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1 Introdution

A Moufang set is a set X with |X| ≥ 3, together with a collection of groups
(Ux)x∈X acting on X (called root groups), such that each Ux fixes x and acts
regularly on X\{x}, and such that Ugx = Uxg for each x ∈ X and each g ∈ G† :=
〈Uy | y ∈ X〉, the little projective group of the Moufang set. It is immediate from
the definition that this group acts doubly transitively on X.

Moufang sets have been introduced by Tits in order to describe the absolutely
simple algebraic groups of relative rank one [?]. The concept of a Moufang set
is strongly related to the concept of a split BN-pair of rank one. Notice that
it is also closely related to the concept of an abstract rank one group due to
Timmesfeld [?].

As usual we choose two different elements in X, denote them by ∞ and 0
and set U := U∞. Then the Moufang set is completely determined by U and
some element τ in G† which interchanges ∞ and 0. Therefore, we denote the
Moufang set also by M(U, τ).

The finite Moufang sets have already been studied since long time using a
different language. More precisely the finite Moufang sets have already been
classified by Hering, Kantor and Seitz [?]. Their classification uses difficult and
long papers as [?] and [?]. It seems to us that the concept of a Moufang set is
the appropiate language to carry out the determination of these groups.

De Medts and Segev gave a new proof using this language under the further
condition that the Moufang set is special – for the definition of special see
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the next section. Our goal of this paper is to extend their proof to the finite
Zassenhaus Moufang sets and thereby giving a partial answer to Question 3
posed by Segev in [?]. A Moufang set is Zassenhaus if G† is a Zassenhaus
group, i.e. if in G† there is a non-identy element which fixes two elements in X,
but only the identity fixes three elements.

The finite Zassenhaus Moufang sets had been determined by Feit ([?]), Ito
[?] and Suzuki [?] in a long proof. There are two families of examples:

M(q): This Moufang set is just the projective line and its little projective group
is PSL(2, q) with q a prime power.

MSuz(q): This Moufang set is the natural domain for the Suzuki group Suz(q)
with q = 22n+1, n ∈ N. In this paper we give an elementary and short proof of

the classification of the finite Zassenhaus Moufang sets with root groups of even
order. The latter implies that U contains some involution. We distinguish the
two cases that U contains a special involution or not.

Theorem 1.1 Let M(U, τ) be a finite Zassenhaus Moufang set such that U is
of even order. If there is special involution in U , then M(U, τ) = M(q) and
G† ∼= PSL2(q) with q = |U | = 2m for some m in N.

Theorem 1.2 Let M(U, τ) be a finite Zassenhaus Moufang set such that U is
of even order. If there is no special involution in U , then M(U, τ) = MSuz(q)
with q2 = |U |, q an odd power of 2.

As a corollary we obtain

Corollary 1.3 Let M(U, τ) be a finite Zassenhaus Moufang sets such that U
is of even order. Then one of the following holds:

(a) U is abelian, M(U, τ) = M(q) and G† ∼= PSL2(q) for some even prime
power q.

(b) U is a Suzuki 2-group, M(U, τ) = MSuz(q) and G† = Suz(q) with q an
odd power of 2.

Notice that this is one of the first papers discussing not only special but also
non-special Moufang sets.

Notice also that the distinction we make in our main theorems has in fact
also be made by Suzuki without using the language of Moufang sets. Our proof
differs heavily from Suzuki’s - in particular in the case that there is a special
involution in U . There is also some hope that some of our arguments can be
extended to the case of infinite Zassenhaus Moufang sets.

The proof of Theorem ?? only uses the language of Moufang sets. The aim
is to show that U is an elementary abelian 2-group and then to quote [?] or [?].

The proof of Theorem ?? is at some places a translation of the proof of
Suzuki in the language of Moufang sets. We had some difficulties to prove that
U is p-group. There we quote parts of the proof given by Feit [?] and presented
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in [?]. Moreover, we have to refer to the classification of Suzuki 2-groups in [?].
The rest of the proof is pure Moufang set theory. At some parts it is shorter
and more lucid than the original proof of Suzuki in [?]. For example, in ?? we
don’t have to compute the class number of the group which turns out to be the
Suzuki group.

The paper is organized as follows:

2 Notation

We start with the basic notation. If M(U, τ) is a Moufang set, then we can
recover X by setting

X := U ∪ {∞}.

Our notation is fairly standard and can for instance be found in [?].

(a) For a ∈ U let αa be the map in Sym(X) defined by ∞αa = ∞ and
bαa = b+ a for b ∈ U.

(b) Set U∞ = {αa | a ∈ U} and for a ∈ U : Ua := Uταa∞

(c) For a ∈ U# := U \ {0}, let µa be the unique element in U0αaU0 with
∞µa = 0 and 0µa =∞. One has µ−1

a = µ−a and, if M(U, τ) = M(U, τ−1),
then µaτ = µτ−a for all a ∈ U#. Especially, one has µaµb = µµb−a for b ∈ U#

([?], 4.3.1). . .

(d) Set H := 〈µaµb | a, b ∈ U#〉 (the Hua subgroup of M(U, τ)). Then
H = G†0,∞, the stabilizer of 0 and ∞ in G†.

As τ interchanges 0 and∞, it acts on U#. Therefore, the following definition
makes sense.

(e) For a ∈ U# set ∼ a := (−aτ−1)τ . One easily computes ∼ (∼ a) = a. By
3.10 in [?] one has ∼ a = −(−a)µa. Especially, the element ∼ a doesn’t
depend on the choice of τ .

3 Preliminary observations

In the following section, M(U, τ) is an arbitrary, not necessarily finite Moufang
set. We will repeatedly use the following equations (see [?], 6.1.1)

(3.1) If a, b ∈ U# with a 6= b, then the element c := (aτ−1 − bτ−1)τ doesn’t
depend on τ . More precisely, c = (a− b)µb+ ∼ b.

(3.2) One has µc = µ−bµb−aµa.
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3.1 Some properties of involutions in a root group

Lemma 3.1 If a is an involution in U#, then:

(a) One has µα−∼aa = αµaa . Especially, µa is an involution conjugate to αa.

(b) The element ∼ a is the unique fixed point of µa.

(c) It is ∼ − ∼ a = − ∼ a.

Proof.

(a) By 4.3.1 in [?] one has µa = α−∼aµaαaµaα∼a = αµaα∼aa .

(b) Since ∞ is the unique fixed point of αa, ∞µaα∼a =∼ a is the unique fixed
point of µa = αµa∼aa .

(c) By definition, ∼ (− ∼ a) = −(∼ a)µ∼a = −(∼ a)µa = − ∼ a.

�

Lemma 3.2 If a, b ∈ U are involutions with µa = µb, then a = b.

Proof. If µa = µb, then by ?? ∼ a =∼ b and thus a = b. �

Lemma 3.3 Let M(U, τ) be a Moufang set such that U has finite even order.
Then µaµb has odd order for all involutions a, b ∈ U . Hence all involutions in
U are H-conjugate.

Proof. We prove the first statement by induction on |U |. Suppose a, b ∈ U are
involutions in U such that µaµb has even order n. Set t := (µaµb)

n
2 . Then t ∈ H

and t centralizes µa and µb. It follows that t centralizes a and b as well. Hence
a, b ∈ V := CU (t) which is a root group of U ([?], 6.2.3). By 6.2.2 of the same
paper on can choose τ in a such way that M(V, ρ) is a Moufang set and ρ is the
restriction of τ on V ∪{∞}. Since t 6= 1, V is a proper subgroup of U and hence
we can apply induction. Hence there is an odd number k such that (µaµb)k

centralizes V . Thus there is a power h of µaµb such that h2|V = µaµb|V .
Therefore µah

2|V # = µha |V # = µb|V #. Using ?? for M(V, ρ), this implies
ah = b. But then we get µha = µah = µb and thus h−2µaµb = µhaµb = 1. There-
fore h2 = µaµb. Since h is a power of µaµb, the element µaµb must have odd
order, a contradiction. Hence we have proved the first statement. The second
follows immediately since we have shown that µa and µb are H-conjugate for
all involutions a, b ∈ U which together with ?? implies that a and b are H-
conjugate as well. �

We remark here that in the infinite case it is possible that there is more
than one H-orbit of involutions in a root group. This happens for example in
M(K) if charK = 2, K not perfect, or in MSuz(K,L, θ) for θ not surjective
(see Section 6).
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Lemma 3.4 Let M(U, τ) be a Moufang set with Hua subgroup H and let V be
a subgroup of U . Suppose that

(a) there is an abelian subgroup K of H such that all elements in V # are
K-conjugate.

(b) hµa = h−1 for all a ∈ V #, h ∈ K.

Then µb−a = µaµ−a−bµ−b for all a, b ∈ V # with a 6= b.

Proof. There exist elements g, h ∈ K with ah = b, ag = b− a. One computes

(aµ−a−bµ−b)µa = (aµ−a−ahµ−ah)µa = (aµ−a−ahµh−a)µa = (aµ−a−ah−1µ−a)µa =

(a−ah−1)µah−1+ ∼ ah−1 = (a−ah−1)hµah−1+ ∼ ah−1 = ((ah−a)µa+ ∼ a)h−1

= (agµa+ ∼ a)h−1 = (aµag−1+ ∼ a)h−1 = (aµa+ ∼ ag)g−1h−1.

By (3.2), one has

µaµa+∼ag = µgh(aµa+∼ag)g−1h−1 = (µ(aµ−a−ah−1µ−a)µa)gh = (µ−ah−1µah−1−aµa)gh.

Hence µaµa+∼ag inverts every element in K. We get

hg2hµaµa+∼ag = hgµaµa+∼agg
−1h−1 = µ(aµa+∼ag)g−1h−1 = µ(aµa−ah−1µa)µa

= µ−ah−1µah−1−aµa = hµ−ah
−1µ−agh−1µa = h2µ−ahg

−1µ−agh
−1µa =

h2µ−ah
2g−2µ−aµa = g2µ−a,

and so

µ−a = h2µaµa+∼ag = µ(aµa+∼ag)h−1 = µg(aµa+∼ag)h−1g−1 =

µg(aµ−a−bµ−b)µa = µµagbµ−b−aµ−a = µg
−1µa
aµ−a−bµ−b .

This implies finally

µbµ−b−aµ−a = µµag−a = µg−a = µ−ag = µa−b.

Hence we get µaµ−a−bµ−b = µb−a. �

3.2 Some properties of special elements

In this section we prove facts on Moufang sets whose root group contains a
special element.

Definition 3.5 (a) A Moufang set M(U, τ) is called special if (−a)τ = −(aτ)
for all a ∈ U# holds.

(b) An element a ∈ U# is called special if (−a)τ−1 = −(aτ−1).
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It is very easy to see that M(U, τ) is special iff all elements in U# are special:
If M(U, τ) is special and a ∈ Uτ , then

(−a)τ−1 = (−(aτ−1τ))τ−1 = (−(aτ−1)τ)τ−1 = (−(aτ−1))ττ−1 = −aτ−1

and thus a is special. If all elements in U# are special, then for a ∈ U# one
gets

(−a)τ = (−(aτ)τ−1)τ = (−(aτ))τ−1τ = −aτ

and hence M(U, τ) is special.
It might surprise that we demand (−a)τ−1 = −(aτ−1) and not (−a)τ =

−(aτ) for the definition of a special element. But it may happen that M(U, τ) =
M(U, ρ) and a ∈ U# with (−a)τ = −aτ but (−a)ρ 6= −aρ. This happens for
example in the Ree-Tits Moufang sets. Moreover, (−a)τ = −(aτ) is in general
not equivalent to one of the statements in the following lemma.

Lemma 3.6 For a ∈ U# the following statements are equivalent.

(a) a is special.

(b) ∼ a = −a.

(c) (−a)µa = a.

(d) aµ−a = −a.

(e) If M(U, τ) = M(U, ρ), then (−a)ρ−1 = −(aρ−1).

(f) There is an element ρ ∈ SymX with M(U, ρ) = M(U, τ) such that −(aρ−1) =
(−a)ρ−1.

(g) (−a)µa = −(aµa).

Proof.

”(a)→ (b)” By definition, one has ∼ a = (−(aτ−1)τ = ((−a)τ−1)τ = −a.

”(b)→ (c)” By 4.3.1.(6) in [?], one has −a =∼ a = −(−a)µa and hence a = (−a)µa.

”(c)↔ (d)” This is clear since µ−1
a = µ−a.

”(c)→ (e)” By 3.5 and 4.4.1 (1) in [?] µaρ−1 induces and automorphism of U . One
has aρ−1 = (−a)µaρ−1 and thus −aρ−1 = aµaρ

−1 = (−a)ρ−1.

”(e)→ (f)” This is trivial.

”(f)→ (g)” Again by 3.5 and 4.4.1 (1) in [?] ρµa induces an automorphism of U .
Therefore, one has (−a)µa = (−a)ρ−1ρµa = ((−a)ρ−1)ρµa = (−aρ−1)ρµa =
−(aρ−1)ρµa = −(aµa).

”(g)→ (a)” By 4.3.1 (1) in [?], µa = τ−1ha where ha is the Hua map associated to a
and hence induces an automorphism on U . Thus −(aτ−1) = −a(µah−1

a ) =
(−(aµa))h−1

a = (−a)µah−1
a = (−a)τ−1.
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Lemma 3.7 (a) An element a ∈ U# is special if and only if −a is special.

(b) If a ∈ U is an involution, then a is special if and only if aτ−1 is again an
involution.

(c) If a ∈ Z(U)# is special, then aρ−1 ∈ Z(U) for all ρ ∈ SymX with
0ρ =∞,∞ρ = 0 and M(U, τ) = M(U, ρ).

Proof. The first statement follows from the fact that (c) and (d) are equiv-
alent, the second is true by definiton. If a ∈ Z(U)# is special and ρ as
above, then µaρ

−1 induces an automorphism of U . Since a = (−a)µa one
gets aρ−1 = (−a)µaρ−1 ∈ Z(U). �

Lemma 3.8 If a ∈ U# is special, then aµa = −a = aµ−a.

Proof. By ?? (c) and (g) −(aµa) = (−a)µa = a and thus aµa = −a. The
second equation holds since −a is again special. �

It is not clear if aµa = −a implies that a is special.
The following lemma implies that if the Moufang set is not special, then H

is “linear” in two ways on U .

Lemma 3.9 For all a ∈ U# and all h ∈ H, one has ∼ (ah) = (∼ a)h.

Proof. By 4.3.1(6) in [?], ∼ (ah) = −(−ah)µah = −(−ah)µha . By 4.3.1(4) of
[?] the latter equals −(−ah)h−1µah = −(−a)µah = (∼ a)h. �
.

Lemma 3.10 If a ∈ U is special and h ∈ H, then ah is special.

Proof. If a is special, then ∼ (ah) = (∼ a)h = (−a)h = −ah, hence ah is
special. �

Lemma 3.11 An element a ∈ U# is special if and only if there is an element
b ∈ U0 such that µa = bαab.

Proof. There exist uniquely determined elements b′, b′′ ∈ U0 such µa = b′αab
′′.

By 4.1.1 in [?], these elements are b′ = ατ(−a)τ−1 and b′′ = ατ−(aτ−1). Thus a is
special if and only if these elements are equal. �

For all a ∈ U#, we set

Va := {b ∈ U# | µa = µb}.
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Then U# is a disjoint union of the sets Va where a runs through U#. Notice that
− ∼ a and ∼ −a are in Va for all a ∈ U#: by ??(c) µ−∼a = µ(−a)µa = µµaa = µa,
so µ−∼a = µa. In this equation replace a by ∼ a and get µ−a = µ∼a (clearly,
∼∼ a = a). If we replace a by−a in the latter equation, then we get µa = µ∼−a.

We will frequently use the following lemma.

Lemma 3.12 If µa is an involution, then ∼ − ∼ a = − ∼ −a.

Proof. By 2.3 in [?], one has aµa =∼ − ∼ a and aµ−a = − ∼ −a. Thus the
claim follows. �

The following lemma collects some useful information about Va for a special
central element a. We will need only part (a)-(d), but the other parts are
interesting too.

Lemma 3.13 Suppose that a ∈ Z(U)# is special, that µa = µ−a = µ−1
a and

that b ∈ Va \ {a,−a}. Then the follwing holds.

(a) −(b− a)µa + (a− b)µa =∼ −b+ a− ∼ b.

(b) −(a− b)µa + (b− a)µa = b+ a · 2.

(c) −a · 3 =∼ −b− ∼ b+ b = − ∼ b+ b+ ∼ −b = b− ∼ b+ ∼ −b.

(d) −((−a)τ−1 − (−b)τ−1)τ + (aτ−1 − bτ−1)τ = a and (aτ−1 − bτ−1)τ −
((−a)τ−1 − (−b)τ−1)τ = a .

(e) (a− b)τ − (−a− ∼ b)τ = aτ .

(f) −(−bτ−1 − aτ−1)τ + ((−b)τ−1 − aτ−1)τ = − ∼ b− a.

(g) −(−a− b)τ + (∼ b− a)τ = − ∼ (bτ)− aτ .

(h) −(−a− b)µa + (∼ b− a)µa =∼ b+ a.

(i) a and −a are the only special elements in Va.

Proof. (a) We have by (3.1)

(a− b)µa+ ∼ b = (aτ−1 − bτ−1)τ = (−bτ−1 − (−a)τ−1)τ =

((∼ b)τ−1 − (−a)τ−1)τ = (∼ b+ a)µa + a,

hence
(∗) − (a+ ∼ b)µa + (a− b)µa = a− ∼ b.

Furthermore

(∗∗) (∼ b+ a)µa = (−(−b)µa + (−a)µa)µa = ((−a)µa − (−b)µa)µa =

(b− a)µa+ ∼ −b = −[− ∼ −b− (b− a)µa].
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If we set (∗∗) in (∗), the claim follows.
(b) This is similar to (a): We have again by (3.1)

(b− a)µa = (bτ−1 − aτ−1)τ + a = ((−a)τ−1 −−bτ−1)τ + a =

((−a)τ−1 − (∼ b)τ−1)τ + a = (−a− ∼ b)µa + b+ a,

hence
−(−a− ∼ b)µa + (b− a)µa = b+ a.

Furthermore

(−a− ∼ b)µa = ((−b)µa − (−a)µa)µa = (−b+ a)µa + a = (a− b)µa + a.

Thus the claim follows.
(c) By (a) and (b),

∼ −b+ a− ∼ b = −a · 2− b.

Hence
∼ −b− ∼ b+ b = −a · 3.

We get the other equations if we conjugate by − ∼ −b and b.
(d) We have

(a+ b)µa = (aτ−1 − (−b)τ−1)τ− ∼ −b.

By part (a), we get

∼ −b+ a− ∼ b = −(−a− (−b))µa + (a− b)µa =

∼ −b− ((−a)τ−1 − (−b)τ−1)τ + (aτ−1 − bτ−1)τ− ∼ b.

Therefore, we get the first equation. The second follows since a is central and
we can conjugate with −(aτ−1 − bτ−1)τ .

(e) follows by (d) and by replacing b with bτ and a with aτ .
(f) We have

(−aτ−1 − bτ−1)τ = (−a− b)µa+ ∼ b = −(− ∼ b− (−a− b)µa)

and
((−b)τ−1 − aτ−1)τ = (−a− b)µa − a.

Subtracting yields the result.
(g) follows by taking aτ instead a and bτ of b.
(h) follows by taking τ = µa and by

− ∼ (bµa) = − ∼ − ∼ −b =∼ − ∼∼ −b =∼ b

by ??.
(i) If b is special, then ∼ b = −b and hence a = b by (g). �

9



Proposition 3.14 If a and b are as in ??, then µa = µa−bµa·5+bµa−b. Espe-
cially, if a is an involution, then µa = µa+b.

Proof. Set x := aµa − bµa and y := −aµa − (−b)µa. Then µa−b = µx and
µy = µ−a+b = µ−1

a−b by [?], 2.6. Furthermore, (3.2) tells us

µc = µ−yµy−xµx

with c = (xµa − yµa)µa. We have c = aµa = −a by ?? (d) with τ = µa, and

y − x = −aµa − (−b)µa − aµa + bµa = a+ ∼ b+ a− ∼ −b =

a · 2− (∼ −b− ∼ b) = a · 2− (−a · 3− b) = a · 5 + b

by ?? (c). Hence µa = µa−bµa·5+bµa−b. If a is an involution, then a − b =
−(a + b) and hence µa = µa−bµa+bµ

−1
a+b = µa−b. As µa is an involution by

??(a), it follows that µa = µa−b = µa+b �

Lemma 3.15 If a ∈ Z(U)# is a special involution and x ∈ U# with µx+a =
µx = µ−x, then µx = µa.

Proof. We have ((x+ a)τ−1 − xτ−1)τ = aµx+ ∼ x and thus

µaµx = µxµaµx = µxµaµx+a = µaµx+∼x.

Now aµx = aµaµx is again a special involution in Z(U). Thus by ??

µaµx = µaµx+∼x+aµx = µ∼x = µx.

Hence µxµaµx = µx and therefore µa = µx. �

4 Zassenhaus Moufang sets

Definition 4.1 A proper Moufang set M(U, τ) is called a Zassenhaus Moufang
set if G†0,∞,a = 1 for all a ∈ U#, or equivalently, if CU (h) = 1 for all h ∈ H∗.

From now on, we assume that M(U, τ) is a Zassenhaus Moufang set such
that the order of U is finite.

Lemma 4.2 (a) The root group U is nilpotent.

(b) If U is abelian, then M(U, τ) ∼= M(Fq) for q = |U | and hence G† ∼=
PSL2(q).

(c) G† is simple.

Proof.
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(a) Since M(U, τ) is proper, H 6= 1. Thus UH is a Frobenius group with
Frobenius kernel U . By Thompson’s theorem, U is nilpotent.

(b) By the main theorem of [?], M(U, τ) is special. Thus the claim follows by
[?] and [?].

(c) Suppose 1 < M is a normal subgroup of G†. Since G† acts primitively on
X, M is transitive on X and thus on the set of root groups. By definition
G† is generated by the root groups and hence one has G† = MU∞ and
G†/M ∼= U∞/(M ∩ U∞). If M < G†, then U∞ is not contained in (G†)′

since U/(U ∩M) is nilpotent. But since H acts without fixed point on U ,
one has U = [U,H] ≤ (G†)′. It follows G† = M .

�

Lemma 4.3 If H has even order, then M(U, τ) ∼= M(Fq).

Proof.If H has even order, then H contains an involution t. Since t has no
fixed points on U , t must invert every element in U . This implies U abelian and
hence M(U, τ) ∼= M(Fq). �

Lemma 4.4 If |U | ≡ 1 mod 4, then M(U, τ) ∼= M(Fq) for q = |U |.

Proof. If |U | ≡ 1 mod 4 and H has odd order, then |G†| = (|U |+ 1)|U ||H| ≡
2 mod 4. Hence G† possesses a normal subgroup L of index 2. Since |L| is
odd, L cannot act transitively on X. But this is a contradiction since G† acts
2-transitively and therefore primitively on X. �

Lemma 4.5 If H is odd, then there is an unique conjugacy class of involutions
in G†.

Proof. Let t be an involution. Since G† acts 2-transitively on X, we can assume
t ∈ N . For every a ∈ U#, the element tµa ∈ H has odd order. Hence t and µa
are conjugate. �

4.1 Zassenhaus Moufang sets with |U | even

From now on, we assume that the order of U is even.

Lemma 4.6 (a) Every involution in U is contained in Z(U).

(b) For every a ∈ U# there is exactly one involution b ∈ U with µa = µb.

(c) H is cyclic.
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Proof. (a) This is clear since U is nilpotent and all involutions are H-conjugate
by ??.

(b) This follows since |H| = |{µx | x ∈ U#, x involution }| ≤ |{µx | x ∈
U#}| ≤ |N | − |H| = |H|.

(c) If a is an involution, then ?? and ?? imply that N contains exactly |H|
conjugates of µa. Thus CH(µa) = 1 and therefore H is abelian. Since H acts
freely on U , this means that H is cyclic. �

Since all involutions in U areH-conjugate, either all involutions are special or
no involution is special. We first treat the case that all involutions are special
and show that this implies M(U, τ) special and hence G† ∼= (P )SL2(q) with
q = |U | a power of 2.

Proof of Theorem ?? We show that U is an elementary-abelian 2-group,
as this then implies that M(U, τ) is special, see [?]. Since H is cyclic by ??
(c), the main theorem in [?] then yields that M(U, τ) ∼= M(Fq) with q = |U |
(alternatively, we can apply [?]).

We first note that U contains more than one involution since H acts regularly
on the set of involutions and H 6= 1 since M(U, τ) is proper.

By assumption U contains a special involution. By ??(a) a is contained in
Z(U) and by ?? every involution in U is contained in Z(U) and is conjugate to
a under H. Suppose U contains an element b of order 4. Let a be the unique
involution with µa = µb. Then µb = µ−b = µb+b·2, hence a = b · 2 by ??. If
t is an involution distinct from a, then again (b + t) · 2 = b · 2 = a, as t is in
Z(U), hence µb+t = µa = µb and so µa = µb = µt by ?? and a = t by ??,
a contradiction. Hence if V is the unique Sylow 2-subgroup of U , then V is
elementary abelian.

If U 6= V , then there is an element b ∈ Z(U) \ V . Let a be the unique
involution in Vb. By ??, a = − ∼ b+ ∼ −b + b and hence a − b = − ∼ b+ ∼
−b = (−b)µa − bµa by 4.3.1 (6) of [?]. Hence by [?], 2.5 (1) and ??

µb·2 = µ−b·2 = µ(−b)µa−bµa = µa−b = µb.

But again, if t ∈ U is an involution distinct from a, then µb+t = µ(b+t)·2 =
µb·2 = µb, hence µa = µb = µt By ??, this is a contradiction. �

5 Suzuki Moufang Sets

5.1 Suzuki 2-Groups

Definition 5.1 (compare [?], p. 299) A finite group G is called a Suzuki 2-
group if the following hold:

(a) G is a nonabelian 2-group.

(b) G has more than one involution.

12



(c) There is a soluble subgroup of AutG which permutes the involutions tran-
sitively.

By ?? the Sylow 2-group of the root group U a Zassenhaus Moufang set of
finite even order is either abelian or a Suzuki 2-group.

Example 5.2 et K be a field of characteristic 2 and let θ be a non-zero en-
domorphism of K. Set k = Kθ and let L be a k-subvectorspace of K with
1 ∈ L and K = k[L]. Set A(K,L, θ) := L × L with addition (a, b) + (c, d) :=
(a+ c, b+ d+ acθ). One sees easily that (A(K,L, θ),+) with this addition is a
group. If K = F2n is finite then L = K = k and we will call this group A(n, θ).
If θ is not the identity, then A(K,L, θ) is non-abelian and the center consists
of all elements with first coordinate zero. If aθ 6= a−1 for all a ∈ L these are
exactly the elements of order at most 2. In the finite case this condition holds
if and only if the order of θ is odd. Finally, if θ is a Tits endomorphism, that
means θ2 is the Frobenius endomorphism, then [(a−1, 0), (aθ, 0)] = (0, a+1) and
thus the center equals the derived subgroup.
Suppose that λ 7→ λ1+θ is a bijection of L. For every λ ∈ K# with λL = L the
map hλ : A(K,L, θ) → A(K,L, θ) : (a, b) 7→ (λa, λ1+θb) is an automorphism
of A(K,L, θ) and the map λ 7→ hλ is an injective homomorphism from K#

to AutA(K,L, θ) whose image we call Λ. Suppose that K = F2n and that the
order of θ is odd.. Then Λ acts regularly on the set of involutions of A(K,L, θ).
Thus A(n, θ) Suzuki 2-group. A set X ⊆ A(n, θ) is a system of representative
for A(n, θ)/Z(A(n, θ)) if and only if the map a 7→ a · 2 maps X bijectively on
Z(A(n, θ)).

Theorem 5.3 If G is a Suzuki 2-group, then the exponent of G is 4 and either
G ∼= A(n, θ) with o(θ) odd or |G| = |Z(G)|3.

Proof. See [?], Theorem VIII.7.9. �

Theorem 5.4 If U = A(n, θ) with o(θ) odd and if K ≤ AutU is cyclic of order
2n − 1, then K ≤ CΛ with C = CAutU (U/Z(U)) ∩ CAutU (Z(U)).

Proof.This follows from [?], VII. 6.8. �

Definition 5.5 Let K, θ, k and L as above. Moreover, suppose that θ is a Tits
endomorphism. Note that K2 ⊆ k and that a−1 = a−2a ∈ L for all a ∈
L#. If K is a finite field of order 2n this implies n odd. For a, b ∈ K set
N(a, b) := a2+θ + ab + bθ. Since N(a, b) = ( ba )1+θ + (aθ + b

a )1+θ for a 6= 0,
one can easily see that N(a, b) = 0 implies a = b = 0. Set U := A(K,L, θ).
Let τ be the permutation on U# defined by (a, b)τ = ( b

N(a,b) ,
a

N(a,b) ). We first
check that (a, b)τ is in U . This is easily seen if a = 0 or b = 0, so suppose
both elements are not zero. One has aN(a, b) = a2+θa + a2b + bθa ∈ L since
a2+θ, a2, bθ ∈ k, thus a−1N(a, b) = a−2aN(a, b) and aN(a, b)−1 are again in L.
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Also bN(a, b) = a2+θb + b2a + bθb ∈ L since a2+θ, b2, bθ ∈ L. Thus b−1N(a, b)
and bN(a, b)−1 are in L.

One can see that M(U, τ) defines a Moufang set which we will call MSuz(K,L, θ)
or for K = F2n just MSuz(2n). These Moufang sets are also called (general-
ized) Suzuki Moufang sets. The little projective group correspondig to such
a Moufang set is called generalized Suzuki group or Suz(K,L, θ) (Suz(2n) if
K = F2n)..
An easy but tedious computation shows that τ2 = 1 and τµ(a,b) induces the auto-
morphism hN(a,b)2−θ on U (see [?] where a matrix representation for Suz(K,L, θ)
is given). Especially MSuz(K,L, θ) is Zassenhaus and µ(a,b) = µ(c,d) iff N(a, b) =
N(c, d).

5.2 The Case where no involution is special

From now on we assume that no involution of U is special.

Theorem 5.6 U is a p-group

Proof. This was proven by Feit [?]. His proof with some improvement by Ben-
der is contained in [?]. More precisely the assertion follows from 4.1, 6.3, 6.5,
6.6 and 5.7 of [?] together with �

We know that U is either an abelian 2-group or a Suzuki 2-group. If U is
abelian, then M(U, τ) is special by [?], so U must be a Suzuki 2-group. From
now on, let q := |Z(U)|. Then q is a power of 2 and |H| = q − 1. Moreover,
|U | = q2 or |U | = q3 by ??. Since M(U, τ) is proper, q > 2.

Remember that by ?? (a) one has αµaa = µα∼aa . This equals Suzuki’s
structure equation (XI. 10.6 in [?]).

Lemma 5.7 One has (∼ a) · 2 = a for all involutions a ∈ U .

Proof. Set D = 〈αa, µa〉. Then D is dihedral since αa and µa are involutions.
The order of αaµa is odd since CG†(αa) ∩ CG†(µa) = U∞ ∩ CG†(µa) = 1. Set
E = 〈µaαa〉. Then α−∼a ∈ NG(E) since Dα−∼a = 〈αα∼aa , µ

α−∼a
a 〉 = 〈αa, αµaa 〉 =

D and E = D′ is characteristic in D. On the other hand, CU (E) = 1 since
CG†(αt) ≤ U∞ for all t ∈ U#. Hence NU∞(E) ≤ AutE is abelian. One easily
sees that αa is the unique involution in NU∞(E), so this group must be cyclic.
Since U∞ has exponent 4, the claim follows. �
.

Lemma 5.8 H does not contain an element of order 3.

Proof. Suppose otherwise. Then there are involutions a, b ∈ U such that µaµb
has order 3. Now µa and αa are conjugate, hence there is an involution t ∈ G†
such that αat has order 3. Since CG†(αa) = U∞ is transitive on X \{0}, we can
assume that t fixes 0. Hence there is an involution c ∈ U such that t = αµac .
Hence

1 = αaµaαcµaαaµaαcµaαaµaαcµa =
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µa(αµaa )αc(αµaa )αc(αµaa )αcµa

= µa(α∼aµaα−∼a)αc(α∼aµaα−∼a)αc(α∼aµaα−∼a)αcµa

= µaα∼aµaαcµaαcµaαc−∼aµa.

This implies
1 = α∼aµaαcµaαcµaαc−∼a,

hence
1 = µaαcµaαcµaαc

and therefore
µa = αµac αcα

µa
c .

Since µc is the unique element in U0αcU0 interchanging 0 and ∞, this implies
a = c. Now this equation implies that a is special, a contradiction. �

Lemma 5.9 (a) q = 2n with n odd.

(b) The order of µaαa is 5.

(c) U is isomorphic to A(n, θ).

Proof. We have taken this proof from [?], XI.11.2.

(a) If n was even, 3 would divide q − 1.

(b) One computes (αaµa)α∼a = (αaµa)2. Since∼ a·2 = a, we have (αaµa)−1 =
(αaµa)αa = (αaµa)4 and thus (αaµa)5 = 1..

(c) If U is not isomorphic to A(n, θ), then |U | = q3 and thus |G†| = (q3 +
1)q3(q + 1) with q = 2n, n odd. Since 5 divides |G†| but not q3 and
q − 1, 5 divides q3 + 1 and thus 5 divides q6 − 1 = 26n − 1. This implies
26n ≡ 1 mod 5 and hence 4|6n, a contradiction since n is odd.

�

We now know that |U | = q2 and |G†| = (q2 + 1)q2(q − 1) which is exactly
the order of the Suzuki group Suz(q).

Lemma 5.10 The set 0∪{∼ a | a ∈ Z(U)#} is a system of representatives for
U/Z(U).

Proof. By ??, U ∼= A(n, θ). Thus if |Z(U)| = q, then q = |U : Z(U)|. By ??,
∼ a · 2 = a for all a ∈ Z(U)#. Thus the claim follows since a subset X of U is a
system of representatives for U/Z(U) if and only if the map x 7→ x · 2 induces
a bijection between X and Z(U). �

Lemma 5.11 If a, b are two different involutions in Z(U), then µa+b = µ−∼a+∼b.
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Proof. This follows from ??. �

The root group U contains q elements in Z(U) and each q−1 elements of the
form ∼ a and − ∼ a with a ∈ Z(U)#. We will show that each of the remaining
q2−q−2(q−1) = (q−2)(q−1) elements can be uniquely written as − ∼ a+ ∼ b
with a, b ∈ Z(U)#, a 6= b. Having succeeded we know µa for all a ∈ U .

Lemma 5.12 If a, b, c ∈ Z(U)# with a 6= b, then cµaµa+b = c+ cµaµb.

Proof. One has

∼ (− ∼ a+ ∼ b) = (−(− ∼ a+ ∼ b)µb)µb = (−(aµaµ2
b − bµb)µb)µb =

[−((aµaµb − b)µb+ ∼ b)]µb = [bµb − (aµaµb + b)µb]µb =

aµaµbµaµaµb+b+ ∼ (aµaµb + b) = (− ∼ a)µbµaµaµb+b+ ∼ (aµaµb + b).

Set x := aµaµb. Then µx = µµaµba = µµba and µx+b = µxµx−bµb = µaµaµbµ
µb
a −bµb =

µaµb−bµb = µµb(aµb−bµb)µb . By (3.2) we get µb+x = (µbµa+bµa)µb = µa+bµaµb.
Since all µ-maps are involutions, this implies µb+x = µbµaµa+b. So aµbµb+x =
aµbµbµaµa+b = aµaµa+b and thus

∼ (− ∼ a+ ∼ b) = − ∼ aµaµa+b+ ∼ (aµaµb + b).

Since µ∼(−∼a+∼b) = µ−∼a+∼b = µa+b, one gets

aµaµa+b + aµaµb + b = a+ b

and therefore
aµaµa+b = a+ aµaµb.

Now there is an element g ∈ H with ag = c. Since H is abelian, one gets

cµaµa+b = agµaµa+b = aµaµa+bg = (a+ aµaµb)g = ag + agµaµb = c+ cµaµb.

�

Lemma 5.13 If a, b, c ∈ Z(U) are involutions with a 6= b, then − ∼ a+ ∼ b 6∈
{c,− ∼ c,∼ c}.

Proof. Since (− ∼ a) · 2 = a 6= b = (− ∼ b) · 2, − ∼ a and − ∼ b lie in different
cosets of U/Z(U), hence− ∼ a+ ∼ b cannot be in Z(U). If − ∼ a+ ∼ b =∼ c,
then − ∼ b+ ∼ a = − ∼ c, so we only have to show that − ∼ a+ ∼ b = − ∼ c
cannot hold. Suppose otherwise. Then µc = µ−∼c = µ−∼a+∼b = µa+b and so
c = a+ b. One has

(a+ b)µa+b = − ∼ (a+ b) = − ∼ a+ ∼ b = aµaµ
2
a+b − bµbµ2

a+b.

Set g := µbµa+b and h := µ(aµaµb−b)µb. Then we have

a+ b = (aµaµ2
a+b − bµbµ2

a+b)µa+b = (aµaµ2
a+b − bgµa+b)µa+b =
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(aµaµa+b − bg)µbg+ ∼ bg = (aµaµa+b − b)g−1µbg + (− ∼ b)g =

((aµaµb − b)µb+ ∼ b)g = (aµaµb − b)µaµaµb−bhg+ ∼ bg =

(− ∼ (aµaµb − b))hg + (∼ b)g = − ∼ ((aµaµb − b)hg)+ ∼ (bg).

But a+ b ∈ Z(U), so − ∼ ((aµaµb − b)hg) and ∼ bg are contained in the same
coset of U/Z(U) This is only possible if bg = (aµaµb − b)hg, but this implies
a+ b = 0, a contradiction. �

Lemma 5.14 Suppose a, b ∈ Z(U) are involutions and g, h ∈ H∗. Then
− ∼ a+ ∼ (ag) = − ∼ b+ ∼ (bh) if and only if a = b and g = h.

Proof. If − ∼ a+ ∼ ag = − ∼ b+ ∼ bh, then also a+ ag = b+ bh. Hence

∼ a− ∼ ag = − ∼ a+ ∼ ag + a+ ag = − ∼ b+ ∼ bh+ b+ bh =∼ b− ∼ bh

and
∼ ag− ∼ a = −(∼ a− ∼ ag) = −(∼ b− ∼ bh) =∼ bh− ∼ b.

We have

(∼ a− ∼ ag)µa = ((∼ a)µa − (∼ a)µag)µa = ((∼ a)µa − (∼ ag−1)µa)µa =

(∼ a− ∼ ag−1)µ∼ag−1+ ∼∼ (ag−1) = (∼ a− ∼ ag−1)gµag−1 + ag−1 =

((∼ ag− ∼ a)µa + a)g−1 = ((∼ bh− ∼ b)µa + a)g−1.

Similarly, one computes

(∼ b− ∼ bh)µa = (∼ b− ∼ bh)µ2
bµa = ((∼ b)µb − (∼ bh−1)µb)µ2

bµa =

((∼ b− ∼ bh−1)hµbh−1 + bh−1)µbµa = ((∼ bh− ∼ b)µb + b)h−1µbµa

= ((∼ bh− ∼ b)µa + bµbµa)h−1.

Therefore αag−1hαbµbµa ∈ G†∞,(∼bh−∼b)µa . Hence there is an element k ∈ H

with
αag

−1hαbµbµa = α−(∼ag−∼a)µakα(∼bh−∼b)µa .

This element lies in G†∞ = NG†(U∞). If we regard the corresponding cosets in
G†∞/U∞, we see that k = g−1h. Hence

kαak+bµbµa = kα−(∼a−∼ag)µak+(∼a−∼ag)µa

and so

ak + bµbµa = −(∼ a− ∼ g)µak + (∼ a− ∼ ag)µa = [(∼ a− ∼ ag)µa, k]−1.

Since ak + bµbµa ∈ Z(U), (∼ a− ∼ ag)µaZ(U) is a fixed point of k in
U/Z(U). Suppose k 6= 1. Then k has no fixed point in U/Z(U) and hence
(∼ a− ∼ ag)µa ∈ Z(U). Hence there is an involution c with ∼ a− ∼ ag = − ∼ c
and so∼ a = − ∼ c+ ∼ ag, a contradiction to ??. So k = 1 and therefore g = h.
Now we have a+ag = b+bg and therefore (a+b)g = a+b. This implies a = b. �
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Corollary 5.15 One has the following partition on U :

U = Z(U)∪ ∼ Z(U)# ∪ − ∼ Z(U)# ∪ {− ∼ a+ ∼ b; a, b ∈ Z(U)#, a 6= b}.

We will call such a partition a Suzuki partition.
Proof. The order of the last set is by ?? exactly (q − 1)(q − 2). By ?? these
sets are disjoint.Since |Z(U)| = q their union has order q2 which is just the
order of U . �

From now on, e will be a fixed involution in U and τ = µe.
We will frequently use the next lemma.

Lemma 5.16 If g, h ∈ H are different, then

∼ (− ∼ eg+ ∼ eh) = − ∼ (eh2g−1 + eg)+ ∼ (eh2g−1 + eh).

Proof. Set a := eh and k := gh−1. Then with ??

∼ (− ∼ eh+ ∼ eg) =∼ (− ∼ ak+ ∼ a) = (−(aµak − aµa)µa)µa =

(−(ak−1µa−aµa)µa)µa = [−((ak−1+a)µa+ ∼ a)]µa = (aµa−(ak−1+a)µa)µa =

ak−1µa+ak−1+ ∼ (a+ ak−1) = aµ2
aµa+ak−1k+ ∼ (a+ ak−1) =

− ∼ (aµaµa+ak−1)k+ ∼ (a+ ak−1) =

− ∼ (a+ aµakµak
−1)k+ ∼ (a+ ak−1) = − ∼ (ak + ak−1)+ ∼ (a+ ak−1)

. Hence we get

∼ (− ∼ eg+ ∼ eh) = − ∼ (eg + eh2g−1)+ ∼ (eh+ eh2g−1)

. �

We are now going to introduce coordinates. By ??, U is isomorphic to
A(n, θ) with o(θ) odd. We can label the elements as (a, b) with a, b ∈ F := F2n .
We can assume that e = (0, 1). By ?? there is an automorphismus φ of U
which centralizes Z(U) and U/Z(U) such that Hφ = Λ with Λ as in 5.2. Since
φ centralizes Z(U) and U/Z(U), there is a homomorphism f : F → F with
(a, b)φ = (a, b+ φ(a)). Hence for every h ∈ H there is a λ ∈ F# with

(a, b)h = (a, b)φ−1hλφ = (a, b+ f(a))hλφ = (aλ, bλ1+θ + f(a)(λ1+θ + 1).

Set u(a, b) := (a, b+f(a)) = (a, b)φ. Then u(a, b)h = (a, b)hλφ = (λa, λ1+θb)φ =
u(λa, λ1+θb). Moreover,

u(a, b) +u(c, d) = (a, b+ f(a)) + (c, d+ f(c)) = (a+ c, b+ d+ f(a) + f(c) + acθ)

= (a+ c, b+ d+ f(a+ c) + acθ) = u(a+ b, b+ d+ acθ).

Writing (a, b) instead of u(a, b), we can therefore assume that H = Λ.
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Lemma 5.17 If h ∈ H∗, then [∼ e,∼ eh] 6= 1. Hence θ has no fixed point
different from 0 and 1.

Proof. Let k be the fixed field of θ and let m ∈ N such that aθ = a2m .
In A(n, θ), an element of the form (x, y) with x ∈ k# commutes with (x′, y′)
if and only if x′ ∈ k. Let a = (0, u) and b = (0, v) be involutions. Since
(∼ a) · 2 = a, (∼ b) · 2 = b, we get ∼ a = (u(1+θ)−1

, x) and ∼ b = (v(1+θ)−1
, y)

with x, y ∈ F . Now λ 7→ λ1+θ induces a bijection of k. Thus if u ∈ k, then ∼ a
and ∼ b commute if and only if v ∈ k.
Suppose that |k| > 2 and that λ ∈ k \{0, 1}. Set h := hλ Then eh = (0, λ1+θ) =
(0, λ2), hence ∼ e and ∼ eh commute. It is

(− ∼ eh+ ∼ e) · 2 = (− ∼ eh) · 2 + (∼ e) · 2 = eh+ e ∼ (eh+ e) · 2,

hence c := − ∼ eh+ ∼ e− ∼ (eh+ e) ∈ Z(U). Note that c 6= 0 by ??.. Now by
??

(− ∼ e+ ∼ eh)µe+eh = − ∼ −(− ∼ e+ ∼ eh) = − ∼ (− ∼ eh+ ∼ e) =

−(− ∼ (e+ eh2)+ ∼ (eh+ eh2)) = − ∼ (eh+ eh2)+ ∼ (e+ eh2).

But eh+ eh2 = (0, λ2 + λ4) and e+ eh2 = (0, λ4 + 1), therefore
d := − ∼ (eh+ eh2)+ ∼ (e+ eh2)− ∼ (e+ eh) ∈ Z(U). Again, d 6= 0. Now
d = (− ∼ eh+ ∼ e)µe+eh − (∼ (e+ eh))µe+eh and
c = (− ∼ eh+ ∼ e)− ∼ (e+ eh). By 2.5(1) in [?], we get µc = µd. But since c
and d are involutions, this implies c = d and therefore (− ∼ e+ ∼ eh)µe+eh =
− ∼ e+ ∼ eh. But ∼ (e + eh) is the unique fixed point of µe+eh by ??.
Thus ∼ (e + eh) = − ∼ e+ ∼ eh which contradicts ??. Hence k = F2 and
CU (∼ e) = 〈Z(U),∼ e〉. �

Lemma 5.18 After possibly replacing θ by θ−1, we can assume that − ∼ e =
(1, 0). Then we have − ∼ (0, a1+θ) = (0, a) and ∼ (0, a1+θ) = (a, a1+θ) for all
a ∈ F#.

Proof. The first statement is Lemma XI.11.12 in [?]. The second holds since
(0, a1+θ) = eha and hence − ∼ (0, a1+θ) = − ∼ eha = (a, 0). �

Lemma 5.19 Let (a, b) ∈ U with 0 6∈ {a, b} and b 6= a1+θ. Then (a, b) =
(s, 0)− (t, 0) with t = ( ba )θ

−1
and s = a− t.

Proof. By ?? there are two distinct involutions u and v with (a, b) = − ∼
u+ ∼ v. Hence by ?? there are s, t ∈ F# with (a, b) = (s, 0) + (t, t1+θ) =
(s+ t, stθ + t1+θ). Thus tθ = a

b and s = a+ t. �

Lemma 5.20 For (a, b) ∈ U#, set N0(a, b) = a1+θ+aθ−θ
−1
bθ
−1

+b (the reduced
norm of (a, b)). Then µ(0,N0(a,b)) = µ(a,b).
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Proof. For a = 0, one has N0(a, b) = b. If a 6= 0, b = 0 or b = a1+θ,
then N0(a, b) = a1+θ and the claim is true since − ∼ (0, a1+θ) = (a, 0) and
∼ (0, a1+θ) = (a, a1+θ). If a 6= 0, b 6= 0, a1+θ, then N0(a, b) = s1+θ + t1+θ with
s, t as is ??, and so this case follows by ??. �

Lemma 5.21 Let g, h ∈ H. Then

(− ∼ eg+ ∼ eh)τ = − ∼ ej−1h−2+ ∼ eh−1

with ej = eg−1 + eh−1.

Proof. Let j ∈ H with ej = eg−1 + eh−1. Then

(− ∼ eg+ ∼ eh)τ = (eτg−eτh)τ = (eg−1τ−eh−1τ)τ = (eg−1+eh−1)hτh−1+ ∼ eh−1 =

ejτh−2+ ∼ eh−1 = eτj−1h−2+ ∼ eh−1 = − ∼ ej−1h−2+ ∼ eh−1.

�

Lemma 5.22 If a, b ∈ F# with b 6= a1+θ, then

(a) (0, a1+θ)τ = (a−1, 0).

(b) (a, 0)τ = (0, a−1−θ).

(c) (a, a1+θ) = (a−1, a−1−θ).

(d) (a, b)τ = ( s
Nt + 1

t ,
1
tθ

( s
Nt + 1

t )). with s, t as in ?? and N1+θ = N0(a, b).

Proof.

(a) This follows because of ehaτ = eτh−1
a = − ∼ eh−1

a .

(b) This holds since (− ∼ e)haτ = (− ∼ e)τh−1
a = eh−1

a .

(c) It is (∼ e)haτ = (∼ e)τh−1
a = (∼ e)h−1

a .

(d) Let s, t be as in ??. Set g := hs and h := ht. Then (a, b) = − ∼ eg+ ∼ eh
and hence (a, b)τ = − ∼ ej−1h2+ ∼ eh−1 with ej = eg−1 + eh−1. There-
fore ej−1 = (0, (st)1+θN0(a, b)−1) and so ej−1h−2 = (0, s1+θt−1−θN0(a, b)−1)
and − ∼ (ej−1h−2) = (st−1N−1, 0). We get

(a, b)τ = (st−1N−1, 0) + (t−1, t−1−θ) = (
s

Nt
+

1
t
,

1
tθ

(
s

Nt
+

1
t
)),

�

Lemma 5.23 θ is a Tits automorphism.

20



Proof. For all h ∈ H∗, one has

(∼ eh− ∼ e)τ = ((∼ eh−1)τ − (∼ e)τ)τ = (∼ eh−1− ∼ e)τ + e.

For a ∈ F \ {0, 1} and h = ha, this means

(a+ 1, a(aθ + 1))τ = (a−1 + 1, a−1(a−θ + 1))τ + (0, 1).

There are uniquely determined elements s, t, u, v ∈ F# with (a+ 1, a(aθ + 1)) =
(s, 0)− (t, 0) and (a−1 + 1, a−1(a−θ + 1)) = (u, 0)− (v, 0). One computes

t = aθ
−1

(a+ 1)(aθ
−1

+ 1)−1, s = a−θ
−1
t, v = a−1−θ−1

t

and
u = (a−1 + 1) + v = a−1(a+ 1) + a−1s = a−1t.

Set N = (s1+θ + t1+θ)(1+θ)
−1

and M = (u1+θ + v1+θ)(1+θ)
−1

. Then M = a−1N

and N1+θ = (1 + a−1−θ−1
)t1+θ. By ??, we have

(sN−1t−1+t−1, sN−1t−1−θ+t−1−θ) = (uM−1v−1+v−1, uM−1v−1−θ+v−1−θ+1)

and hence
a−θ

−1
N−1 + t−1 = a1+θ−1

N−1 + a1+θ−1
t−1.

This implies
(a−θ

−1
+ a1+θ−1

)t = (a1+θ−1
+ 1)N.

Thus
N = a−θ

−1
(a2θ−1+1 + 1)(a1+θ−1

+ 1)−1t.

Therefore we get

(1+a−1−θ−1
)t1+θ = N1+θ = a−1−θ−1

(a2θ−1+1+1)(a2+θ+1)(a1+θ−1
+1)−1(aθ+1+1)−1t1+θ

and so

a1+θ−1
(1 + a−1−θ−1

)(1 + a1+θ−1
)(1 + a1+θ) = (a2θ−1+1 + 1)(a2+θ + 1).

Hence

(1 + a1+θ−1
)2(1 + a1+θ) = a3+2θ−1+θ + 1 + a2θ−1+1 + a2+θ

and

1 + a2+2θ−1
+ a1+θ + a3+2θ−1+θ = a3+2θ−1+θ + 1 + a2θ−1+1 + a2+θ.

We get
a2+2θ−1

+ a1+θ = a2+θ + a2θ−1+1

and so
a(a+ 1)a2θ−1

= a(a+ 1)aθ.
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Since a 6= 1, this implies a2θ−1
= aθ and hence a2 = aθ

2
. �

Proof of Theorem ?? By ??, U is isomorpic to A(n, θ) with |U | = 2n and
by ?? θ a Tits automorphism. Therefore it remains to show that (a, b)τ =
( b
N(a,b) ,

a
N(a,b) ) with N(a, b) = a2+θ + ab + bθ = N0(a, b)θ. If a = 0, then

N(0, b) = bθ. By ??, (0, b)τ = (b−(θ+1)−1
, 0) = (b−θ+1, 0) = ( b

bθ
, 0) =

( b
N(0,b) ,

a
N(0,b) ). If b = 0, then N(a, 0) = a2+θ and by ??,

(a, 0)τ = (0, a−1−θ) = (0,
a

a2+θ
) = (

0
N(a, b)

,
a

N(a, b)
).

If b = a1+θ, then

N(a, b) = a2+θ + aa1+θ + aθ
2+1 = a2+θ

and

(a, b)τ = (a−1, a−1−θ) = (
a1+θ

a2+θ
,
a

a2+θ
) = (

b

N(a, b)
,

a

N(a, b)
).

. If a, b 6= 0 and b 6= a1+θ, then

(a, b)τ = (
S

Nt
+

1
t
,

1
tθ−1

s

Nt
+

1
t
)

with t = ( ba )θ
−1
, s = a+ t and N1+θ = N0(a, b) = N(a, b)θ

−1
. Since (1 + θ)−1 =

1− θ, one has
N = (N(a, b)θ

−1
)θ−1 = N(a, b)1−θ

−1
.

One computes

st−1 = (a+ a1−θ−1
b−θ

−1
)aθ
−1
b−θ

−1
= a1+θ−1

b−θ
−1

+ 1

and
N(a, b)θ

−1
st−1 = (a1+θ−1

b−θ
−1

+ 1)(a1+θ + aθ
−1
bθ
−1

+ b) =

a2+θ+θ−1
b−θ

−1
+ a1+2θ−1

+ a1+θ−1
b1−θ

−1
+ a1+θ + aθ

−1
bθ
−1

+ b =

aθ
−1
b−θ

−1
(a2+θ + ab+ b2θ

−1
) + b+ a1+θ + a1+2θ−1

=
1
t
N(a, b) + b.

Thus
s

Nt
+

1
t

=
1

N(a, b)
(
1
t
N(a, b) + b) +

1
t

=
b

N(a, b)

and
1
tθ

(
s

Nt
+

1
t
) =

a

b

b

N(a, b)
=

a

N(a, b)
.

*�
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6 Generalized Suzuki Moufang sets

If M(U, τ) is a finite Suzuki Moufang set, then we have seen that the following
holds:

(a) H is transitive on Z(U)#.

(b) For every a ∈ U# there is a b ∈ U# with µa = µb.

(c) U has a Suzuki partition, that means

U# = Z(U)∪ ∼ Z(U)#∪− ∼ Z(U)#∪{− ∼ a+ ∼ b; a, b ∈ Z(U)#, a 6= b}.

In the infinite case, one can generalize the concept of Suzuki Moufang sets.
It turns out that a generalized Suzuki Moufang set M(K,L, θ) is an ’ordinary’
Suzuki Moufang set (that means θ bijective and hence K = L = Kθ) if and
only if one of these conditions holds in which case all of them hold.

Theorem 6.1 Let K be a field of characteristic 2. θ a Tits endomorphism,
k = Kθ and L a k-subspace of K with 1 ∈ L and k[L] = K. Let M(U, τ) be the
generalized Suzuki Moufang set as defined in 5.5. Then the following statements
are equivalent.

(a) θ is surjective.

(b) K is perfect

(c) U has a Suzuki partition.

(d) H acts transitively on Z(U)#.

(e) For every a ∈ U# there is a b ∈ Z(U)# with µa = µb.

Proof. It is clear that (a) and (b) are equivalent since θ2 is the Frobenius
endomorphism. Moreover, we have (0, x)τµ(a,b) = (0, N(a, b)θx) for a, b, x ∈
L, (a, b) 6= (0, 0). Since H = 〈τµ(a,b); (a, b) ∈ U#〉 one sees immediately that
(d) implies (a). Since N(0, a) = aθ and thus (0, x)τµ(0,a) = (0, a2x) for a, x ∈
L, a 6= 0 we conclude that (d) follows from (b). We show (e) implies (a). Let
a ∈ L#. Then there is b ∈ L with µ(1,a) = µ(0,b). This implies 1 + aθ + a =
N(1, a) = N(0, b) = bθ, thus a = (b + a + 1)θ ∈ Kθ. Since L generates K as a
ring, this implies K = Kθ.

Next we show that (c) follows from (a). If a, b ∈ L with a 6= 0, b 6= 0, b 6=
a1+θ, then (a, b) = − ∼ (0, r)+ ∼ (0, s) with s = (ab )θ

−1
, r = a+ s.

Finally we show that (c) implies (e). We only have to show that if (a, b) =
− ∼ (0, r)+ ∼ (0, s) with r, s 6= 0, r 6= s, then there is a c ∈ L with µ(a,b) =
µ(0,c). One has (a, b) = (r + s, (r + s)sθ and thus N(a, b) = (r + s)2+θ + (r +
s)2sθ + s2(r+ s)θ = (r2 + s2)rθ + rθs2 + s2+θ = r2+θ + s2+θ = (r1+θ + s1+θ)θ =
N(0, r1+θ + s1+θ). �
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