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Abstract

The goal of this paper is two-fold. First we provide the information
needed to study Bol, Ar or Bruck loops by applying group theoretic meth-
ods. This information is used in this paper as well as in [BS3] and in [S].

Moreover, we determine the groups associated to Bruck loops of 2-
power exponent under the assumption that every nonabelian simple group
S is either passive or isomorphic to PSL2(q), q − 1 ≥ 4 a 2-power. In a
separate paper it is proven that indeed every nonabelian simple group S
is either passive or isomorphic to PSL2(q), q − 1 ≥ 4 a 2-power [S]. The
results obtained here are used in [BS3], where we determine the structure
of the groups associated to the finite Bruck loops.

1 Introduction

For a long time the following groups G have been studied:

Hypothesis (A) Assume thatG has a subgroupH such that there is a transver-
sal K to H in G which is the union of 1 ∈ G and G-conjugacy classes of invo-
lutions.

It has been conjectured that G is a 2-group if G is a finite group which is
generated by K.

Nagy [Nag] as well as Baumeister and Stein [BS1] found a counterexample to
that conjecture. This paper is part of a series of papers where we determine the
structure of the finite groups appearing in those triples (G,H,K) which satisfy
Hypothesis (A). In the present paper we reduce the question on the structure
of the groups to a question on finite simple groups, which is solved in [BS2] and
[S].

Notice that, as K is closed under conjugation, K is a transversal to all
the conjugates of H in G, and moreover, 1 ∈ K. Baer observed that we can
construct out of such a triple (G,H,K) a loop [Baer] (see Section 2.1). A loop
is a set X together with a binary operation ◦ on X, such that there exists a
unique 1◦ ∈ X with 1◦ ◦ x = x ◦ 1◦ = x for all x ∈ X and such that the left and
right translations

λx : X → X, y 7→ x ◦ y, ρx : X → X, y 7→ y ◦ x

are bijections. A loop can be thought of as a non-associative group.
∗This research is part of the project “Transversals in Groups with an application to loops”
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Conversely given a loop X, we can recover the triple (G,H,K) [Baer] (see
Section 2.1). A triple (G,H,K) is called loop folder, if

• K is a transversal to all the conjugates of H and if

• 1 ∈ K.

Clearly, every triple (G,H,K) satisfying (A) is a loop folder. Moreover, if
(A) holds, then K is a twisted subgroup of G, that is 1 ∈ K and x−1, xyx ∈ K
for all x, y ∈ K. This translates into the language of loops to the right Bol
Identity:

((x ◦ y) ◦ z) ◦ y = x ◦ ((y ◦ z) ◦ y) for all x, y, z ∈ X,

where (X, ◦) is the loop constructed from (G,H,K).
A loop is called (right) Bol loop, if it satisfies this identity. In a Bol loop,

the subloop generated by a single element is a cyclic group. Therefore powers,
inverses and orders of elements are well defined, as is the exponent of a finite
Bol loop.

The loop associated to a triple (G,H,K) fulfilling (A) is a Bol loop of expo-
nent 2, as k2 = 1 for every k ∈ K. The loop then also satisfies the automorphic
inverse property, AIP, that is:

(x ◦ y)−1 = x−1 ◦ y−1 for all x, y ∈ X.

Bol loops with that property are Bruck loops. Our project is not only to
determine the structure of the groups in the triples satisfying Hypothesis (A),
but as well the structure of the groups appearing in the larger class of triples
associated to the finite Bruck loops. In [BS3] we use the results proved in this
paper and [S] to find out the structures of the possible G,H and K.

In 2005 Aschbacher, Kinyon and Phillips gave insight into the structure of
general finite Bruck loops, as they showed in [?]:

• Elements of 2-power order and elements of odd order commute.

• Bruck loops are a central product of a subloop of odd order and a subloop
generated by elements of 2-power order.

• Simple Bruck loops are of 2-power exponent.

• The structure of minimal simple Bruck loops (M -loops) is very restricted
(see Theorem ??).

This focuses attention on Bruck loops of 2-power exponent, i.e. Bruck loops
where every element is of 2-power order. We call a loop folder associated to a
Bruck loop a BX2P-folder, if

• K is a twisted subgroup

• every element in K has a 2-power order

• H acts on K.
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To formulate the statement of the main theorem we need a further definition.
A finite nonabelian simple group S is called passive, if whenever (G,H,K) is a
BX2P-folder with

F ∗(G/O2(G)) ∼= S,

then G = O2(G)H.
Notice that in this case the loop to (G,H,K) is of 2-power size and therefore

soluble by ??.

Theorem 1 Let (G,H,K) be a loop folder associated to a finite Bruck loop
such that:

(a) K is a twisted subgroup

(b) every element in K has a 2-power order

(c) H acts on K

(d) G = 〈K〉

and assume, that every non-abelian simple section of G is either passive or
isomorphic to PSL2(q) for q = 9 or a Fermat prime q ≥ 5. Then the following
holds:

(1) G/O2(G) ∼= D1 ×D2 × · · · ×De for some nonnegative integer e.

(2) Di
∼= PGL2(qi) with qi ≥ 5 a Fermat prime or qi = 9, for 1 ≤ i ≤ e :.

(3) Di∩H ∼= qi : (qi−1) is a Borel subgroup in Di with H := HO2(G)/O2(G).

(4) F ∗(G) = O2(G)

Notice that the assumption that the simple sections of G are either passive
or one of Aschbachers candidates is similiar to a K-group assumption in the
classification of finite simple groups, see Section 4. Another way to think of the
main theorem is as a structure reduction:

Given any finite group G, are there H and K, such that (G,H,K) is a nice
folder (i.e. (a) - (d) of Theorem ?? holds) to a Bruck loop? The main theorem
reduces this problem to the case of those G such that F ∗(G/O2(G)) is a finite
simple group.

We call a loop folder (G,H,K) nice with respect to some loop property
(Bol, Ar, Bruck) if this property translates into a group theoretic property of
the triple (G,H,K).

The only known example of a non-passive group is PSL2(5). The work of
Aschbacher, Kinyon and Phillips suggests that also PSL2(q) is a non-passive
group for other values of q with q − 1 a 2-power. Unfortunately it is an open
question, whether these groups are passive or not. An answer demands either
an example or a proof of the nonexistence of examples. This relates to hard
questions about 2-groups. However in a forthcoming paper we show, that the
non-passive finite simple groups are among the PSL2(q) with q−1 ≥ 4 a 2-power
[S].

The organisation of the paper is as follows: In the next section we introduce
the relevant notation on loops and assemble all the important facts on the
relation between loops and groups. The idea of that section is to provide a base
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for our series of paper - the results given there will be needed in this paper,
in [S] and in [BS3] - as well as for future papers on loops. If we have a proof
of some result which is more instructive then the known one, then we include
that proof. Else we quote the literature. The third section contains general
results on Bruck loops of 2-power exponent, which provide a set of tools for the
classification of non-passive groups. Finally, the proof of the main theorem is
contained in Section 4.

2 The relation between loops and groups

We follow the notation of Aschbacher [?] and [?]. In particular we use the
right Bol identity and talk about right Bol loops. As there is an opposite
relation between left and right Bol loops, the decision between left and right
Bol loops is only a notational convention, but also in the tradition of Bol, Bruck,
Glauberman and Aschbacher.

2.1 The Baer correspondence

Baer observed that statements about loops can be translated into the language
of group theory [?].

Given a loop (X, ◦), we define for x ∈ X a map ρ : X → Sym(X), x 7→ ρx.
We record some standard loop theoric notation.

G := RMult(X) := 〈ρx : x ∈ X〉 ≤ Sym(X),

H := StabG(1◦),

K := {ρx : x ∈ X} ⊆ G and

κ : K → X : ρx 7→ x.

Then (G,H,K) satisfies the following properties:

(1) K is a transversal to all conjugates of H.

(2) H is core free: 1 = ∩g∈GHg.

(3) G = 〈K〉.

(4) 1 ∈ K.

Definition A triple (G,H,K) with G a group, H ≤ G and K ⊆ G is called

a loop folder, if it satisfies (1) and (4),

a faithful loop folder, if it satisfies (1) and (2),

a loop envelope, if it satisfies (1), (3) and (4),

Remarks (a) (1) is equivalent to the property
(1’): |K| = |G : H| and Hg ∩KK−1 = 1 for all g ∈ G.

(b) (1) and (2) imply (4).
(c) Conditions (2) and (3) seem to be natural, but may not be satisfied in

loop folders to subloops, so called subfolders(see below for a definition).
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(d) To a loop (X, ◦), there is up to isomorphism (of loop folders) a unique
loop folder to X satisfying (2) and (3): The loop folder, which we constructed
above in G = RMult(X). We call it the Baer envelope of the loop.

(e) Let (G,H,K) be a loop folder and let κ be a bijection between K and
some set X. Then the following operation ◦ on X ×X defines a loop on X: Set
for all k1, k2 ∈ K

κ(k1) ◦ κ(k2) = κ(k12) where {k12} = K ∩Hk1k2.

(Notice that this notation of κ is different from the notation given in [Asch1]).
We define the inverse mapping to κ by R : X → K. Let Φ be the homomor-

phism from 〈K〉 into Sym(X). Then Φ(R(x)) = ρx.
(f) For technical reasons it is useful to formally distinguish between elements

of K and elements of X, as elements of G may act on both sets, but in different
ways.

Subloops, homomorphisms, normal subloops, factor loops and simple loops
are defined as usual in universal algebra: A Subloop is a nonempty subset which
is closed under loop multiplication.

Homomorphisms are maps between loops, which preserves loop multiplica-
tion. The preimage relation induces an equivalence relation on the source loop,
such that a product of equivalence classes is again an equivalence class.

Normal subloops are preimages of 1◦ under a homomorphism and therefore
subloops. A normal subloop defines a partition of the loop into blocks (cosets),
such that the set of products of elements from two blocks is again a block.
Such a construction gives factor loops as homomorphic images with the normal
subloop as the kernel.

Simple loops have only the full loop and the 1◦-loop as normal subloops.
Finally we recall the definition of a soluble loop given in [?]. A loop X is

soluble if there exists a series 1 = X0 ≤ · · · ≤ Xn = X of subloops with Xi

normal in Xi+1 and Xi+1/Xi an abelian group.

There are related concepts in the language of loop folders. We give here only
the most important concept of a subfolder. For other concepts and more results
on loop folders see [?] and [?].

Definition Let (G,H,K) be a loop folder. A subfolder (U, V,W ) is a loop folder
with U ≤ G, V ≤ U ∩H and W ⊆ U ∩K.

A subfolder defines a subloop Y of a loop X, such that the multiplications
◦X and ◦Y coincide on Y . Moreover, every subfolder is the folder of a subloop.

Lemma 2.1 A subgroup U ≤ G gives rise to a subfolder (U, V,W ), if and only
if U = (U ∩H)(U ∩K). Then V = U ∩H and W = U ∩K.

Proof. Let (U, V,W ) be a subfolder. Then W ≤ U ∩ K is a transversal to
V ≤ U ∩H in U , which implies U = WV ≤ (U ∩H)(U ∩K). The Dedekind
identity and the fact that H ∩K = 1 then implies V = U ∩H and W = U ∩K.

Now assume U = (U ∩ H)(U ∩K). Then H ∩K = 1 shows that (U ∩K)
is a transversal to (U ∩H) in U . As (U ∩K) acts transitively on the cosets of
(U ∩H) in U , it follows that (U ∩K) acts transitively on the cosets of (U ∩H)u

in U for every u in U . Thus (U,U ∩H,U ∩K) is a subfolder. 2
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Corollary 2.2 If U is a subgroup of G containing H or K, then (U,U ∩H,U ∩
K) is a subfolder of (G,H,K).

Though subfolders give access to inductive arguments, we have to be care-
fully for two reasons.

• A subfolder of a faithful loop folder may not be faithful.

• A subfolder of a loop envelope may not be a loop envelope.

Another useful concept is the concept of morphisms between loop folders,
see [?]. We consider here only a special case, which is used to get faithful folders
from arbitrary ones.

Lemma 2.3 Let (G,H,K) be a loop folder to a loop X, N E G with N ≤ H
and G = G/N . Then (G,H,K) is a loop folder to the same loop X.

Proof. The loop folder property is clearly inherited to the factor group. The
two loops are natural isomorphic from the definition of the loop: the multipli-
cation depends only on the action of K on the H-cosets and N is in the kernel
of this action. 2

Finally we need another relation between H = StabG(1◦) and K = {ρx :
x ∈ X} in the Baer envelope of a loop. Let X be a loop and x, y ∈ X. Define:

hx,y := ρxρyρ
−1
x◦y ∈ RMult(X).

Lemma 2.4 Let X be a loop and (G,H,K) the Baer envelope of X. Then

H = 〈hx,y : x, y ∈ X〉.

Proof. Let H1 := 〈hx,y : x, y ∈ X〉 ≤ G. Then H1 is a subgroup of H and
|G : H| = |X|. We claim that G = H1K, which then yields the assertion.

We show this, using induction on the minimal length of elements σ in
RMult(X), expressed as a product of elements of K. We assume that the
minimal length is at least two, as words of length at most one are already in K.

Suppose σ = ρx1ρx2 · · · ρxk
∈ G. If k = 2, then σ = hx1,x2ρx1◦x2 ∈ H1K.

For k > 2, the word σ1 := ρx1◦x2ρx3 · · · ρxk
has a shorter expression as prod-

uct of elements from K, so σ1 = h1ρx for some h1 ∈ H1 and x ∈ X. Then
σ = hx1,x2σ1 = hx1,x2h1ρx ∈ H1K. 2

2.2 Bol loops and twisted subgroups

If we write the Bol identity using the right translations ρ, we get

for all y, z ∈ X : ρ(y◦z)◦y = ρyρzρy.

This leads to the concept of twisted subgroups:

Definition A twisted subgroup K of a group G is a subset, such that for all
x, y ∈ K:

(1) 1 ∈ K
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(2) x−1 ∈ K and

(3) xyx ∈ K.

Notice that the second condition is not necessary for finite groups: If x is in
a twisted subgroup K, then (1) and (3) imply that K contains all the powers
of x. Therefore, K contains x−1 as well.

We get:

Lemma 2.5 If X is a Bol loop with faithful loop folder (G,H,K), then K is a
twisted subgroup of G.

Proof. By Remark (d) we may assume that (G,H,K) is the Baer envelope of
the loop X. Therefore, the elements of K are the permutations ρx with x in X.
Thus the Bol Identity implies that k1k2k1 is in K for all k1, k2 in K. 2

Notice, that for arbitrary (nonfaithful) loop folders (G,H,K) to X, K may
not be a twisted subgroup: we may replace elements k of K by ck with c ∈
CoreG(H) without changing the loop multiplication.

Definition A loop folder (G,H,K) to a Bol loop X is called a Bol-folder, if K
is a twisted subgroup of G.

As just noted not any loop folder to a Bol loop is a Bol folder, but

• The Baer folder of a Bol loop is a Bol folder, see ??.

• Subfolders of Bol folders are Bol folders again.

• Homomorphic images of Bol folders are Bol folders, see ??(2).

In a Bol folder the Bol identity is translated into the group theoretic property
of a twisted subgroup. In this sense we call Bol folders nice loop folders.

We recall some of the results of Aschbacher on twisted subgroups from [?].
As the original paper contains much more, we extract some of the critical argu-
ments.

Lemma 2.6 Let K be a twisted subgroup of the group G. Then

(1) For all k ∈ K, 〈k〉 ≤ K.

(2) If N E G, then the image of K in G/N is a twisted subgroup.

(3) For all k ∈ K, the set kK is a twisted subgroup. The twisted subgroups
kK, k ∈ K are called the associates of K.

(4) For x ∈ K, xKx = K.

Proof. (1) is shown above. (2) is immediate from the definition. For (3) let
x, y, z ∈ K. We write (xy)(xz)(xy) = x(yxy)(y−1zy−1)(yxy) and (xy)−1 =
x(x−1y−1x−1). As x−1 ∈ K, it follows that 1 ∈ xK and that xK is a twisted
subgroup of G. (4) follows from the definition. 2
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Let G be a group with a twisted subgroup K such that G = 〈K〉. Define a
sequence of relations Ri ⊆ G×G by

R0 = {(1, 1)} and Ri+1 = {(kx, k−1y) : (x, y) ∈ Ri, k ∈ K}

and set R∞ =
∞⋃
i=0

Ri. As G is finite, R∞ is a finite union of the Ri‘s. For

(x, y) ∈ R∞ we write x ≡ y.

Lemma 2.7 Let G,K and ≡ as above, then the following holds.

(1) If g1 ≡ h1 and g2 ≡ h2, then g1g2 ≡ h1h2.

(2) If g ≡ h, then gK = Kh.

(3) {gK : g ∈ G} = {Kg : g ∈ G}.

(4) ΞK(G) := {g ∈ G : g ≡ 1} is a normal subgroup of G.

(5) ΞK(G) ⊆ ΨK(G) := {g ∈ G : gK = K} is also a normal subgroup of G.

(6) ΨK(G)K = K = KΨK(G) and ΨK(G) ⊆ K

(7) If ΞK(G) = 1, then there exists some τ ∈ Aut(G) with g ≡ gτ for all
g ∈ G. Furthermore τ2 = 1, kτ = k−1 for all k ∈ K and the set Λ :=
τK ⊂ G〈τ〉 is G-invariant. Notice, that by the action of τ on K there is
at most one automorphism of G with that action.

Proof. (1) is obvious, as g ≡ h if and only if there exist k1, ..., kn ∈ K with
g = k1k2 · · · kn and h = k−1

1 k−1
2 · · · k−1

n .
In (2) use induction: Let (kg, k−1h) be in Ri+1 with k ∈ K and (g, h) ∈ Ri.

Then gK = Kh and therefore kgK = kKh = kKkk−1h = Kh by ??(4).
(3) is a consequence of (2): for any g1, h1 ∈ G elements g2, h2 ∈ K exists

with g1 ≡ g2 and h2 ≡ h1.
For (4) we use (1): If g ≡ 1, then gk = k−1gk ≡ k1k−1 = 1.
In (5) notice, that ΨK(G) is a subgroup containing ΞK(G) by definition.

Let g ∈ ΨK(G) and k ∈ K. Then gkK = k−1gkK = k−1(g(kKk))k−1 = K. As
G = 〈K〉 we get (5).

For (6) notice, that ΨK(G)K = K from the definition, so as 1 ∈ K, ΨK(G) ⊆
K. As kK = Kk−1 by (2), also KΨK(G) = K.

For (7) suppose ΞK(G) = 1. Notice, that for any g ∈ G: if h1 ≡ g and
h2 ≡ g, then h−1

1 h2 ∈ ΞK(G) = 1, so h1 = h2. As G = 〈K〉, for any
g ∈ G there is a unique h ∈ G, such that g ≡ h. Define gτ = h and no-
tice, that τ is a homomorphism by (1) with image 〈K〉 = G, so an automor-
phism. As K ⊆ CG(τ2), but 〈K〉 = G, τ2 = 1. Finally let k ∈ K. Then
(τK)k = k−1τKk = ττk−1τKk = τ(kKk) = τK. 2

Remarks. (a) As τ acts on ΨK(G)/ΞK(G) by inverting all elements, this
section is abelian.

(b) It may happen that τ is the identity. This happens for instance in Bol
loops of exponent 2.

Following Aschbacher, G is said to be reduced, if ΞK(G) = 1. Together with
Lemma ??(7) we get the following statement.
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Lemma 2.8 Let K be a twisted subgroup of the group G and G = 〈K〉. Suppose,
there exists an automorphism σ ∈ Aut(G) with kσ = k−1 for all k ∈ K. Then
ΞK(G) = 1 and σ = τ .

Proof. Let g ∈ ΞK(G). There exist elements k1, ..., kn ∈ K with g = k1k2 · · · kn
and 1 = k−1

1 k−1
2 · · · k−1

n . Using the automorphism property of σ and its values
on K, we get σ(g) = 1, so g = 1 and ΞK(G) = 1. Now we use ??(7). 2

This yields the following characterization of a twisted subgroup.

Lemma 2.9 Let G be a finite group, τ ∈ Aut(G) with τ2 = 1 and K ⊆ G with
kτ = k−1 for all k ∈ K and 〈K〉 = G. Then K is a twisted subgroup, if and
only if 1 ∈ K and Λ = τK ⊆ G〈τ〉 is G-invariant.

Proof. If K is a twisted subgroup, then we can use ?? to get ΞK(G) = 1. Now
τ is the uniquely determined automorphism defined in ??(7) and the statement
holds.

Suppose Λ is G-invariant. Notice, that (τk)2 = kτk = 1. Let k1, k2 ∈ K.
Then k1k2k1 = τ(τk2)k1 ∈ τΛ. As 1 ∈ K and k1 ∈ K iterating this procedure,
we see that K contains all positive powers of k1. 2

Lemma 2.10 [Asch1, 6.5] Let (G,H,K) be the Baer envelope to a Bol loop.
Then (ΞK(G), 1,ΞK(G)) is a subfolder to a normal subloop Ξ(X). Moreover,
Ξ(X) is a group and isomorphic to the group ΞK(G).

Following Aschbacher, a Bol loop X is called radical free, if Ξ(X) = 1.

2.3 Ar-loops

If we wish to apply group theory in loop theory, the loops should have some
automorphisms. Furthermore there should be a way to find other subloops
than just those mentioned in ??. A concept, which occurs naturally here is the
concept of Ar-loops.

As it will turn out, Bruck loops are examples of Ar-loops, while general Bol
loops need not have the Ar-property.

Definition The loop X is called an Ar-loop, if for all x, y ∈ X: hx,y ∈ Aut(X),
This means that

for all x, y, u, v ∈ X : (u ◦ v)hx,y = (u)hx,y ◦ (v)hx,y.

This definition implies, that subloops and homomorphic images of an Ar-
loop are again Ar-loops. Due to ?? our definition of Ar-loop is the same as in
Section 4 of [?]. The following lemmata are results of Aschbacher, see Section
4 in [?].

Lemma 2.11 [Asch1, 4.1] A loop X with Baer envelope (G,H,K) is an Ar-
loop if and only if H acts on K via conjugation. In that case ρhx = ρxh for any
x ∈ X, h ∈ H ≤ Sym(X).
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Definition An Ar-loop folder is a loop folder (G,H,K), such that H acts on
K by conjugation.

In an Ar-folder the Ar-property of the loop is translated into the group
theoretic condition, that H acts by conjugation on K. Therefore, we call it a
nice folder. It holds:

• The Baer folder of an Ar- loop is an Ar-folder, see ??.

• Subfolders of Ar-folders are Ar-folders again, see [?] 4.2(2).

• Homomorphic images of Ar-folders are Ar-folders, see [?] 4.2(2).

We give an example of a loop folder to an Ar-loop, which is not an Ar-
folder: Let G = 〈a, b|a2 = b2 = (ab)4 = 1〉 ∼= D8, H := 〈ab〉 and K := 〈a〉. The
corresponding loop is the group of size 2.

The next lemma is essentially 4.3 of [?].

Lemma 2.12 [Asch1, 4.3] Let (G,H,K) be an Ar-loop folder to a loop X and
L ≤ H. Then

(1) FixX(L) := {x ∈ X : xl = x for all l ∈ L} is a subloop of X and so
closed under ◦.

(2) For k ∈ K, {h ∈ H : hk ∈ H} = CH(k).

(3) For k ∈ K, {k ∈ K : Lk = L} = {k ∈ K : [L, k] = 1} =: CK(L).

(4) (CG(L), CH(L), CK(L)) as well as (NG(L), NH(L), CK(L)) are subfolders
to FixX(L).

(5) H controls G-fusion in H.

(6) [〈K〉, coreG(H)] = 1.

Notice, that (6) is a consequence of (2).
If (G,H,K) is an Ar-loop folder, then for L ≤ H, NG(L) and CG(L) give

subfolders. This is the reason, why the group theoretic approach to loops is
so powerful: The corresponding subloops may not be that interesting in loop
theory, but the subgroups CG(L) and NG(L) play an important part in the local
structure of a group.

2.4 Bruck loops

Recall, that a Bruck loop X is a Bol loop, such that the inverse map ι : X →
X,x 7→ x−1 is an automorphism of (X, ◦).

Lemma 2.13 [Asch1, 6.6; AKP, 5.1] Let X be a Bruck loop with Baer envelope
(G,H,K). Then

(1) X is radical free.

(2) The map ι : X → X,x 7→ x−1 induces on G exactly τ from ??(7),

(3) The set Λ = τK ⊆ G〈τ〉 is G-invariant.
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(4) H ≤ CG(τ).

(5) X is an Ar-loop.

(6) FixX(ι) is a Bol loop of exponent 2 with folder (CG(τ), H,CK(τ)).

Lemma 2.14 [AKP, 5.1] Let X be a Bol loop with Baer envelope (G,H,K).
The following statements are equivalent:

(1) X is a Bruck loop.

(2) X is a radical free Ar-loop.

(3) Ξ(X) = Ξ(G) = 1 and H acts on K by conjugation.

(4) Ξ(X) = Ξ(G) = 1 and H ≤ CG(τ) for some τ ∈ Aut(G) with τ2 = 1 and
kτ = k−1 for all k ∈ K.

Definition A Bruck folder (G,H,K) is a loop folder to a Bruck loop X, which
is both an Ar-folder and a Bol folder. So K is a twisted subgroup and H acts
on K by conjugation.

Notice, that the Baer folder to a Bruck loop is a Bruck folder.

Lemma 2.15 Let (G,H,K) be a Bruck folder. Then the following hold.

(1) There is a subgroup Z of Z(〈K〉) such that 〈K〉/Z ∼= RMult(X).

(2) There exists a unique τ ∈ Aut(G) with [H, τ ] = 1 and kτ = k−1 for all
k ∈ K.

(3) The set Λ = τK ⊆ Aut(G) is G-invariant.

(4) Subfolders and homomorphic images are Bruck folder.

Proof. (1) By ??(6), 〈K〉 is a central extension of RMult(X) by a group
Z ≤ H with Z ≤ Z(〈K〉).

(2) If ΞK(〈K〉) = 1, then τ exists by ??(7). We claim that in fact ΞK(〈K〉) =
1. By ??(4)-(6) ΞK(〈K〉) ⊆ K. Let α be the natural homomoprhism from 〈K〉
to RMult(X). Then K and α(K) are twisted subgroups and α(ΞK(〈K〉)) ≤
Ξα(K)(α(〈K〉)) = 1 by ??. Hence, ΞK(〈K〉) ≤ ker α ≤ Z(〈K〉) by (1). As
|X| = |K| = |α(K)|, we get K∩ ker α = 1. Thus ΞK(〈K〉) = 1.

We claim that for all h ∈ H ∩ 〈K〉 it holds hτ = h. We have

k(τh) = (kh)τh
−1

= ((k−1)h)h
−1

= k−1.

Thus τ and τh are two automorphisms which invert every element in K, which
implies τ = τh by ??. So, hτ = h for all h ∈ H ∩ 〈K〉.

We extend the map τ to G by defining τ(hk) = hk−1 for h ∈ H and k ∈ K.
Then τ is in Aut(G):

Let h1, h2 ∈ H and k1, k2 ∈ K. Then

(h1k1h1k2)τ = (h1h2k
h2
1 k2)τ = (h1h2k

h2
1 k2k3k

−1
3 )τ
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where k3 is an element in K such that kh2
1 k2k3 is an element in H. Then by the

definition of τ
(h1h2k

h2
1 k2k3k

−1
3 )τ = h1h2k

h2
1 k2k3k3.

Notice also that kh2
1 k2k3 = (kh2

1 k2k3)τ = (kh2
1 )−1k−1

2 k−1
3 . This yields

(h1k1h1k2)τ = h1h2(kh2
1 )−1k−1

2 k−1
3 k3 = h1h2(kh2

1 )−1k−1
2 = h1k

−1
1 h2k

−1
2

= (h1k1)τ (h1k2)τ ,

which yields the claim. This gives (2).
As K is a twisted subgroup (3) holds by ??.
Subfolders and homomorphic images of Ar-loop folders (resp. Bol folders)

are again Ar-loop folders (resp. Bol folders). As subloops and homomorphic
images of Bruck loops are again Bruck loops, we get (4). 2

We add, that Bruck folders are nice in our sense: The Bruck loop property of
the loop (Bol identity and automorphic property) translates into the existence
of an automorphism τ ∈ Aut(G) with

• τ2 = 1,

• for all h ∈ H, k ∈ K: hτ = h and kτ = k−1.

• τK is G-invariant and

• H acts by conjugation on K.

Notice, that τK is another transversal to H in 〈G, τ〉. If τ 6= 1, 1 6∈ τK, so
in general this transversal does not give a loop.

Notation. Let (G,H,K) be a Bruck folder (G,H,K) and τ ∈ Aut(G) the
automorphism introduced in ??(2). Then let

G+ := G〈τ〉,

the semidirect product of G with τ ,

H+ := H〈τ〉 ≤ G+ and Λ := τK ⊆ G+.

By ??(3) Λ is a G+-invariant set of involutions.

2.5 Bruck loops of 2-power exponent

As mentioned in the introduction, results of Glauberman [?],[?] and Aschbacher[?],Kinyon
and Phillips, [?], now focus the attention to Bruck loops of 2-power exponent.
Again the loop properties translate into a property of G and we get yet another
nice folder type.

Lemma 2.16 [?],(5.13). Let (G,H,K) be a Bruck folder. Then τ ∈ O2(G+)
if and only if every element of K has 2-power order.
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Proof. Suppose τ ∈ O2(G+). As kτ = k−1 for all k in K, it follows that every
element in K is of 2-power order.

Now assume that every element in K is of 2-power order. Let g = hk with
h in H and k in K. Then τg = τk = k−2τ . Hence, 〈τ, τg〉 is a 2-group for all
g ∈ G. By the Baer-Suzuki Theorem τ is in O2(G+). 2

Notice, that if (G,H,K) is a Bruck folder to a loop X, X is of exponent 2
iff K is a union of 1 ∈ G and G-conjugacy classes of involutions.

Definition Let X be a Bruck loop of 2-power exponent. A loop folder (G,H,K)
to X is called a BX2P-folder, if it is a Bruck folder and every element of K has
a 2-power order. Equivalently τ ∈ O2(G+). A loop folder (G,H,K) is called a
BX2P-envelope, if (G,H,K) is a BX2P-folder and a loop envelope, so G = 〈K〉.

Again, the Baer folder to a Bruck loop of 2-power exponent is a BX2P-folder,
while subfolder and images of BX2P-folders are again BX2P-folders.

Lemma 2.17 Let (G,H,K) be a BX2P-folder. Then k2 ∈ O2(G) for all k in
K. If G = G/O2(G), then 1 ∈ K and K−{1} is a union of G-conjugacy classes
involutions.

Proof. Let k ∈ K and τ ∈ Aut(G) be the automorphism of ??(2). Then
[τ, k] = τk−1τk = k2 ∈ [O2(G+), G] ≤ O2(G+) ∩ G ≤ O2(G) by ??. In par-
ticular K = Λ in G+/O2(G+). As Λ is a union of G+-conjugacy classes of
involutions (and 1 if tau = 1) by ??(3), the statement holds on K ⊆ G. 2

Remark 2.18 The set K has not to be a normal set in G, but Λ is a normal
set in G+ by ??(3). If τ = 1, then K is normal in G. As 〈K〉 = G ∩ 〈Λ〉, the
group 〈K〉 is normal in G.

This lemma is the reason, why the special case of Bol loops of exponent 2 is
so closely related to the general case of Bruck loops of 2-power exponent:

While working on the case of Bol loops of exponent 2, we decided to com-
pletely ignore the structure of O2(G), as almost nothing was known about
O2(G). Luckily in the general case of Bruck loops of 2-power exponent, the
group G+/O2(G+) behaves exactly as in the special case of Bol loops of expo-
nent 2, since the sets K and Λ have the same image modulo O2(G+): K = Λ.
This trick was already used in [?] to reuse the arguments of [?] for the classifi-
cation of M -loops.

3 The Bruck loops of 2-power exponent

This section contains just about anything, which was previously known about
Bruck loops of 2-power exponent, as well as about Bol loops of exponent 2. We
formulate this knowledge in the language of BX2P-folders. Not everything is
needed in order to prove the main theorem, but most statements are used in [S]
and in [BS3].
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3.1 Basic results

Here we present results known before the paper [?] of Aschbacher. Most of the
arguments essentially go back to Heiss, see [?].

In a Bol loop, the order of every element divides the loop order. Therefore,
the following holds.

Lemma 3.1 (1) A Bruck loop of 2-power exponent has even size or size 1.

(1) If (G,H,K) is a BX2P-folder, then |G : H| = |X| is 1 or even.

Proof. For k ∈ K, 〈k〉 acts semiregularly on the H-cosets of G by the loop
folder property. 2

Lemma 3.2 Let (G,H,K) be a BX2P-folder. Let U ≤ G be a subgroup such
that U = (U ∩H)(U ∩K). Then the subfolder to U (see ??) is (U,U ∩H,U ∩K)
and the size of the corresponding subloop is |U : U∩H|. In particular overgroups
of H and of 〈K〉 satisfy this condition.

Proof. See ??. 2

Lemma 3.3 Let (G,H,K) be a BX2P-folder. Let λ ∈ Λ, h ∈ H and g ∈ G. If
(hg)λ = (hg)−1, then h2 = 1.

Proof. Suppose hgλ = (hg)λ = (hg)−1 = (h−1)g. Let µ = gλg−1 ∈ Λ. Then
hµ = h−1, so [h, µ] = h−2 ∈ H. But [h, µ] = h−1µhµ = µhµ ∈ ΛΛ ∩ H =
KK ∩H. Since KK ∩H = 1 by the loop folder property, h2 = 1. 2

Lemma 3.4 Let (G,H,K) be a BX2P-folder. Then the following holds.

(1) O2′(G) ≤ CH(〈K〉).

(2) If (G,H,K) is a faithful BX2P-folder, then O2′(G) = 1.

(3) If (G,H,K) is a BX2P-envelope, then O2′(G) ≤ Z(G) ∩H.

Proof. O2′(G)H gives rise to a subfolder by ??, but |O2′(G)H : H| is odd, so
by ??, |O2′(G)H : H| = 1. By ?? then [〈Λ〉, O2′(G)] = 1. 2

The following stronger version of ?? holds. It has very strong consequences,
see Corollaries ??, ??.

Lemma 3.5 Let (G,H,K) be a BX2P-folder and U ≤ G with H ≤ U . Then
|G : U | is even or 1.

Proof. Assume |G : U | to be odd. Then U contains a Sylow-2-subgroup
of G, so every element of K is conjugate to some element of U ∩ K. Let
U+ = U〈τ〉 ≤ G+, so |G+ : U+| is odd. Then |{λg : λ ∈ Λ ∩ U+, g ∈
G}| ≤ 1 + (|U+ : H+| − 1)|G+ : U+| = 1 + |G : H| − |G : U |. Since
|G : H| = |K| = |Λ| = |{λg : λ ∈ Λ ∩ U+, g ∈ G}| we get |G : U | = 1.

2
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Corollary 3.6 H is a 2-group if and only if G is a 2-group.

Proof. If H is a 2-group, then H is a contained in 2-Sylow M of G, so by ??
|G : M | = 1 and G is a 2-group. 2

Corollary 3.7 Let (G,H,K) be a BX2P-folder. Then O2,2′(G)H = O2(G)H.

Proof. O2(G)H is of odd index in O2,2′(G)H, so the statement is a consequence
of ?? and ??. 2

Lemma 3.8 Let (G,H,K) be a BX2P-envelope to a soluble Bruck loop L of
2-power exponent. Then |L| = |G : H| is a power of 2.

Proof. As L is soluble, there is a series 1 = L0 ≤ · · · ≤ Ln = L of subloops of
L with Li normal in Li+1 such that Li+1/Li is an abelian group. Every element
in L is of 2-power, which implies that Li+1/Li is a 2-group. Thus |L| is a power
of 2. 2

Lemma 3.9 Let (G,H,K) be a BX2P-envelope and |G : H| a power of 2. Then
G is a 2-group.

Proof. As |G : H| is a 2-power, H contains Sylow subgroups for all odd primes.
But then the product of any two elements of K has to be of 2-power order: If
k1k2 is not of 2-power order for k1, k2 ∈ K, then τk−1

1 τk2 ∈ ΛΛ is not of 2-power
order. Then there exist λ1, λ2 ∈ Λ with λ1λ2 of odd prime order and λ1 inverts
λ1λ2. By ?? this is a contradiction, as λ1λ2 is conjugate into H by assumption.
Now by the Baer-Suzuki Theorem, 〈Λ〉 is a 2-group, so G = 〈K〉 is a 2-group
too. 2

Corollary 3.10 Let (G,H,K) be a BX2P-envelope to a Bruck loop L and G =
O2(G)H. Then L is soluble.

Proof. By ?? G is a 2-group. Let G = Gr �Gr−1 � · · ·�G0 = H be a normal
series starting at G = G0 and ending at H such that Gi+1/Gi is of order 2.
Let Li be the loop defined by (Gi, H,Gi ∩K). Then |Li+1 − Li| = |Li|. This
property allows to construct an homomorphism from Li+1 into Z2 with kernel
Li. Thus Li+1 is a normal subloop of Li, for 0 ≤ i ≤ r − 1, and Li+1/Li is a
group of order 2. This shows that L = Lr a soluble. 2

Lemmas ?? and ?? imply: if a Bruck loop of 2-power exponent is soluble,
then G is a 2-group. The following theorem shows that if G is soluble, then the
Bruck loop is soluble as well, and 〈K〉 is already a 2-group.

Theorem 2 Let (G,H,K) be a BX2P-folder and assume that G is soluble.
Then 〈K〉 ≤ O2(G) is a 2-group.
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Proof. Our proof uses ??, which was introduced in [?]. Nevertheless the
Theorem was already proved in [?].

Let G = G/O2(G). By ??, F ∗(G) = F (G) ≤ H. Let λ ∈ Λ. If λ acts
nontrivially on F (G), it inverts some element of odd prime order p in F (G). By
??, λ inverts some element of order p in the preimage of F (G), but H contains
a Sylow-p-subgroup of that preimage. By ?? we get a contradiction. Therefore,
the elements in Λ act trivially on F (G). As C

G+(F (G+)) ≤ Z(F (G+)), it fol-
lows λ ∈ O2(G), which implies 〈Λ〉 ≤ O2(G+). 2

Corollary 3.11 Let (G,H,K) be a BX2P-folder to a Bruck loop L. Then L is
soluble if and only if 〈K〉 is a 2-group.

The following lemma will be helpful.

Lemma 3.12 Let (G,H,K) be a BX2P-folder and G = G/O2′(G). Then
(G,H,K) is a loop folder to the same loop.

Proof. By ??, O2′(G) ≤ H, so ?? gives the result. 2

3.2 Selected results of Aschbacher, Kinyon, Phillips

Next we present some of the results from [?], and [?], which are fundamental to
our results.

For the next lemma see also ?? and ??.

Lemma 3.13 Let (G,H,K) be a BX2P-folder to a Bruck loop X of 2-power
exponent.

(1) Let L ≤ H. Then (NG(L), NH(L), CK(L)) and (CG(L), CH(L), CK(L))
are BX2P-subfolders to a (the same) subloop of X.

(2) Let U ≤ G with |U | ≤ |U ∩ H||U ∩ K|. Then (U,U ∩ H,U ∩ K) is a
BX2P-subfolder to a subloop of X.

Proof. By ??(4), subfolder of BX2P-folders are BX2P-folders. (1) is (5.5)(1)
of [?], a consequence of ??(4).

(2) follows from ??. 2

The idea to ignore O2(G) resp. O2(G+) origins in [?], we present here the
main arguments:

Lemma 3.14 ([?],8.1(1)) Let G be a group and x ∈ G an involution. If x ∈
G := G/O2(G) inverts some element y ∈ G of odd prime order p, then x inverts
some element of order p in G.

Now we get the next lemma, which will be used repeatedly in [S].

Lemma 3.15 Let (G,H,K) be a BX2P-folder. Let G = G/O2(G) and x ∈
K, y ∈ G. If 1 6= o(y) is odd and yx = y−1, then for every z ∈ G: yz /∈ H. In
particular, y /∈ H.
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Proof. Assume otherwise. Let τ ∈ Aut(G) be the automorphism defined above
and recall that τk ∈ Λ and that O2(G+)k = O2(G+)τk, as τ ∈ O2(G+). Since
〈y, x〉 is a dihedral group with all involutions conjugate, we may assume w.l.o.g
that o(y) is some odd prime p, by replacing y with some suitable element from
〈y〉.

We can choose preimages x ∈ K of x and y ∈ H of y with o(y) = o(y).
Recall, that τx is another preimage of x in G+. As τx inverts some element of
prime order p in

O2(G+)〈y〉,

by ?? then τx inverts some element of prime order p inO2(G)〈y〉. ButO2(G)〈y〉 ≤
O2(G)H and H contains a p-Sylow-subgroup of O2(G)H. So τx inverts some
element of odd order, which is conjugate into H, a contradiction to ??. 2

The following definition is taken from [?].

Definition An M -loop is a finite Bruck loop X, such that each proper section
of X is soluble, but X itself is not soluble.

The next theorem is Theorem 3 of [?].

Theorem 3 [?] Let X be an M -loop with Baer envelope (G,H,K), J = O2(G)
and G∗ = G/J . Then

(1) X is a Bruck loop of 2-power exponent.

(2) G∗ ∼= PGL2(q) with q = 2n+ 1 ≥ 5, H∗ is a Borel subgroup of G∗ and K∗

consists of the involutions in G∗ − F ∗(G∗).

(3) F ∗(G) = J .

(4) Let n0 = |K ∩ J | and n1 = |K ∩ aJ | for a ∈ K − J . Then n0 is a power
of 2, n0 = n12n−1 and |X| = |K| = (q + 1)n0 = n12n(2n−1 + 1).

The following lemma is another formulation of Aschbachers [?] (12.5)(2),
which is based on an idea of Heiss. The formula for Bruck loops occurs in
(3.2)(3) of [?] and will be heavily used in [S] and [BS3].

Lemma 3.16 Let (G,H,K) be a BX2P-folder and N E G with O2(G) ≤ N .
Let ai, i ∈ {1, ..., r} be representatives for the orbits of G = G/N on Λ

]
, mi :=

|{aiG}|, ni = |Λ ∩ aiN+| and n0 := Λ ∩N+. Then

|K| = |Λ| = n0 +
r∑
i=1

nimi.

Proof. Let Λi := {a ∈ Λ : a ∈ aiG} and Λ0 := Λ∩N+. Then {Λi : i ∈ {0, .., r}}
is a partition of Λ with |Λ0| = n0 and |Λi| = nimi for i ∈ {1, .., r}. 2
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3.3 Additional results

In the following G always denotes the group G/O2(G). The results presented
here emerged during work on the classification of passive simple groups. We
start with a corollary to ?? which is basic to the classification of the passive
groups in [S]. It is a very powerful tool to get a full Sylow p-subgroup of G into
H for p a prime divisor of |H|.

Corollary 3.17 Let (G,H,K) be a BX2P-folder. Suppose O2(H) = 1 and
there exists an odd prime p dividing |G|, such that mi ≡ 0 (mod p) for all
i ∈ {1, .., r}, with mi as in ?? for N = O2(G). Then p does not divide |K| =
|G : H|.

Proof. Since by assumption O2(H) ⊆ O2(G), we have O2(O2(G)H) = O2(G).
Therefore, as |O2(G)H : H| is a 2-power,

(O2(G)H,H,O2(G)H ∩K)

is a subfolder to a soluble subloop by ??. Hence |O2(G)H ∩ K| as well as
|〈O2(G)H ∩ K〉| is a 2-power, and, as 〈O2(G)H ∩ K〉 is normal in O2(G)H,
we get 〈O2(G)H ∩ K〉 ≤ O2(O2(G)H) = O2(G), Thus n0 = |O2(G)+ ∩ Λ| =
|O2(G) ∩K| = |O2(G)H ∩K| is a 2-power. By ?? p does not divide |K|. 2

There is a corollary to ??, which generalizes Theorem ??:

Corollary 3.18 Let (G,H,K) be a BX2P-folder. If F ∗(G) = F (G), then G =
H.

Proof. We have F (G) ≤ H by ??. By ??, no element of K acts nontrivially on
F (G). Therefore 〈K〉 ≤ CG(F (G)) ≤ Z(F (G)) ≤ H. Therefore, 〈K〉 = 1 and
G = H. 2

Therefore, by ??. and ??, in a nonsolvable loop with BX2P-folder (G,H,K),
G has components. The following lemma makes use of soluble subloops. It
shows, that H has to contain certain elements of odd order.

Lemma 3.19 Let (G,H,K) be a BX2P-folder, G = G/O2(G) and U ≤ G be a
subgroup with the following properties:

(1) U = (U ∩H)(U ∩K).

(2) [O2(U), O2(U)] ≤ O2(G).

(3) 〈U ∩K〉 ≤ O2(U).

Then O2(U) ≤ O2(G)H.

Proof. Let u ∈ U be of odd order. We can write u = hk with h ∈ H ∩ U
and k ∈ K ∩ U by (1). Now k ∈ 〈K ∩ U〉 ≤ O2(U) by (3). By (2) we have
[u, k] ∈ [O2(U), O2(U)] ≤ O2(G). In G = G/O2(G) the element u is of odd
order and commutes with k. As [u, k] = 1 implies [h, k] = 1 and as k is of order
1 or 2, it follows that k ∈ H, which yields the assertion. 2

There exists a powerful generalization to nonsoluble subloops.
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Lemma 3.20 Let (G,H,K) be a BX2P-folder, G = G/O2(G) and D := 〈K〉.
Then O2(CG(D)) ≤ H.

Proof. Let x ∈ G be of odd order, such that [D,x] = 1. We can write x = hk
with h ∈ H, k ∈ K. As k ∈ O2(G)D, [k, x] = 1. As x = hk, [h, k] = 1, so k is in
H as x has odd order. Therefore x is in H. 2

Definition A Bruck loop L of 2-power exponent is called a 2M-loop, if L is not
soluble, but every proper subloop is soluble.

Remark. Notice, that an M -loop has to be simple while a 2M -loop may be not.
For instance, a nonsplit extension of a soluble subloop by a simple non-soluble
loop may be a 2M -loop. In order not to have to exclude such extensions, we
have introduced the concept of a 2M -loop.

The classification of M -loops by Aschbacher, Kinyon and Phillips given in
Theorem ?? yields a description of the 2M -loops.

Lemma 3.21 Let q > 1 be an integer with q − 1 a 2-power. Then q = 2 or 9
or q ≥ 5 is a Fermat prime.

Proof. See [?] for a proof, based on Zsigmondy’s Theorem. 2

Lemma 3.22 Let (G,H,K) be a BX2P-envelope to a 2M -loop L. Then the
following holds.

(1) CG(O2(G)) ≤ O2(G),

(2) G ∼= PGL2(q) and q = 9 or q ≥ 5 is a Fermat prime,

(3) |G : O2(G)H| = q + 1,

(4) K consists of 1 and all involutions in PGL2(q) \ PSL2(q),

(5) O2(G) = (O2(G) ∩H)(O2(G) ∩K).

Proof. Let L1, L2 be normal proper subloops. These subloops are soluble by
definition of the 2M -loop. Notice, that L1L2 is another soluble normal subloop,
see [Bruck], thus a proper subloop too. Therefore there exists a biggest proper
normal subloop L0, which is soluble. The quotient L/L0 then is an M -loop as
defined in ??. Let D := 〈R(x) : x ∈ L0〉 ≤ G. Then, as L0 is a normal soluble
subloop, D is a normal 2-group of G, so D ≤ O2(G) and G/D is a loop envelope
to an M -loop, see [Asch] 2.6. If we manage to prove the statement for (G̃, H̃, K̃)
with G̃ = G/D, the statement holds for (G,H,K), so we may assume D = 1.

The structure of a faithful loop envelope to an M -loop is described in Theo-
rem ??, which together with ?? implies the statement. Notice, that (5) follows
from Theorem ??(4).

Now assume that (G,H,K) is not faithful. By ??(6) C := coreG(H) is
in Z(G). Let Z := O2′(Z(G)). Then Z ≤ C by ??(1) and (G̃, H̃, K̃) with
G̃ := G/C is a faithful loop envelope to an M -loop by ??. So we can apply
Theorem ??. Then G = G/O2(G) is a central extension of PGL2(q) with Z still
contained in the group generated by K. Thus, if Z ∼= Z 6= 1, then q = 9 and
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|Z| = 3, as this is the only case of nontrivial odd order Schur multiplier of the
groups in question. (The r-part of the Schur multiplier of a perfect group may
be nontrivial for noncyclic Sylow-r-subgroups only. The unique noncyclic case
q = 9 actually results in a Schur multiplier Z3 for Alt(6) = PSL2(9).)

According to Theorem ?? the involutions in G \ G′ are in K. However in
this case, involutions outside G

′
invert Z, as is visible using the embedding of

3 Alt(6) into SL3(4), see [?] p.23 for the action of L3(4)-automorphisms on the
Schur multiplier. This contradicts ?? and ??, so Z = 1.

The factorization O2(G) = (O2(G) ∩ H)(O2(G) ∩ K) can be seen as fol-
lows: We have O2(G)H = H(O2(G)H ∩K) by ??. Let k ∈ K ∩ O2(G)H. As
H ∼= q : (q − 1) does not contain involutions of PGL2(q) \ PSL2(q), we obtain
that k = 1. Thus k ∈ O2(G) and the assertion follows with the Dedekind iden-
tity. 2

A powerful application of Aschbachers results is the 2M -loop-embedding:
Any nonsoluble Bruck loop of 2-power exponent contains a 2M-loop as a subloop.
Since the structure of a 2M -loop is very restricted, we get strong information
on G.

Lemma 3.23 Let (G,H,K) be a BX2P-folder with G 6= O2(G)H. Then some
subgroup U ≤ G exists such that

• U = (U ∩K)(U ∩H), U = 〈U ∩K〉,

• The loop to (U,U ∩H,U ∩K) is a 2M -loop,

• F ∗(U) = O2(U),

• U/O2(U) ∼= PGL2(q) for q ≥ 5 a Fermat prime or q = 9,

• |U : O2(U)(U ∩H)| = q + 1,

• K ∩ U consists of 1 and all involutions in PGL2(q) \ PSL2(q),

• There exist elements of order q+1
2 in U inverted by elements of Λ ∩ U+.

• There exist elements h ∈ U ∩H ∩G(∞) of order 3 or q if q = 9 or q 6= 9,
respectively.

• In particular G(∞) contains a section isomorphic to PSL2(q).

Proof. We can find the subgroup U recursively: If the loop is nonsoluble, but
every subloop is soluble, the loop is itself a 2M -loop. Else we can find a proper
nonsoluble subloop, which contains a 2M -loop Y . Set U := 〈R(x) : x ∈ Y 〉.
Then (U,U ∩H,∩K) is a loop folder to Y , see [Asch1] 2.1.

Now ?? describes the structure of U , which implies the statements. 2

4 The Proof of Theorem ??

If not explicitely defined otherwise, G = G/O2(G) and for subsets X ⊆ G, X is
the image of the natural homomorphism from G onto G.
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Definition Let S be a finite non-abelian simple group. Let LS be the class
of all Bruck loops X of 2-power exponent, such that there is a BX2P-folder
(GX , HX ,KX) to X with F ∗(GX/O2(GX)) ∼= S. A prime p, p > 2, is called
passive for S, if p - |X| for all X ∈ LS . (p may itself not divide |S|.)

The smallest passive prime p ∈ π(S) is called the anchor prime of S. It is
the smallest odd prime p ∈ π(S) such that for every X ∈ LS , p does not divide
|GX : HX | = |X|.

The finite non-abelian simple group S is called passive, if every odd prime
p ∈ π(S) is passive.

Remarks (1) Notice that the definition of a passive finite non-abelian simple
group is equivalent to the definition given in the introduction:

The finite non-abelian simple group S is passive if and only if X is soluble for
every X ∈ LS if and only if G = O2(G)H whenever (G,H,K) is a BX2P-folder
with F ∗(G) ∼= S. The equivalence of these conditions follows from ??, the 2M -
loop embedding ?? and ??, ??: The 2M -loop embedding implies, that G

(∞)

contains elements of order either 3 or 5, which are products of two elements in
K = Λ, so any 2M -loop embedding prevents one of the primes 3 or 5 from being
passive.

(2) The anchor prime to a finite non-abelian simple group may not exist. Its
existence will be established later by classifiying the non-passive finite simple
groups, using the classification of finite simple groups.

(3) If S is passive, then S has an anchor prime, usually 3, except in case of
the Suzuki groups 2B2(q), where it is 5.

Lemma 4.1 Let S ∼= PSL2(q) for q ≥ 5 a Fermat prime. Then either q or 3 is
the anchor prime of S.

Proof. The 2M-loop embedding, ??, and the list of subgroups of PSL2(q) by
Dickson and the fact that 5 does not divide q+ 1 = 24n + 1 + 1, implies that we
have an embedding such that UO2(G) = G and U ∼= PGL2(q).

We get that H always contains a Sylow-q-subgroup of U . Thus the prime q
is passive for S. For q = 5 the existence of examples ensures, that q = 5 is the
smallest such prime. In the other cases there may be no examples of M -loops
for the corresponding q, so PSL2(q) is passive. Then q = 3 is the anchor prime.
If examples exist, the anchor prime is q. 2

Lemma 4.2 Let S ∼= PSL2(9) ∼= Alt(6). Then p = 3 is the anchor prime.

Proof. Let (G,H,K) be a BX2P-folder with F ∗(G) ∼= S. If G = O2(G)H, then
H contains a Sylow-3-subgroup of G. By ?? and Dixons theorem we can only
embedd 2M-loops for q = 5 or q = 9. The case q = 9 implies, that H contains
a Sylow-3-subgroup of G.

Otherwise there is a subgroup U in G such that U/O2(U) ∼= PGL2(5) and
such that U ∩H ∼= 5 : 4 by ??. Then H contains elements of order 5. These el-
ements are inverted by inner involutions of Alt(6) and (if G contains PGL2(9))
involutions of PGL2(9) outside PSL2(9). Therefore, by ?? K can consist only
of the 1-element, the 15 transpositions of Sym(6) and the 15 involutions of
Sym(6), which are a product of three commuting transpositions. Therefore,
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|G : H| ≤ 31. As G is a subgroup of Aut( Alt(6)), it follows from the list of
subgroups of Aut( Alt(6)) that H ∼= Sym(5). Thus H contains an element x
of order 3. Then (CG(x), CH(x), CK(x)) is a subfolder by ??(1). As CG(x)
contains a Sylow-3-subgroup of G which covers O2′(CG(x)), the subgroup H
contains a Sylow-3-subgroup of G by Lemma ??. Thus 3 is the anchor prime to
Alt(6). 2

Definition Let (G,H,K) be a BX2P-folder and C a component ofG = G/O2(G).
An anchor group A of C is a subgroup of C ∩H such that A ∈ Sylp(C) for the
anchor prime p of C/Z(C).

The following proposition is crucial for the proof of Theorem ?? as it will be
used to show that every component of G is either normal in 〈K〉 or contained
in H.

The assumption, that every simple section has an anchor prime can be con-
sidered as a kind of K-group assumption: In the classification of finite simple
groups, K is the list of ‘known’ finite simple groups and the goal was to show,
that K contains every finite simple group.

With regard to Bruck loops we first study groups, such that every simple
section has an anchor prime. In a forthcoming paper we show, that every finite
simple group has an anchor prime.

Proposition 4.3 Let (G,H,K) be a BX2P-folder and suppose every non-abelian
simple section of G has an anchor prime. Then every component of G has an
anchor group.

Proof. The proof proceeds by induction on |G|. We reduce the structure of G
in multiple steps and produce either anchor groups or a contradiction.

(1) O2′(G) = 1:
If O2′(G) 6= 1, then by induction on G/O2′(G), the statement holds for the loop
folder from ??. Since O2′(G) ≤ H by ??, the statement holds in G too.

(2) F (G) = 1:
By ?? we have F (G) ≤ H. If x ∈ F (G) for some element x ∈ H of odd prime
order, then (CG(x), CH(x), CK(x)) gives a subfolder by ??(1). Since O2′(G) = 1
by (1), CG(x) is a proper subgroup. Now CG(x) covers CG(x), which contains
E(G). Therefore anchor groups of components of CG(x)/O2(CG(x)), which
exist by induction, lift to anchor groups of G.

(3) E(G) contains more than one component:
Else G has a unique component, which has an anchor prime p by assumption.
By definition of the anchor prime an anchor group exists.

(4) If C ∩H contains non-trivial elements of odd order for some component C
of G, then anchor groups for all components exists:
Let x be such an element. Then CG(x) covers all but the component C. By
induction we get anchor groups for all components of CG(x)/O2(CG(x)). But
these lift to anchor groups for the components of G, other than C. Since we
have more than one component, we can use some element z of odd prime order
in one of these anchor groups to get the anchor group to C by induction on
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CG(z), which covers C.

(5) H ∩ E(G) is a 2-group:
Otherwise let x ∈ H ∩E(G) be of odd prime order p. We can write x uniquely
as x = x1x2 · · ·xk with xi ∈ Ci, C1, ..., Ck the components of G.

If xi = 1 for some i, CG(x) covers the component Ci, so by induction on
CG(x) we get an anchor group to Ci as in (4). We saw already in (4), that this
implies, that all components have anchor groups. So xi 6= 1 for every i. Now
CE(G)(x) is the direct product of the CCi

(xi). In particular 〈x1, x2, ..., xk〉 ≤
Op(CE(G)(x)) ≤ Op(CG(x)). Let x be some preimage of x of order p.

Since CG(x) covers CG(x), it follows thatOp(CG(x)) is covered byO2,2′(CG(x)).
By ??, we may choose therefore preimages of the xi in H. By (4) we now get
anchor primes for all components of G.

By ?? there is an element h ∈ H of odd prime order p.

(6) h normalizes every component of G:
Otherwise let C be a component with Ch 6= C and D = CCh · · ·Ch

p−1

, the
closure of C under h. Now CD(h) = {cch · · · ch

p−1

: c ∈ C} ∼= C.
By ??(1), CG(h) is a group to a subloop. Notice, that CD(h) maps to a

component of CG(h)/O2(CG(h)): D is subnormal in G, so CD(h) is subnormal
in CG(h), but CG(h) covers CG(h).

By induction, we get an anchor group A to CD(h). But now A ≤ D ≤
E(G) ∩H, so E(G) ∩H contains elements of odd order contrary to (5).

(7) We get anchor groups for all components of G:
We use ?? to get an additional property of h ∈ H: some h ∈ H of odd prime
order exists, such that h ∈ N

(∞)
h , with Nh the normal closure of h. (Recall,

that the element h is in a PSL2(q)-section. )
Let G1 be the subgroup of G consisting of all elements, which normalize

every component of G. Notice, that the preimage E of E(G) is contained in G1.
By the Schreier-conjecture G1/E is soluble. By (6) we have h ∈ G1. Therefore
Nh ≤ G1. As h ∈ N (∞)

h ≤ E, this is a contradiction to (5). 2

The following lemma reveals the idea behind the anchor groups: Anchor
groups insure that the involutions of K fix all components of G (see ??) to
permute components of G.

Lemma 4.4 Let (G,H,K) be a BX2P-folder and suppose that every non-abelian
simple section of G has an anchor prime. Then every element x of K normal-
izes every component C of G. In particular a component of G is either normal
in 〈K〉 or contained in H.

Proof. Let x ∈ K, λ ∈ Λ with x = λ and C be a component of G. Assume
Cx 6= C. Let A,B be anchor groups to the components C and Cx, respectively,
which exist by ??. As C and Cx are isomorphic, the corresponding anchor
primes p1 and p2 are equal.

In particular AB ∈ Sylp1(CCx). Let y ∈ A be of order p1. As p1 is odd
and A is Sylow in C, not every element of order p1 of A is in Z(C) ≥ C ∩ Cx.
Therefore, we may choose y /∈ Cx.

Then x inverts the element y−1yx, which is of order p1, and hence is conju-
gate to some element of AB ≤ H. This is a contradiction to ??.
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So [C, 〈K〉] ≤ C ∩ 〈K〉. Therefore either C E 〈K〉 or [C, 〈K〉] = 1. In the
latter case let c ∈ C be of odd order. We can write c = kh with k ∈ K, h ∈ H.
As k commutes with c, it follows that k commutes with h = ck as well. The
fact that c is of odd order and k an involution yields k is contained in H, which
implies that c is in H. Now C = O2(C) yields C ≤ H. 2

Proof of Theorem ?? Let (G,H,K) be a BX2P-envelope and assume, that
every non-abelian simple section of G is either passive or isomorphic to PSL2(q)
for q = 9 or a Fermat prime q ≥ 5. If G = H, then by ?? G is a 2-group and
the theorem holds. Hence we may assume G 6= H. If F ∗(G) = F (G), then by
?? G = H, so we assume F ∗(G) 6= F (G).

We prove the theorem by induction on the order of G.

(1)F (G) ≤ Z(〈K〉):
As G = 〈K〉 and as no element of K acts nontrivially on F (G) by ?? and ??,
F (G) ≤ Z(〈K〉).

Recall that by ??
(2) every component of G is normal in G.

(3) Every passive component C which is not isomorphic to PSL2(q), with q = 9
or q ≥ 5 a Fermat prime is contained in H: We distinguish the two cases that
G contains either one or more components.

G has precisely one component C: If F (G) = 1, then by (3) and the definition
of passive C is as desired. Thus we may assume F (G) 6= 1. Let F be a subgroup
of H of odd order such that F = F (G). Let N be the full preimage of C in G.
Then, as C ≤ CG(F ), N = O2(G)CN (F ) by Dedekind. Let G1 := CG(F ), so
(G1, G1 ∩H,G1 ∩K) is a subfolder by ??. Set G2 = G1/F . Then (G2, β(H ∩
G1), β(K ∩ G1)) with β the natural homomorphism from G1 onto G1/F is a
loop folder to the same loop by ??. As F ≤ Z(G) it follows F (G2/O2(G2)) = 1.
Then F ∗(G2/O2(G2) ∼= C/Z(C). Hence by induction and by the definition of a
passive group G2 = O2(G2)β(H ∩ G1). Therefore, the folder to G2, as well as
this one for G1, is soluble by ??. Now ?? implies G1 = O2(G1)(H ∩G1). Hence
N is contained in O2(G)H and C in H.

G has more then one component. Let D be a component of G different from
C. By ?? there is a nontrivial element x in H of odd order such that x is in an
anchor group of D. Then, as x is in D, [C, x] = 1. Let N be the full preimage
of C in G. Then by the Dedekind identity N = O2(G)CN (x). Let G1 = CG(x),
H1 = CH(x) and K1 = G1 ∩ K. Then (G1, H1,K1) is a proper subfolder of
(G,H,K) by ??. Then ?? implies that CN (x) is contained in either 〈K1〉 or in
H1. In the first case we obtain by induction on |G| (|G1| < |G|) the statement
of Theorem ?? for (G1, G1 ∩H,G1 ∩K). Hence, C ∼= PSL2(q), with q = 9 or
q ≥ 5 a Fermat prime in contradiction to our assumption. In the latter case
CN (x) ≤ H1 which yields C ≤ H, the assertion.

(4) H does not contain a component of G:
Assume H contains a component C of G. Let x be an element in K. By (2)
[x,C] ≤ C. Set Bx := C : 〈x〉. By ?? x does not invert an element of odd
order in C. Hence 〈x, xb〉 is a 2-group for every b of B. Thus by Baer-Suzuki
x ∈ O2(Bx) and therefore [C, x] = 1. This implies C ≤ Z(G), which is not
possible.
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(3) and (4) imply that
(5) Every component of G is isomorphic to PSL2(q), with q = 9 or q ≥ 5 a
Fermat prime.

(6) G/F ∗(G) is an elementary abelian 2-group: As F (G) ≤ Z(G), we have
G/Z(F ∗(G)) is isomorphic to a subgroup of Aut(E(G)) which fixes every com-
ponent of G. By (5) the outer automorphism group of every component of G is
an elementary abelian 2-group which yields the assertion.

(7) If G has a unique component, then the assertion holds:
By ?? there is a subgroup U of G such that E(U) ∼= PSL2(q′), q′ = 9 or q ≥ 5
a Fermat prime and U/O2(U) ∼= PGL2(q′). By assumption, (5) and by (33.14)
of [Asch0] E(G) ∼= PSL2(q) or 3PSL2(9).

We claim that q = q′. If q 6= q′, then q = 9 and q′ = 5 by the subgroup list
of PSL2(q) given by Dickson and by the fact that q + 1 = 22n

+ 2 ≡ 3(5) for
n > 1. Then by to ?? H contains a Sylow 3-subgroup of G. On the other hand
H ∩ U also contains a Sylow 5-subgroup by ??. Hence H = U or G which is
not possible. Thus q = q′.

This yields that O2(G)U = G or q = 9 and G contains a subgroup isomorphic
to PGL2(9). So, it remains to consider the case q = 9. As H contains a Sylow
3-subgroup of G, ?? implies that K consists only of involutions in PGL2(9) \
PSL2(9). As 〈K〉 = G we get G ∼= PGL2(9). If G ∼= 3PGL2(9), then the
elements in K invert Z(G) by [Atlas] p. 23, in contradiction to ?? and ?? and
(1) and (2) of the theorem. By ?? (3) and (4) hold as well.

(8) If G has at least two components C1 and C2, then the assertion holds: By ??
we get anchor groups Ai ≤ Ci. Let Bi ≤ H of odd order with Bi = Ai. We can
use induction on Gi := 〈CG(Bi) ∩K〉 by applying ??(1). This shows that Gi
is as described in the statement of the theorem. In particular, no components
of Gi are isomorphic to 3PSL2(9) and the elements in K ∩Gi induce PGL2(9)-
involutions on these components. As before, we see that K does not contain an
element which induces an Sym(6)-involution on some component, so (1) and
(2) hold. By induction and as q(q − 1) is a maximal subgroup of PSL2(q) we
get with (4) (3).

Moreover by induction every component of Gi acts faithfully on O2(Gi). As
O2(Gi) is contained in O2(G), it follows that O2(G) = F ∗(G), which is (4).
This proves the assertion. 2
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