop L.
Then

• CG(O2(G)) ≤ O2(G),

• G ∼= PGL2(q) and q = 9 or q ≥ 5 is a Fermat prime,

• |G : O2(G)H| = q + 1 and

• K consists of 1 and all involutions of PGL2(q) outside PSL2(q).

• O2(G) = (O2(G) ∩H)(O2(G) ∩K)

Proof. Let L1, L2 be normal proper subloops. These subloops are soluble by
definition of the 2N -loop. Notice, that L1L2 is another soluble normal subloop,
thus a proper subloop too.
Therefore there exists a biggest proper normal subloop L0, which is soluble.
The quotient L/L0 then is an N -loop as defined in 6.19. Let D := 〈R(x) : x ∈
L0〉 ≤ G. Then D ≤ O2(G) and G/D is a loop envelope to an N -loop. If we
manage to prove the statement for (G̃, H̃, K̃) with G̃ = G/D, the statement
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holds for (G,H,K), so we may assume D = 1.
The structure of a faithful loop envelope to an N -loop was described in Theorem
4, which implies the statement, together with 3.2(i).
If (G,H,K) is nonfaithful, coreG(H) ≤ Z(G): if hk ∈ H, then h−1hk = khk ∈
KK∩H = 1, therefore [coreG(H), 〈K〉] = 1, but 〈K〉 = G. Let Z := O2′(Z(G)).
Then (G̃, H̃, K̃) is a faithful loop envelope to an N -loop by 6.11, so we can apply
Theorem 4. Let G = G/O2(G). Then G is a central extension of PGL2(q) with
Z still contained in the group generated by K. Thus q = 9 and |Z| = 3, as
this is the only case of nontrivial odd order Schur multiplier of the groups in
question. (The r-part of the Schur multiplier of a perfect group is nontrivial
only for noncyclic Sylow-r-subgroups. The unique noncyclic case q = 9 actually
results in a Schur multiplier Z3 for Alt6 = PSL2(9).)
However in this case, involutions outside PSL2(9) invert Z. This is visible us-
ing the embedding of 3 Alt6 into SL3(4), see [ATLAS], p.23 for the action of
L3(4)-automorphisms on the Schur multiplier. This contradicts 6.23, so Z = 1.
The factorization O2(G) = (O2(G) ∩H)(O2(G) ∩K) can be seen as follows:
We have O2(G)H = H(O2(G)H ∩ K) by 6.2. Let k ∈ K ∩ O2(G)H. As H
does not contain involutions from PGL2(q) outside PSL2(q),since the Sylow-2-
subgroup of H is cyclic, we have k = 1, so k ∈ O2(G). Now O2(G)H ∩ K =
O2(G)∩K, so each coset of O2(G)∩H in O2(G) contains exactly one element,
as |K ∩ O2(G)| = |O2(G) : O2(G) ∩H| = |HO2(G) : O2(G)| = |K ∩HO2(G)|.
2

Lemma 6.31 Let (G,H, K) be a loop folder to a Bol loop of exponent 2 with
G 6= O2(G)H. Then some subgroup U ≤ G exists with

• U = (U ∩K)(U ∩H), U = 〈U ∩K〉.
• The loop to (U,U ∩H,U ∩K) is a 2N -loop, so

• F ∗(U) = O2(U),

• U/O2(U) ∼= PGL2(q) for q ≥ 5 a Fermat prime or q = 9,

• |U : O2(U)(U ∩H)| = q + 1 and

• K ∩ U consists of 1 and all involutions of PGL2(q) outside PSL2(q).

• There exist elements of order q+1
2 in U inverted by elements of K ∩ U .

• There exist elements h ∈ U ∩H ∩G(∞) of order 3 in case q = 9 or q else.

• In particular G(∞) contains a section isomorphic to PSL2(q).

Proof. We can find a subgroup U recursively: If the loop is nonsoluble, but
every subloop is soluble, the loop is itself a 2N -loop. Else we can find a proper
nonsoluble subloop, which contains a 2N -loop.
We may further assume, that U = 〈U ∩K〉. Then 6.30 describes the structure
of U , which implies the statements. 2
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7 Reduction to G/O2(G) almost simple

If not explicitely defined otherwise, G = G/O2(G) and for subsets X ⊆ G, X is
the image of the natural homomorphism from G onto G.

Definition 7.1 Let S be a finite nonabelian simple group. Let LS be the class
of all Bol loops X of exponent 2, such that to X a loop folder (GX ,HX ,KX)
exists with F ∗(GX/O2(GX)) ∼= S.
A prime p, p > 2 is called passive against S, if for all X ∈ LS: p - |X|. (p
may itself not divide |S|.)
The smallest passive prime p ∈ π(S) is called the anchor prime of S. It is the
smallest odd prime p ∈ π(S) with the property:
For every X ∈ LS: p - |GX : HX | = |X|, so Sylp(HX) ⊆ Sylp(GX).
This prime may not exist, if there are no passive primes in π(S)− {2}.
The finite nonabelian simple group S is called passive, iff every odd prime
p ∈ π(S) is passive.
Equivalently: For every X ∈ LS: X is soluble or equivalently: If (G,H, K) is
any loop folder to a Bol loop of exponent 2 with F ∗(G) ∼= S, then G = O2(G)H.
The equivalence of these conditions follows from the 2N -loop embedding 6.31:
The 2N -loop embedding states, that G

(∞)
contains elements of order either 3 or

5, which are products of two elements in K, so any 2N -loop embedding prevents
the primes 3 or 5 from being passive.
Therefore 2N -loop embedding gives, that S is passive, iff both primes 3 and 5
are passive against S.

Remark 7.2 The anchor prime to a finite nonabelian simple group may not
exist. Its existence will be established later by classifiying the non-passive finite
simple groups, using the classification of finite simple groups.
If S is passive, then S has an anchor prime, usually 3, except in case of the
Suzuki groups 2B2(q), where it is 5.

Lemma 7.3 Let S ∼= PSL2(q) for q ≥ 5 a Fermat prime. Then either q or 3 is
the anchor prime of S.

Proof. From the 2N-loop embedding, 6.31, we get always a Sylow-q-subgroup
into H. For q = 5 the existence of examples ensures, that q = 5 is the smallest
such prime. In the other cases there may be no examples of N -loops for the
corresponding q, so PSL2(q) is passive. Then q = 3 is the anchor prime. If
examples exist, the anchor prime is q. 2

Lemma 7.4 Let S ∼= PSL2(9) ∼= Alt6. Then p = 3 is the anchor prime.

Proof. Let (G,H,K) be a loop folder to a Bol loop of exponent 2 with
F ∗(G) ∼= S. If G = O2(G)H, then H contains a Sylow-3-subgroup of G.
By 6.31 and Dixons theorem we can only embedd 2N-loops for q = 5 or q = 9.
The case q = 9 implies, that H contains a Sylow-3-subgroup of G.
Otherwise suppose H contains elements of order 5. These elements are inverted
by inner involutions of Alt6 and (if in G existing) involutions of PGL2(9) outside
PSL2(9). Therefore K can consist only of the 1-element, the 15 transpositions of
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Σ6 and the 15 involutions of Σ6, which are a product of three commuting trans-
positions. Therefore |F ∗(G) ∩H| ≥ 12, so from the list of maximal subgroups
of Alt6 we conclude, that H contains elements of order 3. But the centralizer
of an element of order 3 contains a Sylow-3-subgroup of G and is soluble, so H
contains a Sylow-3-subgroup of G. By definition now 3 is the anchor prime to
Alt6. 2

Definition 7.5 Let (G,H,K) be a loop folder to Bol loop of exponent 2 and
C a component of G = G/O2(G). An anchor group A of C is a subgroup of
C ∩H with A ∈ Sylp(C) for the anchor prime p of C/Z(C).

Proposition 7.6 Let (G, H, K) be a loop folder to a Bol loop of exponent 2 and
suppose every nonabelian simple section of G has an anchor prime.
Then every component of G has an anchor group.

Proof. The proof proceeds by induction on |G|.

(1): O2′(G) = 1.
By induction on G/O2′(G), the statement holds for the loop folder from 6.11,
but since O2′(G) ≤ H by 6.4 then the statement holds in G too.

(2): F (G) = 1.
By 6.7 we have F (G) ≤ H. If x ∈ F (G) for some element x ∈ H of odd
prime order, then (CG(x), CH(x), CK(x)) gives a subloop folder by 6.18(i). Since
O2′(G) 6= 1 by (1), CG(x) is a proper subgroup.
Now CG(x) covers CG(x), which contains E(G). Therefore anchor groups of
components of CG(x)/O2(CG(x)), which exist by induction, lift to anchor groups
of G.

(3): E(G) contains more than one component.
Else G has a unique component, which has an anchor prime p by assumption.
By definition of the anchor prime therefore an anchor group exists.

(4): If C ∩ H contains elements of odd order for some component C of G,
then anchor groups for all components exists.
Let x be such an element. Then CG(x) covers all but the component C. By
induction we get anchor groups for the components of CG(x)/O2(CG(x)). But
these lift to anchor groups for the components of G, other than C. Since we
have more than one component, we can use some element z of odd prime order
in one of these anchor groups to get the anchor group to C by induction on
CG(z), which covers C.

(5): All components of G are pairwise isomorphic.
Suppose G has nonisomorphic components C, D. Let C1, D1 ≤ G be the prod-
ucts of all components isomorphic to C resp. D.

We claim C1H 6= D1H or C1H = H = D1H:

Suppose C1H 6= H 6= D1H. For a group X let rC(X) be the number of
composition factors of X isomorphic to C.
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If H ∩ C1 contains rC(C1) composition factors isomorphic to C, then C1 =
H ∩ C1, so C1H = H, therefore rC(H ∩ C1) < rC(C1) ≤ rC(G).
Now G/C1

∼= H/(H ∩ C1). Therefore rC(G)− rC(C1) = rC(H)− rC(H ∩ C1).
We conclude: rC(G) > rC(H). But this gives D1H 6= C1H.

Now at least one of C1H, D1H is a proper subgroup. Suppose |C1H| < |G|.
Let B be the preimage of C1H. Since H ≤ B, (B,H, B ∩K) gives a loop folder
to a subloop. By induction we get an anchor group A to C. By (4) we get now
anchor groups for all components of G.

(6): H ∩ E(G) is a 2-group.
Otherwise let x ∈ H ∩E(G) be of odd prime order p. We can write x uniquely
as x = x1x2 · · ·xk with xi ∈ Ci, C1, ..., Ck the components of G. By (4), xi 6= 1
for every i, as otherwise |CG(x)| < |G|, CG(x) contains a component of G and
we get anchor groups of CG(x) and G by (4).
Now CE(G)(x) is the direct product of the CCi(xi). In particular 〈x1, x2, ..., xk〉 ≤
Op(CE(G)(x)) ≤ Op(CG(x)). Let x be some preimage of x of order p.
Since CG(x) covers CG(x), we have Op(CG(x)) covered by O2,2′(CG(x)). By
6.7, we may choose therefore preimages of the xi in H.
By (4) we now get anchor primes for all components of G.

Let h ∈ H be of odd prime order p. Such an element exists by 6.31.

(7): h normalizes every component of G.
Otherwise let C be a component with Ch 6= C and D = CCh · · ·Ch

p−1

, the
closure of C under h. Now CD(h) = {cch · · · ch

p−1

: c ∈ C} ∼= C.
By 6.18(i), CG(h) is a group to a subloop. Notice, that CD(h) maps to a com-
ponent of CG(h)/O2(CG(h)):
D is subnormal in G, so CD(h) is subnormal in CG(h), but CG(h) covers CG(h).
By induction, we get an anchor group A to CD(h). But now A ≤ D ≤ E(G)∩H
contains elements of odd order contrary to (6).

(8): We get anchor groups for all components of G:
We use 6.31 to get elements h ∈ H of odd prime order p, with the property: the
normal closure Nh of h in G is nonsoluble.
Let G1 be the subgroup of G consisting of all elements, which normalize every
component of G. Notice, that the preimage E of E(G) is contained in G1. But
using the Schreier-conjecture, we get that G1/E is soluble. By (7) we have
h ∈ G1. Therefore Nh ≤ G1. Since Nh is nonsoluble, and h ∈ N

(∞)
h ≤ E, we

have a contradiction to (6). 2

Consequences:

Lemma 7.7 Let (G,H, K) be a loop envelope to a Bol loop of exponent 2 and
every nonabelian simple section of G has an anchor prime.
Then every element x of K normalizes every component C of G.
In particular a component of G is either normal in 〈K〉 or contained in H.
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Proof. Let x ∈ K and C be a component of G. Assume Cx 6= C. Let A,B be
anchor groups to the components C and Cx respectively. These exist by 7.6.
As C and Cx are isomorphic, the corresponding anchor primes p1, p2 are equal.
In particular AB ∈ Sylp1

(CCx). Let y ∈ A be of order p1. We may choose
y /∈ Cx, as p1 is odd, so not every element of order p of A is in Z(C) ≥ C ∩Cx.
Then x inverts the element y−1yx, which is of order p1, thus conjugate to some
element of AB ≤ H. This is a contradiction to 6.23.
So [C, 〈K〉] ≤ C ∩ 〈K〉. Therefore either C E 〈K〉 or [C, 〈K〉] = 1. In the later
case let c ∈ C be of odd order. We can write c = kh with k ∈ K, h ∈ H. As k
commutes with c, k = 1, so c ∈ H. As C = O2(C), C ≤ H. 2

Now we proof the following theorem which then togehter with Theorem 1
implies Theorem 2.

Theorem 5 Let (G,H, K) be a loop envelope of a Bol loop of exponent 2 and
assume that every nonabelian simple section of G is either passive or isomorphic
to PSL2(q) for q = 9 or q ≥ 5 a Fermat prime. Then the following holds.

(a) G := G/O2(G) ∼= D1 ×D2 × · · · ×Dk for some non-negative integer k

(b) Di
∼= PGL2(qi) for qi ≥ 5 a Fermat prime or qi = 9

(c) Di ∩ HO2(G)/O2(G) ∼= qi : (qi − 1) is a Borel subgroup in Di of index
qi + 1

(d) F ∗(G) = O2(G)

(e) K is the set of involutions in G \G
′

We use induction on the order of G.

As G = 〈K〉, but no element of K acts on F (G) nontrivially by 6.23,
F (G) ≤ Z(〈K〉), so F (G) ≤ E(G).

Now O2′(G) = 1: If O2′(G) 6= 1, then O2′(G) ≤ H, so by 6.11 the theorem
holds on G/O2′(G). Now G is a central extension of G/O2′(G) with G/O2′(G)
a direct product of groups of isomorphism type PGL2(q) for q = 9 or q ≥ 5 a
Fermat prime.
If the extension is not perfect on E(G/O2′(G)), G has a factor group of odd
index, a contradiction to G = 〈K〉. But the Schur multipliers of the components
have no odd part, except for components of type Alt6. In that case however
PGL2(9)-involutions (which are present in K) invert the center, as described in
[ATLAS], p.23. This gives a contradiction to 6.3.
Else we can find a subgroup Z ≤ H of odd order, such that Z ≤ Z(E(G)). By
6.23 then Z ≤ Z(G). Now CG(Z) is a proper subgroup with (CG(Z), CH(Z), CK(Z))
being a subloop folder and G = O2(G)CG(Z).
By induction on 〈CG(Z)∩K〉, O2′(〈CG(Z)∩K〉) = 1, so Z 6≤ 〈CG(Z)∩K〉. But
this produces a subgroup of odd index in G, a contradiction to the assumption
G = 〈K〉.

If now G has a unique component, this component is either passive or of
type L2(q) for q = 9 or q ≥ 5 a Fermat prime.
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If the component is passive, H = G, a contradiction to 6.24.
We get an anchor group A of F ∗(G) by 7.6.
We also use 6.31 to get a subgroup G0 to a 2N-subloop with G0/O2(G0) ∼= F ∗(G)
or F ∗(G0) ∼= Alt5 and F ∗(G) ∼= Alt6. In that case, |G : H| is a 2-power, as
A ≤ H contains a Sylow-3-subgroup of G and a Sylow-5-subgroup from H ∩G0.
Then 〈K〉 ≤ O2(G) by 6.9, a contradiction to 〈K〉 = G.
We conclude, that G = G0 or q = 9 and |G : G0| = 2, so G ∼= Aut( Alt6).
This case leads to a contradiction, as K consists only of 1 and maybe the 36
involutions from PGL2(9) outside PSL2(9), as this are the only involutions not
inverting elements of order 3, but then K < G.
In particular we have |G : H| = q +1, as already |G0 : O2(G0)(H ∩G0)| = q +1
by 6.30. Furthermore the subgroup G0 actually shows, that O2(G) = F ∗(G).

If G has two components C1, C2, we get anchor groups Ai ≤ Ci by 7.6. By
7.7, both Ci are normal in G. Let Bi ≤ H of odd order with Bi = Ai. We can
use induction on Gi := 〈CG(Bi) ∩K〉 by use of 6.18(i) or repeated use in case
of Alt6-components (the only case, such that Bi is not cyclic).
As the theorem holds on Gi, we get the factorization of G into the subgroups
Di and the fact, that |Di : Di ∩H| = qi + 1 from Gi. For each component of G
we get a Di containing that component.
In particular no passive components occure and F ∗(G) = O2(G). 2

8 Passive simple groups: general arguments

We give here some general arguments involving both certain simple groups and
arguments on loop folders. These arguments are used in the next section to
show, that almost all finite simple groups are passive.
In this section (G,H, K) is a loop folder to a Bol loop of exponent 2, G =
G/O2(G), F ∗(G) ∼= S with S some finite simple nonabelian group, S ≤ T ≤
Aut(S) with G ∼= T and G0 the preimage of F ∗(G).

8.1 An assumption and consequences

Lemma 8.1 We may assume G = 〈K〉, so G ∼= T and T/S are generated by
involutions.

Proof. This is 6.2:
Let g ∈ 〈K〉. Then there exist h ∈ H, k ∈ K with g = hk. As k ∈ 〈K〉,
h ∈ 〈K〉 ∩H. Therefore 〈K〉 = KH0 with H0 = 〈K〉 ∩H, so (〈K〉,H ∩ 〈K〉,K)
is a subloop folder to (G,H, K). As |G : H| = |K| = |〈K〉 : H0|, this is a
subloop folder to the same loop. 2

This has consequences on the structure of T/S:

By the famous Theorem of Steinberg on the structure of Aut(S), (Theorem
2.5.1 in [GLS3]), every automorphism of S is a product of an inner, diagonal,
field and graph automorphism. Moreover Theorem 2.5.12 in [GLS3] gives a de-
tailed description of Aut(S) :
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Aut(S) is a semidirect product of a normal subgroup InnDiag(S) ≤ Aut(S)
with a subgroup ΦΓ. InnDiag(S) is the subgroup consisting of inner and diag-
onal automorphisms, while ΦΓ, is a product of a cyclic group Φ (inducing field
automorphisms) with a supplement Γ, such that ΦΓ/Φ is a group of automor-
phisms of the Dynkin diagram.
By Theorem 2.5.12(e), if the group is untwisted and the Dynkin diagram con-
tains only roots of one length, then ΦΓ = Φ× Γ with Γ the full automorphism
group of the Dynkin diagram. If the group is untwisted, but the Dynkin diagram
contains roots of different length and a graph automorphism of order 2, (so the
group is B2(q), F4(q) in characteristic 2 or G2(q) in characteristic 3) then ΦΓ
is cyclic, with a generator in Γ, which squares to a Frobenius automorphism of
GF(q) generating Φ.
If the group is twisted, then Γ = 1.
We will use definition 2.5.13 of [GLS3] for the terms field, graph-field and
graph automorphism.

Lemma 8.2 Let S be a group of Lie type in characteristic p.
If T is generated by involutions, then T/(T ∩ InnDiag(S)) is isomorphic to
1,Z2,Z2 × Z2, Σ3 or Z2 × Σ3. By 8.1 we may assume this. In particular:

(1) T does not contain field automorphisms of order bigger than two

(2) In case S ∼= B2(q), F4(q), or G2(q), |T : T ∩ InnDiag(S)| ≤ 2.

(3) |T : S|2 ≤ 4, if S is a group of Lie type in characteristic 2 or | InnDiag(S) :
S| is odd.

Proof. This is a consequence of Theorem of 2.5.12 of [GLS3]. 2

We now establish some consequences in even characteristic:

Lemma 8.3 Let S be a group of Lie type in characteristic 2 and X ≤ T with
O2(X) ∩ S = 1.
Then |O2(X)| ≤ 4,O2(X) ≤ Z(X) and O2(X) ∩O2(X) = 1 = O2(X) ∩O2(T ).

Proof. By 8.2 we know T/S. In particular we see, that |O2(T ) : S| is odd,
while |O2(X)S : S| = |O2(X)|. Therefore |O2(T )O2(X)| = |O2(T )||O2(X)|, so
O2(T ) ∩O2(X) = 1.From 8.2(3) we get |O2(X)| ≤ 4.
We can write X = O2(X)P for for some P ∈ Syl2(X). Then |PO2(T ) :
O2(T )| ≤ 4, so (PO2(T ))′ ≤ O2(T ). As X ≤ O2(T )P we get [X, O2(X)] ≤
(PO2(T ))′ ∩O2(X) ≤ O2(T ) ∩O2(X) = 1. 2

Corollary 8.4 Let S be group of Lie type in characteristic 2 and U ≤ G a
subgroup to a soluble subloop. If U is reductive, so O2(U) ∩ G0 = 1, then
O2(U) ≤ H.

Proof. By 8.3 we get O2(U)∩O2(U) ≤ O2(G). Now 6.27 gives the statement. 2

Standard examples, where 8.4 may be applied, are centralizers of elements of
odd order in H ∩G0, as centralizers of semisimple elements in S are reductive.
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8.2 Centralizers

The main connection between the local structure of loops and local subgroups
of almost simple groups is 6.18(i).
Given a subgroup 1 6= L ≤ H of odd order, we have CG(L) covered by CG(L)
due to coprime action. As CG(L) does not cover G, we may apply Theorem 5
on 〈CG(L)∩K〉. On the other hand we know from the local structure of simple
groups, how CG(L) looks like. Putting things together, we often can identify
CH(L) within CG(L), without even knowing H completely.
We give here some lemmata, based on this idea.

Lemma 8.5 Let S ∼= Altn for n ≥ 7 and x ∈ H be of odd prime order p.
Let k be the number of fixed points of x in the natural action of G on n points.
If k 6= 5, then |CG(x) : CH(x)| is a 2-power.
If k 6∈ {4, 5}, then O2(CG(x)) ≤ H.
Remember that Op(CG(x)) ≤ H by 6.7.
If k = 5, then |CG(x)O2(G) : CH(x)O2(G)| ∈ {1, 6}. In any case, H contains
p-cycles from Op(CG(x)).

Proof. The structure of CG(x) is well known, as elements commuting with x
permute the cycles of x and act on the k fixed points.
So we may apply the structure description of Theorem 5 on CG(x), which is an
extension of O2(G) ∩ CG(x) by CG(x). In particular CG(x)/O2(CG(x)) has no
subnormal PGL2(q) for q > 5. There may be a subnormal PSL2(9) ∼= Alt6, but
the outer involution is missing in CG(x), seen as a subgroup of Σn.
Therefore the subloop to CG(x) is soluble, if k 6= 5, as there is no subnormal Σ5

in this case.
If k = 5, there may be a subnormal Σ5, acting on the 5 fixed points of x. In
this case Theorem 5 decribes the structure of 〈K ∩ CG(x) and its intersection
with H.
If k 6= 4, 5, then O2(CG(x)) = 1 and the subloop to CG(x) is soluble, so by 6.27
we have O2(CG(x)) ≤ H.
We could even determine, which elements end up in H in cases k = 4 and k = 5,
but have no use for it.
By 6.7, H contains Op(CG(x)), so in particular p-cycles. 2

Lemma 8.6 Let S be sporadic and x ∈ H be of odd prime order p. Then
|CG(x) : CH(x)| is not divisible by p, unless maybe (p, S) is one of (3,M23),
(3,HS) or (5, Suz).

Proof. This is a consequence of the list of centralizers of elements of prime
orders in sporadic groups in [GLS3] and Theorem 5:
In case p = 3 we have to check, which centralizers of elements of order 3 contain
components of type PSL2(r) for r some Fermat prime, r ≥ 5.
In case p = 5 we have to check, that centralizers of elements of order 5 do not
contain components of type Alt6.
In the cases listed above, there are elements of order 3 resp. 5, such that the
corresponding centralizers may even contain subnormal subgroups isomorphic
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to PGL2(5) resp. PGL2(9), depending on the presence of outer automorphisms
of S in T . 2

Lemma 8.7 Let S be a group of Lie type in odd characteristic p and x ∈ H be
of odd prime order r. If r = p, then |CG(x) : CH(x)| is not divisible by p.
If r 6= p, then H ∩G0 contains elements of order p or CG(x) is soluble or both.

Proof. By 8.2, x is either innerdiagonal or S ∼= D4(q) and x is a graph or
graph-field automorphism of order 3.
In case x innerdiagonal we have the cases x unipotent (r = p) or semisimple
(r 6= p).

In the semisimple case we use Theorem 4.2.2 of [GLS3] for the description
of CG(x). In particular nonsoluble composition factors of CG(x) are groups of
Lie type in characteristic p. Therefore, if 〈CG(x) ∩K〉 6≤ O2(CG(x)), then by
Theorem 5 and induction, G0 ∩ H contains elements of order p. Recall, that
this may happen only, if CG(x) is nonsoluble by Theorem 3.

If x is unipotent, so r = p and x ∈ G0, then we may apply the Borel-Tits
Theorem on CG(x), (Theorem 3.1.3 and Corollary 3.1.4 of [GLS3]).

In the exceptional case of D4(q), the centralizer of a graph or graph-field
automorphism of order 3 is decribed by Proposition 4.9.1 and 4.9.2 of [GLS3]
and listed in 4.7.3 in [GLS3]. CG(x) contains a subnormal 3D4(q1/3) or a G2(q),
which by induction is passive, so the subloop to CG(x) is soluble, so G0 ∩ H
contains elements of order p. 2

Lemma 8.8 Let S be a group of Lie type in even characteristic with q the field
parameter of S. (If S is defined relative to a field extension, q is the size of the
smaller field.)
Let x ∈ H be of odd prime order r.
If q ≥ 8, then CG(x) gives a soluble subloop.
If q = 4, then π(|CG(x) : CH(x)|) ⊆ {2, 3}, so the subloop to CG(x) may not be
soluble.
If q = 2, then π(|CG(x) : CH(x)|) ⊆ {2, 3, 5}, so again the subloop to CG(x)
may not be soluble.
If the subloop to CG(x) is soluble, then O2(CG(x)) ≤ H.

Proof. By 8.2 we may assume, that T does not contain field automorphisms of
odd order. Therefore automorphisms of S of odd order are either innerdiagonal,
so semisimple or are graph or graph-field automorphisms of order 3 in case of
S ∼= D4(q).
For these automorphisms we refer to Propositions 4.9.1 and 4.9.2 as well as 4.7.3
of [GLS3]. In that case CG(x) is reductive and contains a unique component
(isomorphic to G2(q) or 3D4(q1/3)), which is passive by induction, so the subloop
to CG(x) is soluble.
The centralizers of semisimple elements are reductive. Moreover the structure
of the centralizers is described by Theorem 4.2.2 of [GLS3]. In particular the
nonsoluble composition factors come from components, which are groups of Lie
type in characteristic 2 and defined over field extensions of GF(q). The only
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nonpassive components, which may arise, are Sp4(2)′ ∼= Alt6 ∼= PSL2(9) and
PSL2(4) ∼= Alt5 ∼= PSL2(5). As Sp4(2)′ is a group defined over GF(2), it does
not arise if q > 2. As PSL2(4) is a group defined over GF(4), it does not arise
as a component, if q > 4. This is the reason for the case division q > 4, q = 4
and q = 2.
Now Theorem 5 gives solubility of the subloop for q > 4, as no such component
occurs. In case q = 4 it gives, that |CG(x) : CH(x)| is a 2-power times a 3-
power, as only PSL2(4)-components may be not passive. Finally in case q = 2
it gives, that π(|CG(x) : CH(x)|) ⊆ {2, 3, 5}, as there may occure PSL2(4)- or
Sp4(2)′-components, but no other non-passive components.

Notice, that in any case CG(x) is reductive, so we may use 8.4, if the subloop
is soluble. 2

Corollary 8.9 Let S be a group of Lie type in characteristic 2, as in 8.8. For
q > 4 we have O2(CG(x)) ≤ H, so if x, y ∈ G are elements of odd order with
x ∈ H, then y ∈ H.
For q = 4 we have either FS3-property or H contains elements of order 15.
Furthermore either 5 ∈ π(H) or with x ∈ H of odd prime order the full con-
nected component Cx of x in ΓO to S is contained in H.
For q = 2 we have either both FS3 and FS5-property or H contains elements
of order 15.

Proof. For q > 4, subloops to centralizers of elements of odd prime order are
soluble. Then the statement is 8.4 together with the fact, that centralizers of
semisimple elements (or outer automorphisms of order 3 in case of D4(q)) are
reductive, by Theorems 4.2.2, 4.9.1, 4.9.2 and 4.7.3 of [GLS3].
For q = 4, how can FS3-property fail? Only, if there is some element x ∈ H,
o(x) = 3, such that CG(x) gives a nonsoluble subloop in G, so CG(x) contains
a subnormal PSL2(4). In that case the size of the subloop is a 2-power times a
3-power, so CH(x) contains elements of order 5, so H contains elements of order
15.
If H contains no elements of order 5, the subloops to CG(x) for x ∈ H of odd
order are soluble, so by 8.8 Cx ⊆ H.
For q = 2 there is also the possibility for the FS5-property to fail: There may
exist some element x ∈ H, o(x) = 5, such that the subloop to CG(x) is nonsol-
uble, but the size of the loop is divisible by 5. So some elements of order 5 are
commutators of elements of K, and H cannot contain a Sylow-5-subgroup of G.
In that case CG(x) contains a subnormal Sp4(2)′, so CH(x) contains elements
of order 15. 2

8.3 The property FSp

Recall the class LS from 7.1. We have to generalize this concept slightly to our
group T to avoid difficulties:

Definition 8.10 We denote the class `T of Bol loops X of exponent 2, for
which a loop folder (GX ,HX ,KX) exists with GX/O2(GX) ∼= T .
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Let p ∈ π(T ), p > 2. The class `T has the property FSp, iff for all X ∈ `T :
Either |X|p = |T |p or |X|p = 1.

Lemma 8.11 The class `T has property FSp, iff for every loop folder to a Bol
loop of exponent 2 with G/O2(G) ∼= T : p - (|H|, |G : H|), so Sylp(H) ⊆ Sylp(G)
or Sylp(H) = 1. (And FSp stands for ’full Sylow-p’.)

Proof. Suppose (G,H,K) is a loop folder to a Bol loop X of exponent 2 with
the property: If p ∈ π(H), then p - |G : H|.
Then either p ∈ π(H) and p - |X| = |G : H| or p 6∈ π(H), so |X|p = |G : H|p =
|G|p = |T |p. If every loop folder (G,H, K) with G/O2(G) ∼= T has the above
property, then the class `T has property FSp.
The converse statement is immediate from the definition. Notice, that the prop-
erty (|HX |, |GX : HX |)p = 1 depends only on the isomorphism type of X, not
on the particular loop folder (GX ,HX ,KX) to X. 2

The reason for defining this property FSp is, that it can be established from
the p-local structure of T in many cases, and has powerful applications.

Lemma 8.12 The class `T has property FSp, if any x ∈ T , o(x) = p satisfies
one of:

(0) p - |CG(x) : CH(x)|.
(1) CT (x) is soluble.

(2) F ∗(CT (x)) = Op(CT (x)) for p > 2.

(3) CT (x)/O2(CT (x)) has only passive components.

(4) CT (x)/O2(CT (x)) has no subnormal PGL2(q) for q = 9 or a Fermat prime
q ≥ 5 with p|q + 1.

Proof. The general argument in all cases is the same:
Suppose p ∈ π(H). We will show, that each of (1)-(4) implies (0). Once this is
established, H contains a Sylow-p-subgroup of G for the following reason:
Every element x ∈ G of order p is centralized by some element y of order p with
y ∈ Ω1(Z(Y )) for some Y ∈ Sylp(G) with x ∈ Y .
If x ∈ H, then by (0), some G-conjugate z of y is in H. Using (0) on CG(z) we
get a Sylow-p-subgroup of G into H.
Notice, that CT (x) is covered by CG(x) for x ∈ H some preimage of x of order p,
due to coprime action. This enables to establish (0) from information of G only:

By 6.18, CG(x) gives a subloop folder, so we can use inductive arguments
on CG(x).
In case (1), if CT (x) is soluble, then CG(x) is soluble, so by Theorem 3 |CG(x) :
CH(x)| is a 2-power and we have (0).
In case (2) we have |CG(x) : CH(x)|2′ = 1 by 6.25.
In case (3) we use Theorem 5 to establish, that |CG(x) : CH(x)| is a 2-power, as
only passive components show up, so 〈K∩CG(x)〉 E CG(x) has to be a 2-group.
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Case (4) gives the most powerful criterion: The condition on CT (x) gives a con-
dition on the structure of CG(x). Using the factorization CG(x) = CH(x)〈CG(x)∩
K〉 and Theorem 5 for the structure description of 〈CG(x) ∩ K〉, we see that
|O2(G)CG(x) : O2(G)CH(x)| is a product of integers qi + 1 for qi − 1 ≥ 4 a
2-power. But the condition (4) on CT (x) ensures, that none of qi +1 is divisible
by p, so |CG(x) : CH(x)| is indeed not divisible by p. 2

We now establish the FSp-property in certain cases of the classification of
finite simple groups. Notice, that a critical point may arise from the existence of
outer automorphisms of S of odd order, as we may have to establish condition
(0) for such elements too. This is one reason for the assumption, which led to 8.2.

Lemma 8.13 Let S be an alternating group and S ≤ T ≤ Aut(S) and p >
3, p ∈ π(T ). Then `T has property FSp.

Proof. By 8.5 we have condition (4) of 8.12 for p > 3. 2

Lemma 8.14 If S is sporadic, S ≤ T ≤ Aut(S) and p > 2, then `T has
property FSp, unless (p, S) is one of (3,M23), (3, HS) or (5, Suz).

Proof. We can use condition (4) of 8.12 by 8.6. 2

Lemma 8.15 If S is a group of Lie type in characteristic p, p > 2 and S ≤
T ≤ Aut(S), then `T has property FSp.

Proof. By 8.7 we have either condition (2) or condition (3) of 8.12. 2

This fact implies later, that in odd characteristic p and Lie rank at most
two, G = H, if p ∈ π(H), see 8.20.
But before this we continue with groups of Lie type in characteristic 2.

Lemma 8.16 Let S be a group of Lie type in characteristic 2, defined over the
field with q elements. (In case the group is defined relative to a field extension,
q refers to the smaller field.) Let S ≤ T ≤ Aut(S).
If q > 4, then `T has property FSp for every prime p > 2.
If q = 4, then `T has property FSp for every prime p > 3.
If q = 2, then `T has property FSp for every prime p > 5.

Proof. This is a consequence of 8.8, which enables condition (4) of 8.12 under
the given restrictions. 2

8.4 Terminal elements

One strategy in the generic case (where simple groups are big enough), is the
identification of terminal elements.
Plainly, an element x ∈ G is terminal, if x ∈ H implies G = H.
This property can sometimes established from the structure of CT (x) together
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with the structure of T . We will give here some examples, which we will use in
Section 6.
We may need a little lemma:

Lemma 8.17 Assume G0 ≤ H. Then G = H.

Proof. Assume otherwise, so the loop to G is nonsoluble. We get a contradic-
tion from 6.31:
If the loop to G is nonsoluble, then G0 contains elements of odd order, which
are not in H, as they are commutators of elements of K. 2

Lemma 8.18 Let S ∼= Altn for n ≥ 9. If H contains a 3-cycle x, then H = G.

Proof. Let x ∈ H be of order 3, a preimage of x. By 8.5 we have, that
CG(x) gives a soluble subloop. Moreover O2(CG(x)) = 1, so by 6.27 we have
O2(CG(x)) ≤ H. In particular H contains with x all 3-cycles, which commute
with x. As the commuting graph of 3-cycles is connected (see 3.7), we have
G0 ≤ H, which implies G = H by 8.17. 2

Lemma 8.19 Let S be a group of Lie type in odd characteristic p. Assume the
(twisted) Lie rank is not 1 (so S is not of type A1, 2A2 or 2G2) and H contains
elements of order dividing p.
Then G = H.

Proof. By 8.15, `T has property FSp. Since H contains elements of order p,
H contains a Sylow-p-subgroup of G.
Since the (twisted) Lie rank of S is not 1,we may find subgroups V1, V2 ≤ P ,
such that the normalizers of Vi in G0 contain different parabolic subgroups of
G0, which together generate G0.
By 6.18(1) and 6.25, H covers these parabolic subgroups, so H covers G0. By
8.17 we have G = H. 2

Corollary 8.20 Let S be a group of Lie type in odd characteristic p. Assume,
the (twisted) Lie rank is not 1 and let r ∈ π(T ), r > 2. Then `T has property
FSr.
Suppose H 6= G. Let x ∈ H ∩G0 of odd prime order. Then x is not in the big
connected component of ΓO.

Proof. Let x ∈ H be of order r. By 8.7 either H ∩ G0 contains elements of
order p or CG(x) is soluble. In the first case H = G by 8.19, so H contains a
Sylow-r-subgroup and we have (0) of criterion 8.12, while in the second case we
may use (1) of 8.12 to get property FSr.

Notice, that H ∩G0 contains elements of odd order by 6.31.
Unfortunately we cannot use 6.27 or 6.28, as we have no control about O2(CG(x)).
Suppose x is in the big connected component of ΓO.
Let π = (xi), i ∈ {1, .., k} be a path of shortest length in ΓO from some element
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x1 ∈ H of odd prime order to some element k of order p.
Suppose s = o(x1) = o(x2).
By FSs-property, H contains a Sylow-s-subgroup of G, so we may find a g ∈ G,
such that 〈x1, x2〉g ≤ H. As x2

g ∈ H, we get a shorter path by dropping x1
g

from πg.
Suppose s = o(x1) 6= o(x2) = t. Choose x1 ∈ H in the preimage of x1. Recall,
that the subloop to CG(x1) is soluble. Furthermore CG(x1) covers CG(x1) by
coprime action, so CG(x1) contains elements of order t. As |CG(x1) : CH(x1)|
is a 2-power, t ∈ π(H) and by FSt-property, H contains a Sylow-t-subgroup of
G.
Therefore some g ∈ G exists with x2

g ∈ H. We get again a shorter path from
πg by dropping x1

g. Consequently the path consists of x1 only, so H contains
elements of order p and H = G. 2

Lemma 8.21 Let S be a group of Lie type in characteristic 2 and x ∈ H∩G0 of
odd order r > 1. Assume, that the commuting graph of xG0 in G0 is connected
and the subloop to CG(x) is soluble.
Then H = G.

Proof. By 8.4 we have O2(CG(y)) ≤ H for y = x and conjugates of x, which are
contained in H. Therefore with x ∈ H all G0-conjugates of x, which commute
with x, are in H too. Then H contains G0, so by 8.17, H = G. 2

Once certain elements are established as being terminal, we can classify
’isolated elements’. An element x ∈ G is called inductive, if x ∈ H implies, that
y ∈ H for y either a terminal element or an inductive element.
Elements, which are neither terminal or inductive are called isolated. In the
characteristic 2-case with q > 4, inductive elements are simply elements from
the same connected component in ΓO, while isolated elements come from the
small connected components.

8.5 Other recurring arguments

The following lemma is often used in case of cyclic groups L ≤ H to get addi-
tional primes into H.

Lemma 8.22 Given 1 6= L ≤ H with |L| odd, then |NG(L) : CG(L)|2′ divides
|H|.

Proof. Let L ≤ H be a preimage of L with |L| = |L|. By 6.18(i), both
(NG(L), NH(L), CK(L)) and (CG(L), CH(L), CK(L)) are subloop folders. As
〈CK(L)〉 ≤ CG(L) and NG(L) = NH(L)〈CK(L)〉 we have that |NG(L) : CG(L)|
divides |H|.
By coprime action we have |NG(L)|2′ = |NG(L)|2′ , |CG(L)|2′ | = |CG(L)|2′ and
|H|2′ = |H|2′ , which implies the lemma. 2
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9 Passive simple groups: the classification

In this section (G,H, K) is a loop folder to a Bol loop of exponent 2, G =
G/O2(G), F ∗(G) ∼= S with S some finite simple nonabelian group, S ≤ T ≤
Aut(S) with G ∼= T and G0 the preimage of F ∗(G).
Remember, that as a starting point by 6.31, H∩G0 contains nontrivial elements
of odd order.

The goal of this section is to prove Theorem 1.

9.1 The groups PSL2(q)

Lemma 9.1 Let S ∼= PSL2(r), r > 3. If G 6= H, then G ∼= PGL2(q) for q = 9
or q a Fermat prime or G ∼= PΓL2(9), |G : O2(G)H| = q + 1 and K consists of
1 and all involutions of PGL2(q) outside PSL2(q).

Proof. Let r = pe with p a prime. Suppose first p is odd. By 6.31 we get some
element x of odd order into H ∩ G

(∞)
. If x is a p′-element, x is contained in

some torus of size r−1
2 or r+1

2 .
Remember, that Aut(PSL2(r)) has the following types of involutions: those in
PSL2(r), those in PGL2(r) outside PSL2(r) and possibly field automorphisms
of order 2.
The first two types of involutions invert both tori, so invert some conjugate
of x. So by 6.23 K cannot contain involutions of PGL2(r), so consists of 1
and field automorphisms only. Since field automorphism act nontrivially on a
Sylow-p-subgroup, in this case H is a p′-group. We can now estimate the size
of K and |G : H|: Let r = s2. Then |K| ≤ 1 + s(s2 + 1). On the other hand
|G : H| ≥ 1

2s2(s2 − 1). This gives a contradiction since s ≥ 3. So K
]

cannot
consist of field automorphisms only or contain p′-elements of odd order.
So x is a p-element. Since CG(x) is soluble, but contains a Sylow-p-subgroup P
of G we may assume by Theorem 3, that P ≤ H. The Borel subgroup NG(P )
is then covered by NG(P ) and |G : O2(G)H| = r + 1.
As H does not contain p′-elements of odd order, r−1 is a 2-power. Notice, that
in the case of G = Aut( Alt6) = PΓL2(9) we still get |G : H| = r + 1, since
the normalizer of a Sylow-3-subgroup of G has index 10 and is contained in H.
Furthermore, in this case K ⊆ PGL2(q) since the other involutions are in Σ6

and invert elements of order 3, which now cannot be in K by 6.23.
So let r be even, so r ≥ 4. There are only two types of involutions, field auto-
morphisms and inner automorphisms. Inner automorphisms invert conjugates
of all elements of odd order, so cannot be in K.
Field automorphisms act on a torus of size r−1 inside some invariant Borel sub-
group, so H has to be the normalizer of a torus of size r+1. Calculation as in the
case r odd gives: |K| ≤ 1 + s(s2 + 1) and |G : H| ≥ 1

2s2(s2− 1), a contradiction
for s ≥ 4. The case s = 2 was already handled as Alt5 ∼= PSL2(4) ∼= PSL2(5). 2

9.2 The alternating groups

Lemma 9.2 Let S ∼= Altn for n ≥ 7. Then G = H.
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Proof. Remember, that `T has property FSp for p ≥ 5. Furthermore 8.5 turns
out to be useful.
Let n = 7. If O2(H) = 1, by 6.21, 7 ∈ π(H). By 8.22, 7 ∈ π(H) implies
3 ∈ π(H), which implies 3-cycles in H by 8.5 and therefore a full Sylow-
3-subgroup. No proper maximal subgroup of G exists with this property by
[ATLAS], so H = G in this case.
So O2(H) 6= 1. If H contains elements of order 3, then a full Sylow-3-subgroup
by 8.5. A full Sylow-3-subgroup of Alt7 does not normalize any 2-subgroup
of Σ7 by [ATLAS], a contradiction. Again elements of order 7 in H imply
elements of order 3 in H by 8.22. So by 6.30, H is a {2, 5}-group with in-
dex at least 2 · 32 · 7 = 126. But elements of order 5 in Σ7 are inverted
by involutions, which are products of two or 3 commuting cycles, so we get
|K| ≤ 1 + 21 < |G : H| = 126 by 6.23, a contradiction.

Let n = 8. By 6.21 we get 7 ∈ π(H) or O2(H) 6= 1.
If 7 ∈ π(H), then 3 ∈ π(H) and H contains elements of order 3, which are
the product of two 3-cycles. By 8.5 then H contains 3-cycles, so a Sylow-3-
subgroup. By [ATLAS] this implies, that H contains a subgroup isomorphic to
Alt7, in which case |G : H| is a 2-power, which implies, that the loop is soluble,
so H = G.
So O2(H) 6= 1 and 7 6∈ π(H). If H contains some element of order 3, which is
a product of two 3-cycles, H contains a Sylow-3-subgroup of G. So H contains
3-cycles. If H contains 3-cycles, the centralizer of a 3-cycle contains Alt5, so
H contains elements of order 5. Conversely if H contains elements of order 5,
its centralizer contains a normal 3-group generated by a 3-cycle, so H contains
3-cycles. So H contains a subgroup of order 15 and O2(H) 6= 1. No such proper
subgroup H of Σ8 = Aut( Alt8) exists.

Finally for n ≥ 9 let X ≤ H be a p-group for some odd prime p. By 8.5 we
have p-cycles in H. Furthermore for p > 3 we have a full Sylow-p-subgroup in
H by 8.13, while for p = 3 we have H = G by 8.18. If n− p ≥ 6, the centralizer
of a p-cycle has a component of degree at least 6, so this component ends up in
H, and contains 3-cycles.
If n− p = 5, the index |CG(x) : CH(x)| may be 6, but CH(x) contains elements
of order 5. Now 5-cycles in H imply 3-cycles in H for n ≥ 11, but also for
n = 9. In case n = 10, H contains a Sylow-5-subgroup, so O2(H) = 1 and by
6.21 3 ∈ π(H).
If n− p = 3 or n− p = 4, we get 3-cycles into H, since the centralizer is soluble.

This leaves n = p, n = p + 1 or n = p + 2 for a prime p. Now if p is not a
Fermat prime, we get another odd prime r dividing p− 1 by 8.22.
Therefore p is a Fermat prime p ≥ 17 and p is the unique odd prime dividing
|H|.
If n = p, then H is the normalizer of a Sylow-p-subgroup, which is a maximal
subgroup of G. By 6.31 we need a PGL2(p) in G for a nonsoluble loop. As the
permutation degree of PGL2(p) is p + 1, we get H = G.
If n > p, H cannot act transitively, so H is contained in the stabilizer of the
orbit decomposition. This stabilizer leads to a subloop by 6.2. By induction
however H contains elements of order 3.
Since our arguments in this last case are based on the N -loop theorem of As-
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chbacher, it should be mentioned, that the direct approach of counting the invo-
lutions in G and comparing their number with the index of H was Aschbachers
original argument. 2

9.3 The sporadic groups

Lemma 9.3 The sporadic simple groups are passive.

Proof. By 6.6, H is not a 2-group. By 3.8 and 8.22 we may assume, that H
contains an element of order p with p a Fermat prime, so p = 3, 5 or 17.
If G has only one class of involutions, the embedding of a 2N-loop by 6.31 shows,
that involutions from this class invert some element of odd order in H, a con-
tradiction to 6.23. Therefore H = G. For this reason M11,J1, M23, Ly and Th
are passive.
Remember, that we have FSp-property except (p, S) is one of (3, M23), (3, HS)
or (5, Suz) by 8.14.
We use the character tables in [ATLAS] as provided in GAP for calculation
of structure constants. Specifically we calculated, which classes of involutions
invert elements from classes of Fermat prime order.
For the structure of centralizers of elements we use without further reference
only the informations from [ATLAS] in the list of maximal subgroups as well as
the size of the centralizer from the character tables.

In case of M12, structure constant calculations show, that H does not contain
elements of classes 3B or 5A, as these classes are inverted by all classes of invo-
lutions. By FS3 and FS5-property, H does not contain elements of order 3 or 5.

In case of M22, elements from all conjugacy classes of involutions invert class
3A, so H does not contain elements of order 3. From the list of maximal sub-
groups we conclude, that H is contained in a maximal subgroup M of type
25 : Σ5. All other classes of maximal subgroups imply elements of order 3 in H
by Theorem 5. Furthermore K consists of class 1A and 2B, as elements from
2A and 2C invert elements of class 5A. Now |G : H| ≥ 2 · 32 · 7 · 11 = 1386 >
|K| = 1 + 330, a contradiction.

In case of J2, we get the following implications for containement in H:
We have FS3 and FS5-property. Furthermore H-intersection with 3A implies
intersection with 5AB, while 5-elements in H imply 3-elements in H from the
normalizer of a Sylow-5-subgroup.
Among maximal subgroups picked up by H are the normalizer of a 3A-cyclic
group and the normalizer of a Sylow-5-subgroup. Therefore H = G.

In case of HS, elements from all classes of involutions invert elements from
class 3A, so H does not contain elements of order 3. (There is no class 3B).
So H contains a Sylow-5-subgroup by FS5-property.
From a structure constant calculation we conclude, that K consists of classes
1A and 2C.
A maximal subgroup containing a Sylow-5-subgroup is of type U3(5).2 or the
normalizer of the Sylow-5-subgroup (in HS.2). By 6.2 and Theorem 5, H is a
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{2, 5}-group. Now |G : H| ≥ 2 · 32 · 7 · 11 = 1386 > |K| = 1 + 1100 gives a
contradiction.

In case of J3 we get from structure constant calculation, that H does not
contain elements of order 3.
Elements of order 5 in H imply elements of order 3 in H, since the centralizer
of 5-elements is soluble of size 30.
As J3.2 does not involve a PGL2(17), only a PSL2(17), we conclude H = G by
6.31.

In case of M24 we get by structure constant calculations, that H does not
contain any elements of order 3 or 5, so H = G.

In case of McL, we can calculate that elements from class 2B (outer involu-
tions) invert elements from all classes of elements of order 3 and 5. So K does
not contain outer involutions. But this gives a contradiction as in the case of
M11, J1 etc. as above.

In case of He, structure constant calculations show, that H does not contain
elements of order 3.
If H contains elements of order 5, it contains a Sylow-5-subgroup. From the
shape of the normalizer of a Sylow-5-subgroup we conclude, that then H con-
tains elements of order 3. From the list of maximal subgroups we conclude, that
PSL2(17) is not involved in G, so by 6.31 we have H = G.

In case of Ru, structure constant calculations show, that H contains no ele-
ments of order 3 or 5, so H = G.

In case of Suz, structure constant calculations show, that H does not contain
elements from class 3C or 5B. By FS3-property H does not contain elements
of order 3. Furthermore H contains elements of order 3, if it contains elements
of class 5A, as the 5A-centralizer may involve a PGL2(9).
Therefore H = G.

In case of O′N , structure constant calculations show, that H does not con-
tain elements of order 3 or 5.

In case of Co3, structure constant calculations show, that H does not contain
elements of classes 3B, 3C or 5B, so by FSp-property no elements of order 3 or
5.

In case of Co2, structure constant calculations show, that H does not con-
tain elements of class 3B, so by FS3-property no elements of order 3.
Elements of class 5B in H imply elements of class 5A in H, while the later
imply elements of order 3 in H.

In case of Fi22, elements of order 5 in H imply, that H contains a Sylow-
5-subgroup of G. From the list of maximal subgroups we conclude, that H is
contained in a subgroup of type O+

8 (2).Σ3 , 2F4(2)′ ,Σ10 or the corresponding
maximal subgroups in Fi22 : 2. By Theorem 5 therefore H is among one of
these groups. Calculations of structure constants gives the bound |K| ≤ 65287,
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if H contains elements of order 5.
Therefore H contains M ∼= O+

8 (2).Σ3. This is a contradiction to FS3-property,
as the group in question does not contain a Sylow-3-subgroup of G. In particu-
lar we find in H a subgroup P of order 36, such that NH(P ) 6≤ M .
Therefore H does not contain elements of order 5 or H = G.
Elements of class 3A in H imply elements of order 5 in H, so H = G. By
FS3-property then H does not contain elements of order 3.

In case of HN , structure constant calculations show, that H does not contain
elements from classes 3A, 5A or 5D. By FS3 and FS5-property then H = G.

In case of Fi23, structure constant calculations show, that H does not contain
elements of class 3A, so by FS3-property no elements of order 3. FS5-property
implies K = 1A ∪ 2A, so |K| = 31672. But then H contains elements of order
3. So H does not contain elements of order 3 or 5.
If H contains elements of order 17, then structure constant calculations show
|K| ≤ 55614277, but the index of a {2, 17}-subgroup is at least 2 · 313 · 52 · 7 ·
11 · 13 · 23 = 1835304921450.

In case of Co1, structure constant calculations show, that H does not contain
elements of classes 3B, 3D or 5B, so by FSp-property no elements of order 3 or 5.

In case of J4, structure constant calculations show, that H does not contain
elements of order 3 or 5.

In case of Fi′24, structure constant calculations show, that H does not con-
tain elements of class 3A, so no elements of order 3 by FS3-property.
Structure constant calculations also show, if H contains elements of order 5, K
consists of 1A and 2C only, so |K| = 1 + 306936. In that case H contains a
subgroup isomorphic to Fi23, so contains elements of order 3.
Now H is a {2, 17}-group, of index at most 4860791965. (Bound obtained from
structure constant calculations.) But |G : H| ≥ 2 · 316 · 52 · 73 · 11 · 13 · 23 · 29 =
70415143921272150, a contradiction.

In case of B, structure constant calculations show, that H does not contain
elements of class 3A, so by FS3-property no elements of order 3.
Elements of classes 5A or 5B in H imply elements of order 3 in H, so by FS5-
property H does not contain elements of order 5.
Again H is a {2, 17}-subgroup. Structure constant calculations show |K| ≤
11721020628376, but |G : H| ≥ |B|

240·17 = 222279514364689031250.

Finally in case M , structure constant calculations show, that H does not
contain elements of classes 3A, 3C or 5A, so no elements of order 3 or 5 by
FSp-property.
Elements of class 17A in H imply elements of order 3 in H. 2
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9.4 Groups of Lie type in odd characteristic

In this section S is a simple group of Lie type in characteristic p > 2. Let q = pf

be the field parameter of S, q odd in this paragraph. (If S is defined relative to
a field extension, q is the size of the smaller field.)
Before using 8.20 we should handle the cases S ∼= PSU3(q) and S ∼= 2G2(q):

Lemma 9.4 Let S ∼= PSU3(q) for q odd. Then G = H.

Proof. Let d := (q + 1, 3) and s ∈ π(H) with s odd. By 6.30 such an s exists.
Let x ∈ H be of order s. If s divides q2−q+1

d , then we get 3 ∈ π(H) by 8.22 and
3 divides (q−1)q(q +1). So we may assume from the start, that s divides q−1,
q or q + 1.

Notice, that Aut(S) has only two classes of involutions: inner involutions
of S with centralizer q+1

d · SL2(q) : 2 and outer involutions with centralizer
O3(q)× Z2

∼= PGL2(q)× Z2. (See 4.5.1 of [GLS3] for details.)
Remember that by 8.2 T/S is a subgroup of Σ3 not of order 3.
Let i ∈ Aut(S) be an outer involution with C = CS(i) ∼= PGL2(q). As S has
only one class of involutions, elements of order p, q +1 and q−1 are inverted by
inner involutions of S. As Aut(S) has only one class of outer involutions, also
outer involutions invert elements of order p, q + 1 and q − 1.

By 8.15, H does not contain any elements of order p, as otherwise H would
contain a Sylow-p-subgroup of G and some element of K would invert some
element of H of odd order p.

If s divides q − 1, then CG(x) is soluble, so `T has property FSs, and as in
case s = p we get a contradiction.

This leaves the case, that s divides q + 1. Then either CG(x) is soluble or
contains a unique SL2(q)-component. The later case would imply elements of
order p in H. So CG(x) is soluble. If the Sylow-s-subgroup is abelian, H con-
tains a Sylow-s-subgroup, so elements, which are inverted by some involution
of K, a contradiction to 6.23.

The only remaining prossibility is s = 3 and 3|q+1. But then NG(O3(CG(x))) ≤
H and H contains a Sylow-3-subgroup of G0, which is again a contradiction, as
every involution of Aut(S) inverts some element of order 3 in S. 2

Lemma 9.5 Let S ∼= 2G2(q). Then G = H.

Proof. Remember that Aut(S) does not contain outer involutions and only
one class of inner involutions. Then 6.31 gives a contradiction, as H contains
involutions, which invert nontrivial elements of odd order in H. 2

Let x ∈ H ∩ G0 be some element of odd prime order r. By 8.20 we may
assume that r 6= p and CG(x) is a soluble p′-group as otherwise H = G.
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Lemma 9.6 Let S ∼= PSL3(q) for q odd. Then H = G.

Proof. We handle the two cases separately: q a square and q not a square.
If q is not a square, then by Theorem 4.5.1 of [GLS3] Aut(S) has only two
classes of involutions, inner involutions and graph automorphisms of order 2,
which centralize a PGL2(q) ∼= O3(q) in S.
We see, that inner involutions invert elements of order p, q−1 and q+1. But in
the direct product PGL2(q)×Z2, which is isomorphic to the centralizer of graph
automorphism j, the products ij with i an inner involution of S, i ∈ PGL2(q),
all are outer involutions, but invert the same elements as i. Therefore any in-
volution of Aut(S) inverts some elements of order p,q − 1 and q + 1. By 6.23
and FSr-property, H is therefore not divisible by p, q − 1 or q + 1. By 6.31
H ∩ G0 contains elements of odd order r, so r divides q2 + q + 1. Now the
centralizer of an element x ∈ H of order r is cyclic and by 8.22 we get 3 ∈ π(H),
a contradiction as 3 divides (q − 1)q(q + 1).
If q = q2

0 is a square, we have four classes of involutions: in addition to inner
involutions and graph automorphisms we get field automorphisms and graph-
field automorphisms into Aut(S). Field automorphisms centralize a PSL3(q0),
while graph-field automorphisms centralize a PSU3(q0). Notice, that 3 divides
(q0 − 1)q0(q0 + 1). Let r ∈ π(H), r odd. We show, that r - q2

0 − 1:
As in case q not a square, graph and inner involutions invert elements of order
q − 1 = q2

0 − 1.
But also field and graph field involutions invert elements of order q0 − 1 and
q0 + 1 with the same argument as in the case q not a square. Notice, that the
involutions i and ij with [i, j] = 1, i an inner involution and j an outer invo-
lution, are in the same S-coset. By Theorem 4.9.1 of [GLS3] these involutions
are conjugate.
By 6.23 and FSr-property, K does not contain involutions of G, so H = G, if
r | q2

0 − 1 = q − 1.
If r | q2 + q + 1 = (q2

0 + q0 + 1)(q2
0 − q0 + 1), then by 8.22 we have 3 ∈ π(H),

but 3 | (q0 − 1)q0(q0 + 1) | (q − 1)q, so H = G in this case.
So remains r | q2

0+1 = q+1. Then K consists of 1 and field and/or graph-field in-
volutions. The index |G : H| is divisible by 2, q3 = q6

0 and q2+q+1 = q4
0+q2

0+1.
On the other hand |K| ≤ 1+q3

0(q2
0+1)(q3

0−1)+q3
0(q2

0+1)(q3
0+1) = 1+2q6

0(q2
0+1),

which gives the contradiction |K| < |G : H|. 2

Lemma 9.7 Let S ∼= PSLn(q) or PSUn(q) with n ≥ 4, q odd. Then H = G.

Proof. By 8.20, we may assume, that x is not in the big connected component
of ΓO. We use 4.23, 4.24, 4.26 and 4.27 for a list of small connected components.

In the cases (ii) of 4.23 and 4.26 we may use 8.22 to get 3 ∈ π(H), but
elements of order 3 are in the big connected component.

In the cases (i) of 4.23 and (i) of 4.26 we determine the the structure of
maximal subgroups M of G. By Theorem 5 we conclude that either 3 ∈ π(H)
or p ∈ π(H) with elements of order 3 in the big connected component.

In cases (ii) of 4.24 and (ii) of 4.24, n − 1 is a prime. We use 8.22 to get
n− 1 ∈ π(H). But elements of order n− 1 are in the big connected component,
as dq(n− 1)|n− 2.

In cases (iii) of 4.24 and (iii) of 4.27 n is a prime. By 8.22, n ∈ π(H). We
have dq(n) | n − 1. Now elements of order n are either in the big connected
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component or in the small connected component from (i). Together with the
cases (i) of 4.24 and 4.27 this gives either π(H) ⊆ {2, 5, 11} in PSL5(3) or
π(H) ⊆ {2, 5, 61} in PSU5(3).
In PSL5(3), if 11 ∈ π(H), then H contains a torus normalizer 112 : 5, which is
a maximal subgroup of G0.
In PSU5(3), if 61 ∈ π(H), then H contains a torus normalizer 61 : 5, which is a
maximal subgroup of G0.
In both cases we get a contradiction to 6.31, as elements of order 5 are inverted
in H ∩G0.

So H is a {2, 5}-group. We use the list of maximal subgroups in [KL] to
determine the possible M containing H. In almost all cases then Theorem 5
produces additional primes into π(H). The only remaining case is a subgroup
of type 45 : Σ5 in PSU5(3).
In this case elements of order 5 are inverted by involutions from all but one
conjugacy class, a class of length 4941. Since |G : H| ≥ 2 · 310 · 7 · 61, H = G in
this case. 2

Lemma 9.8 Let S ∼= PSp2n(q) for n ≥ 2 or PΩ2n+1(q) for n ≥ 3 with q odd.
Then H = G.

Proof. By 8.20, we may assume, that x is not in the big connected component
of ΓO. We use 4.28, 4.29 and 4.32 for a list of small connected components.
In the cases (ii),(iii) of 4.29 and (i),(ii) of 4.32, n is a prime and we use 8.22 to
get n ∈ π(H). As dq(n)|n− 1, we have elements of order n in the big connected
component, so H = G.
In the remaining cases n is a 2-power and r | qn +1. We determine the structure
of possible maximal subgroups M , which contain H, using the list in [KL].

In the symplectic case we get candidates: M1
∼= Spn(q2).2 in class C3,

M2
∼= GUn(q) in class C3, M3

∼= 21+2m.O−
2m(2) in class C6, or M4 in class

S with F ∗(M4) a simple group.
By 6.2 and Theorem 5, M1 and M2 imply p ∈ H.
In case M3 we have 2n = 2m and the largest prime dividing |O−

2m(2)| is bounded
by 2m+1 = 2n+1. On the other hand, for each odd prime r dividing |H| we have
dq(r) = 2n, so r ≥ 2n + 1. Therefore M3 contains the torus iff qn+1

2 = 2n + 1,
which holds only for q = 3, n = 2.
In case M4, if F ∗(M) is passive and not a Suzuki group, then 3 ∈ π(H) and
elements of order 3 are in the big connected component. If M4 is a Suzuki
group, then 5 ∈ π(H), but by Landazuri-Seitz, n ≥ 4, so elements of order 5
are in the big connected component.
Remains F ∗(M) = PSL2(q1) for q1 = 9 or q1 a Fermat prime. As then H ∩M4

contains a Borel subgroup, we have qn+1
2 = q1.

Suppose q1 = 2e + 1 with e even. Then qn+1
2 = 2e + 1 gives qn − 1 = 2e+1, so

q = 3, n = 2, e = 2, which is again the special case of Sp4(3).

In case PSp4(3) ∼= PSU4(2) we still have to exclude the case, that H is a
{2, 5}-group. We use information from [ATLAS].
The only possible subgroup M is of shape 24 : Σ5 and of index 27. This gives a
candidate for H of index 6 · 27.
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Involutions not inverting elements of order 5 are in class 2A and 2C, so |K| ≤
1 + 45 + 36 = 82. As |G : H| ≥ 2 · 34 = 2 · 81 we get a contradiction.

In the orthogonal case we get a subgroup of type O1(q) ⊥ O−2n(q) and
maybe maximal subgroups in class S. From Theorem 5 we conclude, that H
contains other elements of odd order, so H = G or a maximal subgroup is of
type PGL2(q1) for q1 ≥ 257 a Fermat prime. (Since n ≥ 3, qn+1

2 is at least
34+1

2 = 41.)
Now q1 = 2e +1 for e even, so if qn+1

2 = 2e +1, then qn−1 = 2e, which happens
only for q = 3, n = 2, a case which is excluded by n ≥ 3. 2

Lemma 9.9 Let S ∼= PΩ+
2n(q) or PΩ−2n(q) for n ≥ 4, q odd. Then H = G.

Proof. By 8.20, we may assume, that x is not in the big connected component
of ΓO. We use 4.30 and 4.31 for a list of small connected components.
In cases (i) of 4.30 and 4.31, n is a prime and by 8.22, n ∈ π(H). From the
list of small connected components, we conclude, that n is in the big connected
component.
In cases (ii),(iii) of 4.30 and (iii) of 4.31, n− 1 is a prime and n− 1 ∈ π(H) by
8.22. Again n− 1 is in the big connected component.
In the remaining cases we use the list of maximal subgroups in [KL] for possible
maximal subgroup M containing H. The following observations eliminate some
maximal subgroups: In both cases (iv), as dq(r) = 2n − 2, either r = 2n − 1
or r ≥ 2(2n − 2) + 1 = 4n − 1. If r = 2n − 1, then r is a Fermat prime. If
qn−1+1

2 = 2n− 1, then q = 3 and n = 3 contrary to n ≥ 4.
In case (ii) of 4.31 a similiar arguments works.
Therefore, if M is not in class S, we have:
In case (iv) of 4.30, M is of type O−2 (q) ⊥ O−2n−2(q) in class C1 or a subgroup
of type On(q2) in class C3.
In case (iv) of 4.31, M is of type O+

2 (q) ⊥ O−
2n−2(q) in class C1, a parabolic

subgroup of type P1 also from class C1, a subgroup of type GUn(q) in class C3

or a subgroup of type On(q2) also from C3.
In case (ii) of 4.31, M is of type O−

n (q2) in class C3.
By 6.2 and Theorem 5 then either 3 ∈ π(H) or 5 ∈ π(H) with elements of order
3 and 5 in the big connected component or M is of type PSL2(q1) for a Fermat
prime q1 ≥ 34+1

2 = 41, so q1 ≥ 257. We get a contradiction as a faithful repre-

sentation of PSL2(q1) has degree at least q1−1
2 , so q1−1

2 ≤ 2n, but q1 ≥ q2n−2+1
2 .

2

Lemma 9.10 Let S isomorphic to one of G2(q), 3D4(q), F4(q), E6(q), 2E6(q),
E7(q) or E8(q) for q odd. Then H = G.

Proof. By 8.20, we may assume, that x is not in the big connected component
of ΓO. We use 4.33, 4.34, 4.36 and 4.37 for a list of small connected compo-
nents. In every case, the exceptions come from self centralizing tori T in S. If
|NS(T ) : T | is not a 2-power, we get s ∈ π(H) for s some odd prime divisor of
|NS(T ) : T |. Notice, that s ∈ {3, 5, 7} and in all these cases the big connected
component contains elements of order s, so H = G.
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So the following cases of (S, dq(r)) remain:
(3D4(q), 12), (F4(q), 8), (E6(3), 8), (E6(7), 8), (2E6(3), 8) or (2E6(7), 8). In these
cases we have either O2(H) = 1 or 6= 1. If O2(H) = 1, the prime p itself satisfies
the prerequisites of 6.21, so by 6.21 and 8.20: G = H.

Else O2(H) 6= 1, so H is a 2-local subgroup of G. Now [CLSS] and [LSS]
give a list of maximal subgroups, which contain all maximal local subgroups ex-
cept centralizers of outer automorphisms. The structure of centralizers of outer
involutions in these cases is described in [GLS3]. So for any H we know the
structure of at least one maximal subgroup M containing H.
By 6.2, we can use Theorem 5 on maximal subgroups M , which contain H. As
a result we get elements of order 3 into H, so by 8.20 H = G.

Notice, that in case of G ∼= 3D4(q) the list of maximal subgroups actually
produces the torus normalizer (of type q4− q2 + 1 : 4) itself as the unique max-
imal subgroup containing the torus. In that case we conclude, that O2(H) = 1,
since outer involutions are field automorphisms and act on the torus nontriv-
ially. 2

9.5 Groups of Lie type in even characteristic

The main arguments used in this sections are 8.16, 8.21, 8.4 and the results on
the commuting graph ΓO and special centralizers from Section 2.

We first handle groups of low rank, with subcases q = 2, q = 4 and q > 4
and later the generic case with subcases q ≥ 4 and q = 2.

9.5.1 Low rank

Recall, that we handled already PSL2(q) in 9.1 and that Suz(q) = 2B2(q) is
passive due to 2N -loop embedding,6.31.

In this section we handle the cases S of type PSL3(q), PSL4(q), PSU3(q),
PSU4(q), Sp4(q), G2(q), 3D4(q), and 2F4(q).
Let S ≤ T ≤ Aut(S) and G/O2(G) ∼= T . Remember the FSp-property from
8.16. We will make the case division q = 2, q = 4 and q > 4.

Lemma 9.11 If q = 2, then H = G.

Proof. In case q = 2 we can already exclude some groups for the following
reasons:
PSL3(2) because of 2N -Loop-embedding, 6.31,
PSL4(2) because of the isomorphism with Alt8,
PSU3(2) because the group is soluble,
PSU4(2) because of the isomorphism with PSp4(3),
Sp4(2)′ because of the isomorphism with Alt6 ∼= PSL2(9),
G2(2)′ because of the isomorphism with U3(3) and 2N -Loop-embedding, 6.31.
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The groups 3D4(2) and 2F4(2)′ are ATLAS-groups, so we can use the infor-
mation from [ATLAS]: By 2N -Loop-embedding and the list of maximal sub-
groups we conclude, that if S ∼= 3D4(2), then H = G.

For the Tits group 2F4(2) we can establish the FSp-property for all primes
p > 2 by 8.12(1).
Notice, that 2F4(2) = Aut(2F4(2)′) is not generated by involutions. From the
list of maximal subgroups in [ATLAS] we conclude, that M , a maximal sub-
group of G, which contains H is isomorphic to PSL3(3).2. This implies H = M
and O2(H) = 1. By 6.21 we get a contradiction as the length of both classes
2A and 2B is divisible by 5, so H has to contain a Sylow-5-subgroup of G too. 2

Remember, that for q = 4 we have already the FSp-property for all odd
primes p > 3.

Lemma 9.12 If q = 4, then G = H or S of type L3(4).

Proof. Let S ∼= PSL4(4). Notice, that if 5 ∈ π(H), then H contains a Sylow-
5-subgroup. The normalizer of a 5-Sylow-subgroup contains elements of order
3, while there exist elements of order 85 = 5 · 17 in G, so then |H| is divisible
by 3 · 52 · 17, and contains subgroups of type 52 : 3 and 5× 17. No such proper
subgroup exists by the list of maximal subgroups in [KL]. If 5 6∈ π(H), then also
17 6∈ π(H) and elements of order 3 in H do not commute with elements of order
5 in G. (Otherwise by the structure of the centralizers of elements of order 3,
5 ∈ π(H) by Theorem 5.) No such elements of order 3 exist. Elements of order 7
in H imply elements of order 3 in H both by the centralizer of elements of order
7 and the normalizer of subgroups of order 7. We now get a contradiction to 6.31.

Let S ∼= PSU3(4). We use notation of p.30 of [ATLAS]. If 3 ∈ π(H), then
5 ∈ π(H) as the Centralizer of a 3A-element is cyclic of order 15. Furthermore
the centralizer of a 5ABC− or D-element does not involve a PΓL2(4), only a
PSL2(4). So for x ∈ H of order 5 we have O2(CG(x)) ≤ H by 8.4. The normal-
izer of a Sylow-5-subgroup is a maximal subgroup of type 52 : Σ3. Therefore
H = G, if H contains elements of order 3 or 5. Elements of order 13 in H imply
elements of order 3 in H.

Let S ∼= PSU4(4). We calculated some centralizer data using MAGMA:
Elements of order 17 in H imply elements of order 3 in H, as G contains a
GL2(16), so the centralizer of an element of order 17 is soluble and contains
elements of order 3.
Elements of order 13 in H imply elements of order 3 in H by 8.22 as already
visible in PSU3(4).
Elements of order 3 in H imply elements of order 5 in H:
There are two classes of subgroups of order 3 with components PSL2(16) and
PSL2(4) respectively in their centralizer. In both cases 3 ∈ π(H) implies, that
5 ∈ π(H).
If 5 ∈ π(H), by FS5-property a Sylow-5-subgroup of G is already in H. There
are elements of order 5 in that Sylow-subgroup, whose centralizer has shape
5×PSU3(4). For these elements we can use 8.4 to get the component PSU3(4)
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into H. Calculation reveals, that there are so many elements of that type in a
Sylow-5-subgroup, that H = G.

Let S ∼= Sp4(4). Elements of order 3 in H imply 5 ∈ π(H), 5 ∈ π(H)
or 17 ∈ π(H) implies O2(H) = 1. O2(H) = 1 implies that H contains Sylow-
5- and Sylow-17-subgroups of G in H by 6.21. This implies H = G by [ATLAS].

Let S ∼= G2(4). We calculate centralizers with MAGMA, using the 12-
dimensional representation of G2(4).2 over GF (2). In particular the subloops
to centralizers of elements of order 5 are soluble, as not sections PΓL2(4) are
involved, (only PSL2(4).) So if x ∈ H is of order 5, then O2(CG(x)) ≤ H by
8.4. Then H = G, as H does not only contains a PSU3(4), but also subgroups
of type 5 × A5 from both conjugacy classes, while PSU3(4) contains only one
such class.
Elements of order 3 in H imply elements of order 5 in H by the centralizer struc-
ture, while elements of order 7 or 13 in H imply elements of order 3 in H by 8.22.

Let S ∼= 3D4(4). If 3 ∈ π(H), then 5 ∈ π(H): Either FS3-property fails on
a subnormal PΓL2(4) in a centralizer of an element of order 3 or FS3-property
holds. The first case implies 5 ∈ π(H), while the second case implies elements
of order 3 in H with centralizer shape (7× SL3(4)).3, so again 5 ∈ π(H).
By 2N -loop embedding 6.31 either 3 ∈ π(H) or 5 ∈ π(H), so 5 ∈ π(H) and
H contains a Sylow-5-subgroup of G. As there are centralizers of elements of
order 5 of shape 5 × PSL2(64), we have 3, 7, 13 ∈ π(H), so H contains Sylow-
subgroups for the primes 5, 7 and 13. From the list of maximal subgroups of
[K3D4] we conclude, that H = G. 2

Lemma 9.13 Let S ∼= PSL3(4). Then G = H.

Proof. This group needs special treatment due to the exception of Zsygmondy’s
theorem and the fact, that q − 1 = (3, q − 1).
We use Atlas-notation for the conjugacy classes, see [ATLAS],p. 23.
Conjugacy classes of odd prime order are 3A, 5AB and 7AB, of each odd prime
order there is a unique conjugacy class of groups of that order in S ∼= PSL3(4).
Aut(PSL3(4)) has involution conjugacy classes 2A, 2B, 2C and 2D, which invert
the following conjugacy classes of odd prime order:
2A inverts elements from 3A and 5AB.
2B inverts elements from 3A and 7AB.
2C inverts elements of all classes of 3-elements (including outer classes).
2D inverts elements from 3A, 5AB and 7AB.
Therefore K does not include elements of class 2D. As any involution inverts
elements of class 3A, H ∩G0 does not contain elements of order 3.
So H ∩ G0 is a {2, 5}-group by the 2N -loop embedding, 6.31. In particular
maximal subgroups containing H have no Alt6 or PSL3(2)-components and K
does not contain involutions from 2A or 2D.

Notice, that class 2B has length 280, while class 2C has length 120 or 360,
depending on the presence of diagonal automorphisms of order 3. Class 2B is
a class of graph-field automorphisms, while class 2C is a class of field automor-
phisms.
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We now check G for possible maximal subgroups M containing H.
Let X0 := Aut(S) = L3(4).D12. Calculations of maximal subgroups were done
in MAGMA, using a 42-point representation of X0.

X0 has 8 classes of maximal subgroups:
X1

∼= Σ3 × Σ5, but if M is X1, then |G : H| ≥ 6 · |X0 : X1| = 2016, while
|K| ≤ 1 + 280 + 360 = 641.
X2, X3, X4 are soluble of sizes 22 · 32 · 7,25 · 33 resp. 28 · 32.
X5

∼= PSL3(4).22 is analyzed below,
X6

∼= PSL3(4).6 contains involutions of classes 2A and 2B, but is not generated
by involutions. See X5,7 below for PSL3(4).2 with 2B-outer involutions.
X7

∼= PSL3(4).Σ3 with 2C-outer involutions is analyzed below, but
X8

∼= PSL3(4).Σ3 with 2D-outer involutions is out.

X5 has 8 classes of maximal subgroups:
X5,1

∼= Z2 × Σ5, but M of type X5,1 implies |G : H| ≥ 6|X5 : X5,1| = 6 · 336 =
2016, a contradiction as in case X0.
X5,2 and X5,3 are soluble of sizes 25 · 33 and 28 · 3,
X5,4

∼= Alt6.22 and X5,5
∼= Z2 × PSL3(2).2 have bad components,

X5,6
∼= PSL3(4).2 with 2B-involutions is analyzed below,

X5,7
∼= PSL3(4).2 with 2C-involutions is analyzed below, but

X5,8
∼= PSL3(4).2 with 2D-involutions is out.

X5,6
∼= PSL3(4).2 with 2B-involutions has 10 classes of maximal subgroups:

X5,6,1
∼= Σ5, three classes of PSL3(2).2, three classes of Alt6.2, soluble groups

of sizes 24 · 32 and 27 · 3 and S ∼= PSL3(4) itself.
Only X5,6,1 for M remains, but then |G : H| ≥ 6 · |X5,6 : X5,6,1| = 6 ·336 = 2016
gives a contradiction as before.

X5,7
∼= PSL3(4).2 with 2C-involutions has 6 classes of maximal subgroups:

a soluble group of size 24 · 32, a Z2×PSL3(2) , a Alt6.2 , two classes X5,7,4 and
X5,7,5 of shape 24 : Σ5 and S itself.
If M is of type X5,7,4 or X5,7,5, then |G : H| ≥ 6 · |X5,7 : X5,7,4| = 6 · 21 = 126,
but |K| ≤ 1 + 120 = 121, as class 2C has size 120 in this subgroup.

X7 with 2C-involutions has 6 classes of maximal subgroups:
two soluble classes of subgroup sizes 2 · 32 · 7 resp. 24 · 33,
two classes X7,3 and X7,4 of shape 24 : ((3×A5) : 2) and two classes containing
PSL3(4): PSL3(4).3 and PSL3(4).2 ∼= X5,7.
Notice, that M of type X7,3 or X7,4 implies 3 ∈ π(H) by 6.7, but 2C involutions
invert elements from all classes of 3-elements. 2

Lemma 9.14 Let S ∼= PSL3(q), PSL4(q), PSU3(q), PSU4(q), Sp4(q), G2(q),
3D4(q) or 2F4(q) for q > 4. Then G = H.

Proof. We use 8.9 as well as FSr-property for r > 2. Further we use the
discussion of the connected components of the commuting graph ΓO together
with 8.17.
Let x ∈ H ∩G0 be an element of odd prime order r, which exists by 6.31.
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In case of S ∼= PSL3(q), either r | q2 − 1, or r | q2+q+1
(q−1,3) .

If r | q2 − 1, then G0 ⊆ H by 4.22 and 8.9. Then H = G by 8.17.
If r | q2+q+1

(q−1,3) , then 3 ∈ π(H) by 8.22, but 3 | q2 − 1.

In case of S ∼= PSL4(q) the graph ΓO is connected by 4.23, so G0 ⊆ H by
8.9 and H = G by 8.17.

In case of S ∼= PSU3(q), either r | q2 − 1, or r | q2−q+1
(q+1,3) .

If r | q2 − 1, then G0 ⊆ H by 4.25 and 8.9. Then H = G by 8.17.
If r | q2−q+1

(q+1,3) , then 3 ∈ π(H) by 8.22, but 3 | q2 − 1.

In case of S ∼= PSU4(q) the graph ΓO is connected by 4.26, so G0 ⊆ H by
8.9 and H = G by 8.17.

In case of S ∼= Sp4(q) either r | q2 − 1 or r | q2 + 1. If r | q2 + 1, then
O2(H) = 1:
No prime divisor of q2 + 1 divides the order of a parabolic subgroup, so there
is no {2, r}-subgroup of G0. Furthermore the centralizer of an outer involution,
which is either Sp4(q1/2) or 2B2(q), does not contain a torus of size q2 + 1,
which is contained in CH(x). Therefore we may apply 6.21. Notice, that nei-
ther parabolic subgroups nor subgroups of type Sp4(q1/2) or 2B2(q) contain a
Sylow-s-subgroups for primes s dividing q + 1.
Therefore the length of every conjugacy class of involutions is divisible by s, so
s ∈ π(H), but s | q2 − 1.
If r | q2 − 1, we have G0 ⊆ H by 8.9 and 4.28, so H = G by 8.17.

In case of S ∼= G2(q) with 3 | q − ε for ε ∈ {+1,−1}, if r | q2 − εq + 1 then
3 ∈ π(H) by 8.22, and 3 | q2 − 1.
So we have r | (q2−1)(q2+εq+1) and G0 ⊆ H by 8.9 and 4.33, so H = G by 8.17.

In case of S ∼= 3D4(q), either r | q4 − q2 + 1 or r | q6 − 1.
Suppose r | q4− q2 +1. Then H contains a torus of size q4− q2 +1 from CH(x),
as CG(x) is soluble. Therefore O2(H) = 1, so by 6.21 and the list of maximal
subgroups of S in [K3D4], s ∈ π(H) for s some prime divisor of q4+q2+1

3 .
If r | q6 − 1, then G0 ⊆ H by 8.9 and 4.34, so H = G by 8.17.

In case of S ∼= 2F4(q), either r | q4 − q2 + 1 or r | (q4 − 1)(q3 + 1).
If r | q4 − q2 + 1, then 3 ∈ π(H) by 8.22, as CH(x) contains the normalizer of a
torus either of size q2 +

√
2q3 + q +

√
2q + 1 or q2 −

√
2q3 + q −√2q + 1 and

3 | q + 1.
If r | (q4 − 1)(q3 + 1), then G0 ⊆ H by 8.9 and 4.35, so H = G by 8.17. 2

9.5.2 The case q ≥ 4

In case q > 4 we use 8.9 as well as FSr-property for r > 2 by 8.16.
At this point the discussion of the connected components of the commuting
graph ΓO becomes essential.
The arguments in case q = 4 are not that different:
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Notice, that we have FSr-property for r > 3 by 8.16, in particular for r = 5.
Recall from 8.9, that if FS3-property fails, then 5 ∈ π(H), so H contains a full
Sylow-5-subgroup of G while q + 1 = 5 for q = 4.

Lemma 9.15 Let S ∼= PSLn(q) or PSUn(q) with n ≥ 5, Sp2n(q) with n ≥ 3 or
Ω±2n(q) for n ≥ 4 and q ≥ 4, q even. Then G = H.

Proof. Let x ∈ H∩G0 be an element of odd prime order r, which exists by 6.31.

In case of S ∼= PSLn(q) or PSUn(q) we use 4.24 and 4.27. If q = 4, then by
4.10,4.13 and 8.21, we have H = G, if 5 ∈ π(H).
Then either H = G by 8.9 and 8.17 or CG(x) is a self centralizing torus, on
which a prime p = n resp. p = n − 1 acts. In that case p occurs in π(H) by
8.22. Notice, that in S there is at most one exceptional self centralizing torus,
which does not contain the prime p itself. Therefore elements of order p are in
the big connected component and H = G.

In case of S ∼= Ω+
2n(q) or S ∼= Sp6(q) the graph ΓO is connected by 4.30 and

4.29. If q = 4, then by 4.15,4.16 and 8.21, we have H = G, if 5 ∈ π(H).
So H = G by 8.9 and 8.17.

In case of S ∼= Sp2n(q) or Ω−2n(q) for n ≥ 4 we have either H = G by 4.29
and 4.31 or n is a 2-power and r | qn + 1.
If q = 4, again by 4.15,4.16 and 8.21, we have H = G, if 5 ∈ π(H).
We determine the isomorphism type of maximal subgroups M of G, which con-
tain H.
Notice, that H2′ ≥ 44 + 1 = 257.
In the symplectic case we get by [KL] F ∗(M) ∼= Spn(q2) or Ω−2n(q) or M in class
S, while in the orthogonal case we have F ∗(M) ∼= Ω−n (q2) or in class S. So in
any case F ∗(M) is a simple group. By 6.2, M is a group to a subloop, so we
may use Theorem 5 on 〈M ∩K〉. If F ∗(M) is a passive group, then 3 ∈ π(H)
or 5 ∈ π(H) with 15 | q4 − 1. So H = G as H contains elements of odd order,
which are in the big connected component.
Else F ∗(M) is a group PSL2(p) for a Fermat prime p ≥ 257 with p = qn + 1.
The minimal degree of a faithful representation of PSL2(p) is p−1

2 = qn

2 by
Landazuri-Seitz, but G has a faithful module in dimension 2n. As q ≥ 4, this is
absurd. 2

Lemma 9.16 Let S ∼= F4(q) E6(q), 2E6(q), E7(q) or E8(q) for q ≥ 4, q even.
Then G = H.

Proof. Let x ∈ H be an element of odd prime order r, which exists by 6.31.

In case of S ∼= F4(q) we use 4.36. If q = 4, by 4.20 and 8.21, we have H = G,
if 5 ∈ π(H).
Then either x is in the big connected component and H = G by 8.9 and 8.17 or
CG(x) is a self centralizing torus of size q4 + 1 or q4 − q2 + 1.
The normalizer of the torus of size q4 − q2 + 1 contains elements of order 3,
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as G contains a subgroup 3D4(q).3 with an outer field automorphism of order
3. We can find this field automorphism acting on top of the torus, so by 8.22,
3 ∈ π(H). As elements of order 3 are in the big connected component, H = G
in this case.
Remains the torus of size q4 +1. Let M be a maximal subgroup of G containing
H. We can use Theorem 5 on 〈M ∩ K〉 by 6.2. As we know, which elements
of odd order occure in H, there remains only the case, that H ∼= PSL2(p) for
p some Fermat prime with p = q4 + 1 ≥ 44 + 1 = 257. By the boundaries
of Landazuri-Seitz, a faithful representation of PSL2(p) has dimension at least
p−1
2 ≥ 128, but S has a faithful representation in dimension 26, a contradiction.

In case S ∼= E6(q), 2E6(q), E7(q) or E8(q) we use 4.37.
If q = 4, by 4.21 and 8.21, we have H = G, if 5 ∈ π(H).
Then either x is in the big connected component and H = G by 8.9 and 8.17
or CG(x) is a self centralizing torus, on which elements of order 3 or 5 act non-
trivially. By 8.22 then 3 ∈ π(H) or 5 ∈ π(H), but elements of order 3 or 5 are
in the big connected component, so H = G. 2

9.5.3 The case q = 2.

The remaining groups are PSLn(2), PSUn(2) for n ≥ 5, Sp2n(2) for n ≥ 3,
Ω±2n(2) for n ≥ 4, F4(2), E6(2), 2E6(2), E7(2) and E8(2).

These cases behaves differently from q > 4, if 3 ∈ π(H) or 5 ∈ π(H).
We use results on centralizer of elements of order 3 and 5, to overcome the ex-
ceptions of 8.9.

Lemma 9.17 Let S ∼= PSLn(2) for n ≥ 5. Then H = G.

Proof. Suppose 3 ∈ π(H). Let V be the natural n-dimensional GF(2)-module
for S.
By 4.10 and 8.21 there exists terminal elements t of order 3, which have dim[V, t] =
2. Therefore H does not contain a Sylow-3-subgroup of G, so FS3-property fails.
How can FS3-property fail? From the structure of centralizers of semisimple
elements and the structure of nonsoluble subloops we conclude as in 8.8, that
some y ∈ H, o(y) = 3 exists, such that CG(y) contains a subnormal subgroup
isomorphic to Σ5. By 5.2, CG(y) ∼= GLm/2(4)× SLn−m(2) with m := dim[V, y]
for V the natural n-dimensional GF(2)-module of G. In particular components
of type Alt5 ∼= PSL2(4) occure only for m = 4. If m ≥ 6, H covers the SLn−m(2)
acting on CV (y) by 6.28. We conclude, that then H contains elements, which
are conjugate to t, so H = G for n ≥ 6 and 3 ∈ π(H).

We show the statement now for n = 5:
We use the list of maximal subgroups and centralizer sizes in [ATLAS].
Let M be a maximal subgroup of G, which contains H.
By 6.2, M is a group to a subloop, so we may apply Theorem 5. We know, that
H = G, if H contains a Sylow-3-subgroup or elements conjugate to t.
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But otherwise H contains elements of order 5,7 or 31.
7 ∈ π(H) implies H = G, as the centralizer of elements of order 7 is soluble and
contains elements conjugate to t.
But 5 ∈ π(H) implies 3 ∈ π(H) from centralizers sizes and 31 ∈ π(H) implies
5 ∈ π(H) by 8.22.

So let n ≥ 6 and 5 ∈ π(H). Let x ∈ H be of order 5 and consider the action
of CG(x). Let m := dim[V, x]. By 5.2, CG(x) ∼= GLm/4(16) × SLn−m(2). We
conclude, that O3(CG(x)) 6= 1, so 3 ∈ π(H) by 6.7.

Finally let n ≥ 6 and 3 6∈ π(H) 63 5. From 4.24 we conclude, that either
n or n − 1 is a prime and H contains a torus of size 2n − 1 resp. 2n−1 − 1.
Then by 8.22 either n ∈ π(H) or n − 1 ∈ π(H), and n resp. n − 1 are in the
connected component containing all elements of order 3 and 5. We then get a
contradiction, as this implies 3 ∈ π(H) or 5 ∈ π(H). 2

Lemma 9.18 Let S ∼= Spn(2) for n ≥ 6. Then H = G.

Proof. Let V be the natural n-dimensional module of G. Recall, that Out(G) =
1.

Suppose 3 ∈ π(H). By 4.15 and 8.21 there exists a terminal element t of
order 3, with dim[V, t] = 2. Therefore H does not contain a Sylow-3-subgroup
of G, so FS3-property fails. We conclude as in 8.8, that some y ∈ H, o(y) = 3
exists, such that CG(y) contains a subnormal subgroup isomorphic to Σ5. Let
y ∈ H with o(y) = 3. By 5.3, CG(z) ∼= GUm/2(2) × Spn−m(2), so no such
subnormal subgroup occurs and FS3-property holds, so 3 6∈ π(H).

Suppose 5 ∈ π(H). Let x ∈ H be of order 5 and m := dim[V, x]. By 5.3,
CG(y) ∼= GUm/4(4) × Spn−m(2). If dim CV (x) > 0, H covers the Spn−m(2)-
factor of CG(y) by 6.28, so 3 ∈ π(H). If m ≥ 12, then H covers the GUm/4(4)-
factor too and 3 ∈ π(H). So n = m = 8, but then the centralizer has structure
Z5 × Alt5 and no subgroup Σ5 occurs in this centralizer, so 3 ∈ π(H) in this
case too.

If now 3 6∈ π(H) 63 5, we use 4.29 for the connected components of ΓO, which
do not contain elements of order 3 or 5.
Let x ∈ H be an element of odd order. We conclude, that either n is 2-power
and o(x) divides qn/2 + 1 or n = 2p for a prime p and n divides 2p − 1. In this
last case p ∈ π(H) by 8.22 and p is in the big connected component, so H = G.
Let M be a maximal subgroup containing H, so M is a group to a subloop by
6.2. We get by [KL], that F ∗(M) ∼= Spn/2(q2) or Ω−n (q) or M in class S. In
any case F ∗(M) is a simple group. If this group is passive, either 3 ∈ π(H) or
5 ∈ π(H) and H = G. Else M ∼= PGL2(p) for a Fermat prime p ≥ 17. We have
p | 2n/2 + 1, G has an n-dimensional GF(2)-module, but the minimal represen-
tation degree of PGL2(p) is p − 1. Now 2n/2 ≤ n, so n ≤ 4, a contradiction.
Notice, that the group Sp8(2) actually has a maximal subgroup isomorphic to
PSL2(17), but no PGL2(17). 2
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Lemma 9.19 Let S ∼= Ω+
n (2) for n ≥ 8. Then H = G.

Proof. Let V be the natural n-dimensional module of G. Recall, that Out(G) =
Z2 for n ≥ 10 and Σ3 for n = 8.

Suppose 3 ∈ π(H). By 4.16 and 8.21 there exists a terminal element t of order
3, which have dim[V, t] = 2. Therefore H does not contain a Sylow-3-subgroup
of G, so FS3-property fails. We conclude as in 8.8, that some y ∈ H, o(y) = 3
exists, such that CG(y) contains a subnormal subgroup isomorphic to Σ5. Let
y ∈ H with o(y) = 3. By 5.4, O2(CG(y)) ∼= (GUm/2(2))′ × Ωε1

n−m(2) for
ε1 = (−1)m/2, if y is an element of Ω+

n (2). If y is outside of Ω+
8 (2), we use

[ATLAS] for the structure of O2(CG(y)). In any case a subnormal Alt5 exists
only for n−m = 4, with ε1 = −1.
In that case H covers the subgroup GUm/2(2) by 6.28, so H contains an ele-
ment, which is conjugate to x and H = G.
Therefore either H = G or FS3-property holds, so 3 6∈ π(H).

Suppose 5 ∈ π(H). Let x ∈ H be of order 5 and m := dim[V, x]. By 5.4,
CG(y) ∼= GUm/4(4)× Ωε2

n−m(2) for ε2 = (−1)m/4.
Suppose n−m ≥ 6. Then Ωε2

n−m(2) is passive, so by 6.28, 3 ∈ π(H).
If (n−m, ε2) = (4, +1) or (2,−1), for the same reason 3 ∈ π(H).
If m ≥ 12, then H covers the GUm/4(4)-factor too by 6.28 and 3 ∈ π(H).
So m ≤ 8 and (n−m, ε2) ∈ {(0,+1) = (0,−1), (2, +1), (4,−1)}. This gives the
groups O+

8 (2) and O+
10(2).

In both cases H contains the normalizer of a Sylow-5-subgroup.
In case of S ∼= Ω+

10(2) we get 3 ∈ π(H): We check the list of maximal subgroup
in [ATLAS] and use 6.2 with Theorem 5, to get 3 ∈ π(H).
If S ∼= Ω+

8 (2), 3 ∈ π(H) by 8.22, if G ∼= Ω+
8 (2).Σ3, so |G : G0| ≤ 2.

Calculation of structure constants within Ω+
8 (2).2 reveals, that K can contain in

this case of the classes 2A and 2F (Notation as in [ATLAS]) only, as the other
classes of involutions invert elements of order 5. Therefore |K| ≤ 1+1575+120 =
1796. On the other hand |G : H| ≥ 2 · 35 · 7 = 3402, a contradiction.

If now 3 6∈ π(H) 63 5, we may use 4.30 for the connected components of ΓO,
which do not contain elements of order 3 or 5.
In particular there exists a prime p with n = 2p or n = 2p+2 and the connected
component contains elements of prime order r for all prime divisors r of 2p− 1.
By 8.22, r ∈ π(H) implies p ∈ π(H), while p is in the connected component
containing the elements of order 3 and 5. Therefore H = G. 2

Lemma 9.20 Let S ∼= Ω−n (2) for n ≥ 8. Then H = G.

Proof. Let V be the natural n-dimensional module of G. Recall, that Out(G) =
Z2.

Suppose 3 ∈ π(H). By 4.16 and 8.21 there exists terminal elements t of order
3, which have dim[V, t] = 2. Therefore H does not contain a Sylow-3-subgroup
of G, so FS3-property fails. We conclude as in 8.8, that some y ∈ H, o(y) = 3
exists, such that CG(y) contains a subnormal subgroup isomorphic to Σ5. Let
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y ∈ H with o(z) = 3. By 5.5, O2(CG(y)) ∼= (GUm/2(2))′ × Ωε1
n−m(2) for

ε1 = (−1)1+m/2. Therefore a subnormal Alt5 exists only for n − m = 4,
with ε1 = −1.
In that case H covers the subgroup GUm/2(2) by 6.28, so H contains an ele-
ment, which is conjugate to x and H = G.
Therefore either H = G or FS3-property holds, so 3 6∈ π(H).

Suppose 5 ∈ π(H). Let x ∈ H be of order 5 and m := dim[V, x]. By 5.5,
CG(y) ∼= GUm/4(4)× Ωε2

n−m(2) for ε2 = (−1)1+m/4.
Suppose n−m ≥ 6. Then Ωε2

n−m(2) is passive, so by 6.28, 3 ∈ π(H).
If (n−m, ε2) = (4, +1) or (2,−1), for the same reason 3 ∈ π(H).
If m ≥ 12, then H covers the GUm/4(4)-factor too by 6.28 and 3 ∈ π(H).
The case m = 4 gives a contradiction as then CV (x) is a O+

4 (2)-space.
In case m = 8, [V, x] is a O+

8 (2)-space. Therefore CV (x) has to be an O−4 (2)-
space and S ∼= Ω−12(2). But from the centralizer structure we conclude, that
FS5-property holds. So H contains a Sylow-5-subgroup of G and there are
other elements of order 5 in H which imply 3 ∈ π(H).

If now 3 6∈ π(H) 63 5, we may use 4.31 for the connected components of ΓO,
which do not contain elements of order 3 or 5.
Then either n or n − 2 is a 2-power and the connected component contains
elements of order r for primes r dividing 2n/2 + 1 resp. 2n/2−1 + 1.
Let M be a maximal subgroup of G containing H. By [KL] we get M of type
O−n/2(4) or in class S, if n is a 2-power. If n− 2 is a 2-power, then M is of type
Sp2n−2(2), a parabolic of type 2n−2 : O−n−2(2) or M in class S.
Using 6.2 and Theorem 5 we get 3 ∈ π(H), 5 ∈ π(H) or M ∼= PGL2(p) for a
Fermat prime p. Then p = 2n/2+1 or p = 2n/2−1+1 and PGL2(p) has a faithful
representation in degree at least p− 1, but G has an n-dimensional module, so
2n/2−1 ≤ n, which gives contradictions: either p = 9 or n ≥ 10. 2

Lemma 9.21 Let S ∼= PSUn(2) for n ≥ 5. Then H = G.

Proof. Recall, that Out(S) ∼= Z2 or Σ3 depending on whether n is divisible by 3.

Suppose 3 ∈ π(H). By 4.13 and 8.21 there are terminal elements of order
3, so H does not contain a Sylow-3-subgroup of G, so FS3-property fails. So
there exists some x ∈ H, o(x) = 3, such that CG(x) contains a subnormal
Σ5

∼= PΓL2(4).
We use 5.7 for the description of centralizers of elements of order 3. In particular
we see, that no subnormal Σ5 exists, so FS3-property holds and H = G.

Suppose 5 ∈ π(H). By 5.9 and 8.12, property FS5 holds, so H contains a
Sylow-5-subgroup of G.
In particular H contains an element x of order 5, such that dim[V, x̃] = 4, for
x̃ some preimage of x in GUn(2) and V the natural GF(4)GUn(2)-module. For
this element, O3(CG(x)) 6= 1, so 3 ∈ π(H) by 6.7.

So suppose 3 6∈ π(H) 63 5. We use 4.27 for the connected components of ΓO,
which do not contain elements of order 3 or 5.
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Let x ∈ H, o(x) some odd prime r. By 8.9 we conclude, that a prime p exists
with either n = p or n − 1 = p and r | 2p+1

3 . Then H contains a torus of size
2p+1

3 , on which a subgroup of size p acts. By 8.22 then p ∈ π(H), but p is in
the connected component containing elements of order 3 and 5, so 3 ∈ π(H) or
5 ∈ π(H). 2

Lemma 9.22 Let S ∼= F4(2) , E6(2) or 2E6(2). Then H = G.

Proof. Case S ∼= F4(2): We use [ATLAS]. By inspection of centralizers of
3-elements we get FS3-property, so together with 4.20 and 8.21 we get H = G,
if 3 ∈ π(H).
If 5 ∈ π(H) we get 3 ∈ π(H): The centralizer of a 5A-element has structure
Z5 × Sp4(2), so we get elements of order 3 into H.
By 6.30 there remains only the case 17 ∈ π(H). Subgroups of order 17 are self
centralizing. Since we cannot exclude the existence of a PGL2(17), we count
involutions. We get |K| ≤ 96648112, as elements of class 2C invert elements of
order 17. On the other hand H ∼= Z17 : Z16, so |G : H| ≥ 219 · 36 · 52 · 72 · 13 =
6086629785600.

Case S ∼= 2E6(2). We use the character table of 2E6(2).3 and 2E6(2).2
provided by GAP.
We first establish the FS3-property:
Let y ∈ X = 2E6(2).3 be an element of order 3. We claim, that CX(y) does
not contain a subnormal Alt5 ∼= PSL2(4). We show this, using the list of
conjugacy classes and centralizer sizes of X, which we get from the character
table: If CG(y) contains no elements of order 5 or elements of order 11 or 19,
the statement is obvious:
Elements of order 11 or 19 do not commute with elements of order 5, but cannot
permute components of type Alt5 nontrivially.
Remains only one class of elements (class 3B), which contains a subgroup of
order 38. As elements of order 5 commute in G with 3-groups of size at most
33, we have FS3-property.
By 4.21 and 8.21, we have H = G, if 3 ∈ π(H).
If 5 ∈ π(H), the centralizer of a 5A-element is Z5× Alt8, which is contained in
a maximal subgroup Ω−10(2).
Therefore 5 ∈ π(H) implies 3 ∈ π(H).
By 6.31 there remains only the case 17 ∈ π(H). Subgroups of order 17 are self
centralizing in 2E6(2), but not in 2E6(2).3, so |G : G0| ≤ 2.
Let M be a maximal subgroup of G containing H. If O2(M) 6= 1, we have
either M parabolic or the centralizer of an outer involution. If M is a parabolic
subgroup, then 3 ∈ π(H) by 6.2 and Theorem 5. Of the two outer classes
of involutions only the class with centralizer F4(2) does not invert elements of
order 17. So M ∼= F4(2) and 3 ∈ π(H) by 6.2 and Theorem 5. So O2(M) = 1
and we may use 6.21.
This shows 3 ∈ π(H) and 19 ∈ π(H), so H = G.

Case S ∼= E6(2). Recall Out(S) ∼= Z2.
We show FS3-property, using the character table of E6(2) as provided in GAP.
Elements of class 3A and 3B commute with elements of order 31 resp. 17, while
elements of of order 31 and 17 do not commute with elements of order 5, so the
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centralizers of 3A and 3B-elements do not contain subnormal Alt5 = PSL2(4)-
subgroups.
Remains the centralizer of a 3C-Element, which has size 29 ·36 ·5 ·7. As the cen-
tralizer of a 5A-element has size 26 ·34 ·52, we get a contradiction: A component
of type PSL2(5) or SL2(5) would be normal in CS(3C), so a Sylow-3-subgroup
of size 36 acts on it. This gives a contradiction, as the kernel of this action has
size at most 34.
By 4.21 and 8.21, we have H = G, if 3 ∈ π(H).
If 5 ∈ π(H), then 3 ∈ π(H). From the existence of a Levi complement Ω+

10(2),
5.4 and the centralizer size we conclude, that CS(5A) ∼= Z5×U4(2), so 5 ∈ π(H)
implies 3 ∈ π(H).
By 6.31 there remains only the case 17 ∈ π(H), but this time 17 ∈ π(H) implies
3 ∈ π(H) by the centralizer size of 3 · 17. 2

Lemma 9.23 Let S ∼= E7(2) or E8(2). Then H = G.

Proof. Recall Out(S) = 1.
Suppose O2(H) 6= 1. Then H is contained in a maximal parabolic, so by 6.2,
some maximal parabolic P is a group to a subloop. We use Theorem 5 on it, to
get this subloop soluble. In particular H contains a Sylow-3-subgroup of P .
In 4.21 we showed the connectedness of a conjugacy class of elements of order 3,
which has a centralizer of type Z3 ×Ω+

12(2) resp. Z3 ×E7(2), so this conjugacy
class is terminal by 8.21. But any maximal parabolic subgroup contains such
elements, as these elements come from a PSL2(2), which is generated by root
subgroups Xα, X−α. Therefore H = G, if O2(H) 6= 1.

So O2(H) = 1 and we would like to use 6.21.
As centralizers of involutions are contained in maximal parabolics, we see from
[ATLAS], p. 219 and p.235, that 3 is a prime, for which we may apply 6.21. So
H contains a Sylow-3-subgroup of G.
Since we showed already, that there are terminal elements of order 3, H = G.

2

10 Conclusion

Let (G,H, K) be a faithful loop envelope to a Bol Loop X of exponent 2. By
Theorem 5 and Theorem 1 we have G ∼= D1×D2× ...×De with Di

∼= PGL2(qi)
for qi = 9 or a Fermat prime with qi ≥ 5. Furthermore Di ∩H =: Bi is a Borel
subgroup of Di. Let πi be the projection of G onto Di.

Lemma 10.1 (i) H =
e∏

i=1

Bi.

(ii) If k ∈ K and 1 ≤ i ≤ e, then πi(k) is either 1 or an involution from
PGL2(qi) outside PSL2(qi).
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Proof. We have B :=
e∏

i=1

Bi ≤ H by Theorem 5.

This implies (ii), as within Di only this type of involutions does not invert ele-
ments of odd order in Bi: Inner involutions of PSL2(qi) act nontrivially on the
Borel subgroup, field automorphisms are not present.

Let x ∈ H, o(x) = r for some odd prime r and x =
e∏

i=1

xi with xi ∈ Di.

Then for all i: xi ∈ H:

As G is a direct product, CG(x) =
e∏

i=1

CDi
(xi). If x ∈ H, o(x) = r is some

preimage of x, then CG(x) is a group to a subloop, which covers CG(x). As all
the xi are contained in Or(CG(x)), but O2,r(CG(x))·CH(x) = O2(CG(x))CH(x)
by 6.7, there are preimages in H of order r for those xi with o(xi) = r.
Let L ≤ G, with B ≤ L and B 6= L. Suppose L = H. We will create a contra-
diction:
Consider the projections πi(L). There exists some i with πi(L) > Bi. As Bi is
maximal in Di, πi(L) = Di. As we showed above, for all elements x ∈ H of odd
prime order, πj(x) ≤ H for all j. This implies Di ≤ L.
Let k ∈ K and consider πi(k). If πi(k) 6= 1, then πi(k) inverts some element of
odd prime order in Di by Baer-Suzuki. This gives a contradiction to 6.23. But if
πi(k) = 1 for all k ∈ K, then we cannot have G = 〈K〉. So L 6= H and B = H. 2

We can now prove, that O2(G) is a group to a subloop:

Lemma 10.2 O2(G)H∩K = O2(G)∩K and O2(G) = (O2(G)∩H)(O2(G)∩K).

Proof. By 10.1, O2(H) = 1. By 6.2 we have a subloop to O2(G)H, which
is soluble by 6.9. Therefore 〈K ∩ O2(G)H〉 ≤ O2(O2(G)H) = O2(G). This,
together with 6.2, implies the statement. 2

Now there are lots of other subloops: Let I = {1, 2, ..., e} and for J ⊆ I let
GJ the preimage of

∏
j∈J

Dj .

Lemma 10.3 For any J ⊆ I, GJ = (GJ ∩H)(GJ ∩K).

Proof. For J = ∅ this is 10.2 and for J = I this is the loop folder property.
Let x ∈ GJ and x = hk with h ∈ H, k ∈ K. Let l ∈ I−J . As πl(x) = 1, we can-
not have πl(k) 6= 1: Else by 10.1(ii), πl(k) is some involution of PGL2(ql) outside
PSL2(ql). But πl(H) = Bl and Bl contains only involutions from PSL2(ql).
So πl(k) = 1, thus πl(h) = 1 too. This implies the statement. 2

Our next goal is to produce subloops to certain Sylow-2-subgroups P of G.
Therefore we have to calculate |P ∩K|.

Lemma 10.4 For J ⊆ I, G has a unique conjugacy class CJ with the property:
For t ∈ CJ : πi(t) = 1 for i 6∈ J and πi(t) is some involution of PGL2(qi) outside
PSL2(qi) for i ∈ J . Moreover

|CJ | =
∏

j∈J

qj
qj − 1

2
.
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Proof. This is immediate from the structure of G. Recall, that for q odd, the
centralizer of an involution in PGL2(q) is the normalizer of a torus of size either
q− 1 or q +1. In our case q− 1 is divisible by 4, so inner involutions of PSL2(q)
have a centralizer of size 2(q − 1) while outer involutions have centralizer size
2(q + 1). 2

Let t ∈ CJ , We denote with O2(G)t the full preimage of t in G. By the
previous lemma, the number nJ := |O2(G)t∩K| is well defined and independent
of the choice of t ∈ CJ . Recall n∅ = |O2(G)∩K| = |O2(G) : O2(G)∩H| by 10.2

Lemma 10.5

nJ =
n∅ · 2|J|∏

j∈J

(qj − 1)

Proof. As GJ is a subloop by 10.3, we have |GJ : GJ ∩ H| = |GJ ∩ K|. As
|GJ : GJ ∩H| = |GJ : GJ ∩H||O2(G) : O2(G) ∩H|, we have

|GJ : GJ ∩H| = n∅
∏

j∈J

(qj + 1).

On the other hand
|GJ ∩K| =

∑

L⊆J

nL|CL|.

We therefore get a system of equations for the nJ . This is a special case of 6.20.
Now the statement can be shown by induction on |J |. For example for |J | = 1
we get the equation n∅(qj + 1) = n∅ + n{j} · qj

qj−1
2 , which gives n{j} = 2n∅

qj−1 .
In general we have:

n∅
∏

j∈J

(qj + 1) =
∑

L⊆J

nL

∏

j∈L

qj
qj − 1

2
.

For L ⊆ J , L 6= J we have the formula for nL by induction. On the other hand
for any numbers qj , j ∈ J the equation

∏

j∈J

(qj + 1) =
∑

L⊆J

∏

j∈L

qj

holds. After some calculation this gives exactly the formula for nJ . 2

Lemma 10.6 Let P ∈ Syl2(G). Then |P ∩K| = 2en∅ = |G : H|2 = |X|2.
If P ∩O2(G)H ∈ Syl2(O2(G)H), then P = (P ∩H)(P ∩K).

Proof. We choose P ∈ Syl2(G) with P ∩O2(G)H ∈ Syl2(O2(G)H). As K is a
G-normal subset, |P ∩K| is independent of the choice of P .
Let i ∈ I and consider Pi = πi(P ) ∈ Syl2(Di). Then Pi is a dihedral group,
Pi ∩H is a cyclical group of size qi− 1. The other coset of Pi ∩H in Pi consists
entirely of involutions, half of them involutions in PSL2(qi) and half of them
outside of PSL2(qi). As all involutions outside of PSL2(qi) in PGL2(qi) are
conjugate, we have

πi(P ) ∩K = 1 +
qi − 1

2
,
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the summand 1 coming from the 1 ∈ K. This shows for J ⊆ I:

|P ∩ CJ | =
∏

j∈J

qj − 1
2

.

As
|P ∩K| =

∑

J⊆I

nJ |P ∩ CJ |,

this gives

|P ∩K| =
∑

J⊆I

n∅2|J|∏
j∈J

(qj − 1)

∏

j∈J

qj − 1
2

= 2|I|n∅ = 2en∅.

By Dedekind we have O2(G)(P ∩H) = P ∩O2(G)H. This gives

|O2(G)||P ∩H|
|O2(G) ∩ P ∩H| = |P ∩O2(G)H|.

By definition |O2(G) : O2(G)∩H| = n∅ and |P ∩O2(G)H| = |G|2
|G:O2(G)H|2 = |G|2

2e

by assumption. This gives |P ∩ H| = |G|2
2en∅

and |P : P ∩ H| = 2en∅ =
|P ∩ K|, so P is a group to a subloop by 6.2. Finally |X|2 = |G : H|2 =
|G : O2(G)H|2|O2(G)H : H|2 = 2e|O2(G) ∩K| = 2en∅. 2

As a consequence we get an analogue of Lagrange’s Theorem:

Corollary 10.7 Let Y ≤ X be a subloop. Then |Y | is a divisor of |X|.

Proof. By 10.6, we have |Y |2 ≤ |X|2: To Y a subloop of size |Y |2 exists, which
is soluble by 6.9. To this subloop a 2-group U ≤ G exists with |U ∩K| = |Y |2.
As |P ∩K| = |X|2 for any Sylow-2-subgroup of G, |Y |2 is a divisor of |X|2.

Suppose Y is nonsoluble, so |Y |2′ 6= 1. To Y some subgroup U ≤ G exists
with U = (U ∩ H)(U ∩ K), U = 〈U ∩ K〉 and |Y | = |U : U ∩ H| = |U ∩ K|.
We may use Theorem 5 on U . The map θ : U → G : u 7→ O2(G)u gives a
homomorphism from U into G and an injection from U/(O2(U) ∩ O2(G)) into
G/O2(G).
But elements of odd order from U ∩H map to elements of odd order in H.
This shows, that components of type Alt5 in U/O2(U) cannot project into com-
ponents of type Alt6 in G, so components of U/O2(U) project surjectively into
components of G/O2(G). Recall, that |U : U ∩H|2′ is the product of |Cj :Cj∩H|

2

for Cj the components of U/O2(U). Similarly |G : H|2′ =
e∏

i=1

qi+1
2 . By the

injection map, which preserves H-containement, therefore |Y |2′ = |U : U ∩H|2′
divides |G : H|2′ = |X|2′ . 2

We will show, that the subloops of size |X|2 have some nice properties, but
need before some facts about PGL2(q):
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Lemma 10.8 Let Z ∼= PGL2(q) with q = 9 or q ≥ 5 a Fermat prime. Let B a
Borel subgroup of G and C the class of involutions outside PSL2(q).

(i) B acts in two orbits on Syl2(Z): one orbit of size q and one of size |B|
2 .

(ii) If P ∈ Syl2(Z), then either P ∩B ∈ Syl2(B) or |P ∩B| = 2.

(iii) Let D = 〈A〉 for A ⊆ {1} ∪ C with D = O2(D) and D = (D ∩B)A. Then
a Q ∈ Syl2(Z) exists with D ≤ Q and Q ∩B ∈ Syl2(B).

Proof. Notice, that |Syl2(B)| = q. So for T ∈ Syl2(B), the B-conjugation ac-
tion on NZ(T ) gives one orbit of length q. Recall, that a subgroup T ∈ Syl2(B)
is the normalizer of a Cartan-subgroup: A 2-point stabilizer in the 3-transitive
action of Z on q + 1 points.
As B is a point stabilizer, B acts 2-transitively on the q other points. In particu-
lar B acts transitively on the q(q−1)

2 2-point-stabilizers, which are not subgroups
of B. Therefore B acts transitively on the remaining q(q−1)

2 Sylow-2-subgroups,
so (i) holds.
(ii) is a consequence of (i), as P ∩B is the orbit stabilizer.
For (iii) let D ≤ P with P ∈ Syl2(G) and assume |P ∩ B| = 2. Otherwise we
may choose Q = P .
As P is dihedral, D is dihedral and |D ∩ B| ≤ |P ∩ B| = 2. Notice that
P ∩B 6= Z(P ), as else |P ∩B| > 2.
Let P ∩ B = 〈i〉 and suppose |D| > 4. Then i is a PSL2(q)-involution, which
has a conjugate id ∈ D with id 6= i, d ∈ D. This contradicts D ⊆ 〈i〉A = A∪ iA,
as id 6∈ (A ∪ iA). We conclude |D| ≤ 4.
If D = 1, the statement is trivial.
If |D| = 2, let c ∈ D ∩ C. Then c fixes B ∩ P , so c ∈ NZ(CB(B ∩ P ))) =: Q ∈
Syl2(Z).
If |D| = 4, then D ∩ C = {c1, c2} with c1c2 ∈ B ∩ P . Again D ≤ NZ(CB(B ∩
P ))) =: Q ∈ Syl2(Z). 2

Lemma 10.9 Let U ≤ G with U = O2(U), U = 〈U ∩K〉 and U = (U ∩H)(U ∩
K).
Then a Sylow-2-subgroup Q of G exists with U ≤ Q and Q ∩ O2(G)H ∈
Syl2(O2(G)H).

Proof. For fixed i ∈ I let Z := πi(G), D := πi(U),B := πi(H) and A :=
πi(U ∩ K) . Then Z,B,A, D satisfy the prerequisites of 10.8 (iii), as C is
πi(K)−{1}: By the homomorphism property of πi: πi(U) = πi(U∩H)πi(U∩K).
But πi(U ∩H) ≤ πi(U) ∩ πi(H) = D ∩B.
By 10.8(iii) then πi(U) ≤ Qi for some Qi ∈ Syl2(πi(G)) with Qi ∩ H ∈
Syl2(πi(H)).
We get such a Qi for all i ∈ I.
If we set Q as the preimage of

∏
i∈I

Qi, we have U ≤ Q with Q ∩ O2(G)H ∈
Syl2(O2(G)H) 2

We get an analogue of Sylow’s Theorem:
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Corollary 10.10 For any soluble subloop Y ≤ X some subloop Z ≤ X exists
with:

(i) Y ≤ Z and |Z| = |X|2.
(ii) All subloops of X of size |X|2 are conjugate under H, the group of inner

automorphisms.

Proof. For (i) observe, that to Y a subgroup U exists with U = 〈U ∩ K〉,
U = (U ∩H)(U ∩K) and the subloop to U is exactly Y . By 10.9, there exists
some Q ∈ Syl2(G) with U ≤ Q and Q ∩H ∈ Syl2(H). By 10.6, Q is a group to
a subloop.

For (ii) we use the fact, that for P ∈ Syl2(G): P =
e∏

i=1

πi(P ) and apply 10.8(ii)

on B := πi(H) and Z := πi(G). 2

The structure of groups to Bol loops of exponent 2 is now quite well under-
stood. Next to do: Bruck loops of 2-power-exponent, as indicated in [Asch] and
[AKP].
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