Finite groups of Lie type

Steinberg [Endomorphisms of linear algebraic groups, **1968**] has studied the situation where G is a reductive algebraic group over an algebraically closed field and F is an algebraic endomorphism such that G^F (the fixed points) is finite. Then G^F is called a *finite group of Lie type*.

He has classified the possibilities. If G is simple then it is an algebraic group over the algebraic closure $\overline{\mathbb{F}}_q$ of a finite field \mathbb{F}_q , and

- either F is the Frobenius attached to an 𝔽_q-structure,
- \bullet or G is of type $B_2,\ F_4$ or G_2 and F^2 is a Frobenius attached to an \mathbb{F}_q -structure.

In the first two of the last cases q is a power of 2 and in the third case a power of 3; the groups G^F in these cases where discovered by Suzuki and Ree.

What is a Frobenius?

Jean Michel (Université Paris VII)

Let q be a power of the prime p.

On the affine line $\mathbb{A}_1 = \operatorname{Spec}(\overline{\mathbb{F}}_q(T))$ we have the Galois action $\sum a_i T^i \mapsto \sum a_i^q T^i$. Since in characteristic p we have $(a + b)^q = a^q + b^q$ the algebraic morphism given by $T \mapsto T^q$, *i.e.* $\sum a_i T^i \mapsto \sum a_i T^{q_i}$ has the same fixed points as the Galois action, since the composed is just $\sum a_i T^i \mapsto (\sum a_i T^i)^q$. It is called the *Frobenius* morphism.

In general an affine variety Spec A where A is an \mathbb{F}_{q} -algebra has an \mathbb{F}_{q} -structure if $A = A_0 \otimes_{\mathbb{F}_q} \mathbb{F}_q$ where A_0 is an \mathbb{F}_q -algebra. This structure is equivalently given by the Frobenius $a \otimes \lambda \mapsto a^q \otimes \lambda$; we recover A_0 as $\{x \mid F(x) = x^q\}$.

Another morphism F' is the Frobenius associated to another \mathbb{F}_q -structure iff there exists n such that $F^n = F'^n$.

Example: On $GL_n(\mathbb{F}_q)$ the standard Frobenius sends a matrix $\{a_{ij}\}$ to $\{a_{ij}^n\}$, and the fixed points are $GL_n(\mathbb{F}_q)$.

Lang-Steinberg theorem

Theorem (Lang-Steinberg)

If F is an algebraic endomorphism of the affine connected algebraic group G such that G^F is finite, then the map $x \mapsto xF(x^{-1})$ is surjective.

Equivalently $H^1(F, G) = 1$. Indeed $H^1(F, G)$ is the set of *F*-conjugacy classes of *G*, where *F*-conjugacy of *x* by *y* sends *x* to $yxF(y^{-1})$.

Note that it results form Steinberg's classification that any $g \in G$ is stable by F^m for m large enough (since it is defined over some finite field, and a power of F is a Frobenius); it also follows that gF still has finitely many fixed points (since a power is a Frobenius).

Corollary

Corollary (of Lang-Steinberg)

Jean Michel (Université Paris VII)

If G is not connected we have $H^1(F, G) = H^1(F, G/G^0)$.

Proof:

- It is clear that two F-conjugate elements of G have F-conjugate images in G/G⁰, thus we have natural surjective map H¹(F, G) → H¹(F, G/G⁰).
- Conversely, if g and g' are F-conjugate modulo G^0 , we have $hg = xg'F(x^{-1})$ for some $h \in G^0$ and $x \in G$. Now we may apply the Lang-Steinberg theorem in G^0 with the morphism gF to write $h = y^{-1}gF(y)g^{-1}$, whence $g = yxg'F(x^{-1}y^{-1})$ so g and g' are F-conjugate.

Actually, if H is a normal subgroup of G, we have an exact sequence

$$1 \rightarrow H^F \rightarrow G^F \rightarrow (G/H)^F \rightarrow H^1(F,H) \rightarrow H^1(F,G) \rightarrow H^1(F,G/H)$$

so if H is connected we have $(G/H)^F = G^F/H^F$.

Jean Michel (Université Paris VII)

oups of Lie type

Another corollary

Corollary

Suppose the connected algebraic group G acts on the algebraic variety X in an F-equivariant way, i.e. F acts on X and F(g(x)) = F(g)(F(x)), and transitively. Then

- $X^F \neq \emptyset$
- and the G^F-orbits of G on X^F are in bijection with H¹(F, C_G(x)) where C_G(x) is the stabilizer of some point x ∈ X^F.

Proof:

- Given $x \in X$ we have F(x) = h(x) for some $h \in G$. If $gF(g^{-1}) = h^{-1}$ then $F(g^{-1}(x)) = F(g^{-1})F(x) = F(g^{-1})h(x) = g^{-1}(x)$.
- We have a map from X^F to $H^1(F, C_G(x))$ as follows: given $y \in X^F$ there exists $g \in G$ such that y = g(x). From F(y) = y we get $g^{-1}F(g) \in C_G(x)$. We map the G^F -orbit of y to the image of $g^{-1}F(g)$ in $H^1(F, C_G(x))$. It is easy to check it is a well-defined bijective map.

Tori and Borel subgroups

Jean Michel (Université Paris VII)

A maximal torus is a maximal connected abelian subgroup.

Example: In GL_n, the diagonal matrices.

A maximal torus is isomorphic to \mathbb{G}_m^n where *n* is the *rank* of *G*.

A Borel subgroup B is a maximal connected solvable subgroup. We have $B = U \rtimes T$ where U is the unipotent radical of B and T is a maximal torus.

Example: In GL_n, we may take for B the upper triangular matrices; then U =upper triangular matrices with 1's on the diagonal.

All pairs $T \subset B$ where T is a maximal torus and B a Borel subgroup are conjugate, thus there exists such an F-stable pair. We have $N_G(B) = B$ and $N_G(T) \cap B = C_G(T) = T$, thus $N_G(T \subset B) = T$ and since T is connected $H^1(F, T) = 1$ and thus the F-stable pairs are G^F -conjugate.

The Weyl group and a reflection coset

The *G^F*-orbits of *F*-stable *T* correspond to $H^1(F, N_G(T)) = H^1(F, N_G(T)/T) = H^1(F, W)$. Example: In GL_n, we have N_G (diagonal matrices) = monomial matrices and the quotient is the symmetric group \mathfrak{S}_n .

Let $X(T) := \text{Hom}(T, \mathbb{G}_m) = \text{Hom}(\mathbb{G}_m, \mathbb{G}_m)^n \simeq \mathbb{Z}^n$ since $\text{Hom}(\mathbb{G}_m, \mathbb{G}_m) = \{x \mapsto x^a\}_{a \in \mathbb{Z}}$. Then $N_G(T)$ acts on X(T) and T acts trivially so W acts. W is a reflection group on $\mathbb{Q} \otimes X(T)$ and so also on $\mathbb{C} \otimes X(T) = \mathbb{C}^n$.

F acts on *X*(*T*) and normalizes *W*. We thus have a reflection coset *WF*. We assume now (automatic if *G* simple or equivalently *W* irreducible) that either *F* is the Frobenius attached to an $\mathbb{F}_{p^{2}}$ -structure or F^{2} is. In the first case we set $q = p^{a}$ and in the second case $q = p^{a/2}$. Then $F = q\phi$ on *X*(*T*) where ϕ is of finite order (2 or 3 if *W* is irreducible) and the reflection coset $W\phi$ is "independent of q^{n} .

Order formula

Theorem (Steinberg)

Jean Michel (Université Paris VII)

$$|G^F| = q^{\sum_{i=1}^n (d_i-1)} \prod_{i=1}^n (q^{d_i} - \varepsilon_i)$$

where d_i is the degree of the fundamental invariants f_i of W and ε_i the eigenvalue of ϕ on f_i .

The proof of Steinberg uses the Bruhat decomposition $G = \coprod_{w \in W} BwB$. Here we can write w instead of a representative in $N_G(T)$ since $B \supset T$. If $w \in W^F$ since T is connected we can choose an F-stable representative in $N_G(T)$ and we have $G^F = \coprod_{w \in W} B^FwB^F$. If $B = U \rtimes T$ then $B^FwB^F = T^FU^FwU_w$ is a unique decomposition

If $B = U \rtimes T$ then $B^F w B^F = \overline{T}^F U^F w U_w$ is a unique decomposition where $U_w \simeq U^F / (w U^F w^{-1})$.

- We have $|T^{F}| = \det(q \phi)$,
- we have $|U^F| = q^{\sum_{i=1}^{n} (d_i 1)}$,
- and there is a length $w \mapsto N(w)$ on W^F such that $|U_w| = q^{N(w)}$.

Steinberg concludes by some combinatorics on $W\phi$.

ℓ -adic cohomology

There is a nicer proof when F is a Frobenius using ℓ -adic cohomology. Choosing $\ell \ | \ell q$, for a variety X over \mathbb{F}_q there are cohomology groups $H^i_c(X,\mathbb{Z}_\ell)$ which are finite dimensional \mathbb{Z}_ℓ -modules, are 0 unless $0 \le i \le 2 \dim X$, and such that:

- If X comes from a variety X₀ over a number field then dim Hⁱ_c(X, ℤ_ℓ) = dim Hⁱ_c(X₀, ℂ).
- If $X = \mathbb{A}^r$ is an affine space, then $H^i_c(X, \mathbb{Z}_\ell) = 0$ unless i = 2r, and $H^{2r}_c(X, \mathbb{Z}_\ell) = \mathbb{Z}_\ell$.
- We have the Lefschetz formula $|X^{F}| = \sum_{i} (-1)^{i} \operatorname{Trace}(F \mid H_{c}^{i}(X, \mathbb{Z}_{\ell})).$

Application: for any \mathbb{F}_q -structure on the affine space $X = \mathbb{A}^r$ we have $|X^F| = q'$; indeed F acts on $H_c^2(X, \mathbb{Z}_\ell)$ by a scalar λ . For n large enough the action of F^n is the standard action $x \mapsto x^q$ so $\lambda^n = q^{nr}$. Thus for any unipotent group $|U(\mathbb{F}_q)| = q^{\dim U}$.

Cohomology of G/B

Jean Michel (Université Paris VII)

To compute $|G^F|$ write $G^F = B^F (G/B)^F$ and use that

The cohomology of G/B is isomorphic to the coinvariant algebra S_W .

The isomorphism multiplies the grading by 2; we have $H_c^i(G/B, \mathbb{Z}_\ell) = 0$ for *i* odd. It follows that $|(G/B)^F| = \text{GradedTrace}(F \mid S_W)$. Since $S \simeq S^W \otimes S_W$, we have

$$\mathsf{GradedTrace}(F \mid S_W) = \frac{\mathsf{GradedTrace}(F \mid S)}{\mathsf{GradedTrace}(F \mid S^W)} = \frac{\prod(q^{d_i}\varepsilon_i - 1)}{\det(q\phi - 1)}.$$

Since $S \simeq S^W \otimes S_W$, we have This works out to be the same as the formula above once multiplied by $|B^F|$.

Prime factors

The decomposition in prime polynomial factors of $|G^F|$ is

$$|G^{F}| = q^{\sum_{i=1}^{n}(d_{i}-1)} \prod_{d} \Phi_{d}(q)^{|a(d)|}$$

where Φ_d is the d-th cyclotomic polynomial, and $\mathbf{a}(d) = \{i \mid \zeta_d^{d_i} = \varepsilon_i\}$, where $\zeta_d = e^{2i\pi/d}$.

Here a(d) is the same set we called $a(\zeta_d)$; it does not depend on the primitive *d*-th root chosen since $W\phi$ is rational. There is a connection with maximal ζ_d -eigenspaces of elements of $W\phi$.

The above gives the decomposition in primes for large enough primes $\ell \neq p$, since $gcd(\Phi_d(q), \Phi_{d'}(q))$ divides lcm(d, d'); thus if ℓ does not divide |W|, it divides only one of the factors.

Φ_d -Sylows

Jean Michel (Université Paris VII)

There is a subgroup of G^F of cardinality $\Phi_d(q)^{|a(d)|}$.

Assume wF has a ζ_d -eigenspace of dimension |a(d)|. Consider an F-stable torus T_w corresponding to the F-class of w. If $T \subset B$ is F-stable this is obtained as gTg^{-1} where $g^{-1}F(g) \in N_G(T)$ has image w in W. Then g^{-1} transports (T_w , F) to (T, wF), so

- an F-stable subtorus of T_w corresponds to a wF-stable subtorus of T,
- or equivalently a wF-stable sublattice of X(T).

Since wF stabilizes the lattice X(T) it has a factor $\Phi_d(q)^{|a(d)|}$ in its characteristic polynomial. This corresponds to a subtorus S of T_w such that $|S^F| = \Phi_d(q)^{|a(d)|}$.

Such a subtorus S is called a Φ_d -Sylow.

Corollary of Springer-Lehrer

Theorem

- The Φ_d-Sylows are G^F-conjugate.
- If S is a Φ_d-Sylow, then N_G_F(S)/C_G_F(S) is a complex reflection group, with degrees {d_i | i ∈ a(d)}.
- The number of Φ_d-Sylows is ≡ 1 (mod Φ_d(q)).
- A Φ_d-Sylow is the product of |a(d)| F-stable tori S_i such that S_i^F is a cyclic group of order Φ_d(q).

The third item above says that $|G^F|/|C_{G^F}(S)|$, when specializing q to ζ_d , gives $|N_{G^F}(S)/|C_{G^F}(S)|$.

Parabolic subgroups and Levis

Jean Michel (Université Paris VII)

A group *P* containing a Borel subgroup is a parabolic subgroup. It has a *Levi decomposition* $P = V \rtimes L$ where *V* is its unipotent radical, and *L* is a reductive group; *L* is what is called a Levi subgroup of *G*. Example: For GL_n upper block-triangular matrices are the parabolic subgroup containing the Borel of upper triangular matrices. The corresponding Levi is block-diagonal.

The centralizer of a torus is a Levi subgroup, thus if S is a Φ_d -Sylow, $L := C_G(S)$ is a Levi subgroup. We have $W_G(L) = N_G(L)/L = N_G(S)/C_G(S)$; this "relative Weyl group" is such that $W_G(L)^F$ is a complex reflection group. As for a torus, L is the connected component of $N_G(L)$; we have $C_G(S) = N_G(S)^0$.

If S corresponds to a maximal ζ_d -eigenspace U of some element of WF, the Levi $L = C_G(S)$ has weyl group $C_W(U)$.

13 / 15

ℓ -Sylows and Φ_d -Sylows

Assume that the ℓ -Sylow S_ℓ of G^F is abelian. Then $|S_\ell|$ divides a unique factor $\Phi_d(q)^{|a(d)|}$ of G^F , and there is a unique Φ_d -Sylow S such that $S_\ell \subset S$.

It follows that

C_G(S) = C_G(Sℓ) is a Levi subgroup.

Jean Michel (Université Paris VII) Finite groups of Lie

• $N_{G^F}(S_\ell)/C_{G^F}(S_\ell) = N_{G^F}(S)/C_{G^F}(S)$ is a complex reflection group.

Berlin, September 2009

15 / 15