Complex reflection groups

A pseudo-reflection $s \in GL_r(\mathbb{C})$ is an element such that Ker(s - Id) is an hyperplane.

A finite complex reflection group is a finite subgroup of $GL_r(\mathbb{C})$ generated by pseudo-reflections.

The irreducible finite complex reflection groups have been classified by Shepard and Todd (1954). They consist of:

- G(de, e, r): the monomial matrices with coefficients in μ_{de} and product of non-zero coefficients in μ_d (where μ_i is the group of *i*-th roots of unity in C). We have A_r = G(1, 1, r+1), B_r = G(2, 1, r), D_r = G(2, 2, r), b(e) = G(e, e, 2).
- exceptional groups denoted G_4, \ldots, G_{37} . We have $H_3 = G_{23}, F_4 = G_{28}, H_4 = G_{30}, E_6 = G_{35}, E_7 = G_{36}, E_8 = G_{37}$.

Geometric definition

Jean Michel (Université Paris VII)

Let $V = \mathbb{C}^r$; a finite subgroup $W \subset GL(V)$ is a complex reflection group if and only if the variety V/W is smooth (or equivalently $V/W \simeq V$).

The quotient of an affine variety X = Spec A by a finite group W exists in general, and we have $X/W = \text{Spec } A^W$; but it is usually singular. In our case V = Spec S where $S = \text{polynomial functions on } V = SV^*$, the symmetric algebra of the dual V^* of V. If we choose a basis x_1, \ldots, x_n of V^* we have $S = \mathbb{C}[x_1, \ldots, x_n]$.

By a famous theorem of Hilbert and Noether, the polynomial invariants S^W are finitely generated; if f_1, \ldots, f_r generate S^W

- Since W acts degree by degree we may take the f_i homogeneous.
- S^W is of transcendence degree n, thus we may assume f_1, \ldots, f_n are algebraically independent.

Actually S^W is Cohen-Macaulay, *i.e.* it is a free module over $\mathbb{C}[f_1, \ldots, f_n]$.

Fundamental invariants

Let f_1,\ldots,f_n be algebraically independent invariants, of degrees $d_1 \leq d_2 \ldots \leq d_n.$

Theorem (Shephard-Todd, Chevalley, Springer)

We have $|W| \le d_1 \dots d_n$, and if $d_1 \dots d_n$ has been chosen minimal, the following are equivalent

$$|W| = d_1 \dots d_n$$

Jean Michel (Université Paris VII)

W is a complex reflection group.

$$S^W = \mathbb{C}[f_1, \ldots, f_n].$$

If these conditions hold and Ref(W) is the set of pseudo-reflections of W, then we have $|\text{Ref}(W)| = \sum_{i=1}^{n} (d_i - 1)$.

The f_i are called the *fundamental invariants* of W; they are not unique but their degrees d_i are; they are called the *reflection degrees* of W.

Proof

We prove everything else assuming $(ii) \Rightarrow (iii)$.

The idea is the compare the growth of the graded algebras S^W and $\mathbb{C}[f_1, \ldots, f_n]$.

If $A = \bigoplus_i A_i$ is a graded algebra,

- we define GradedDim $A = \sum_{i=0}^{\infty} t^i \dim A_i$
- for $w \in \text{End } A$ we define GradedTrace $(w \mid A) = \sum_{i} t^{i} \operatorname{Trace}(w \mid A_{i})$.

$$\mathsf{GradedDim}(\mathbb{C}[f_1,\ldots,f_n]) = \prod_{i=1}^n \frac{1}{1-t^{d_i}}$$

using that

- GradedDim $(\mathbb{C}[f_i]) = \sum_i (t^{d_i})^i$ and
- $\mathbb{C}[f_1, \ldots, f_n] = \mathbb{C}[f_1] \otimes \ldots \otimes \mathbb{C}[f_n].$

Proof (continued)

For $w \in GL(V)$ we have GradedTrace $(w \mid S) = \frac{1}{\det(1-wt)|V^*|}$

We use that

- if dim V = 1 we have GradedTrace $(w \mid S) = \sum_{i} (wt)^{i} = \frac{1}{(1-wt)}$
- then we may assume that w is triangular in the basis x_1, \ldots, x_n .

As $P = \frac{1}{|W|} \sum_{w \in W} w$ is the projector on S^W , we have

$$\mathsf{GradedTrace}(P) = \mathsf{GradedDim}(S^W) = \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det(1 - wt)}.$$

Note that the two series we converge for 0 \leq t < 1. We develop them around 1.

Proof (continued)

Jean Michel (Université Paris VII)

We find

$$\prod_{i=1}^{n} \frac{1}{1-t^{d_i}} \sim \frac{1}{d_1 \dots d_n} \frac{1}{(1-t)^n} + \frac{\sum_{i=1}^{n} (d_i - 1)}{2d_1 \dots d_n} \frac{1}{(1-t)^{n-1}} + \text{higher terms.}$$

and

$$\frac{1}{|W|}\sum_{w\in W}\frac{1}{\det(1-wt)}\sim \frac{1}{|W|}\frac{1}{(1-t)^n} + \frac{|\operatorname{Ref}(W)|}{2|W|}\frac{1}{(1-t)^{1-n}} + \text{higher terms},$$

the second term since

- for a reflection of eigenvalue -1 we have $\frac{1}{1-(-1)t} \rightarrow 1/2$ as $t \rightarrow 1$,
- and for a non real eigenvalue ζ we have $\frac{1}{1-\zeta t} + \frac{1}{1-\zeta^{-1}t} \to 1$ as $t \to 1$.

End of proof

Comparing we get $|W| \le d_1 \dots d_n$, and if equality then $|\operatorname{Ref}(W)| \ge \sum_i (d_i - 1)$; both are equalities if $\mathbb{C}[f_1, \dots, f_n] = S^W$.

Let $W' = \langle \operatorname{Ref}(W) \rangle$. If we assume $(ii) \Rightarrow (iii)$ we have $S^{W'} = \mathbb{C}[f'_1, \dots, f'_n]$ thus

$$\mathbb{C}[f_1',\ldots,f_n']=S^{W'}\supset S^W\supset\mathbb{C}[f_1,\ldots,f_n].$$

We now use

Lemma

If $\mathbb{C}[f'_1, \dots, f'_n] \supset \mathbb{C}[f_1, \dots, f_n]$ are polynomial algebras where $d_i = \deg f_i$, $d'_i = \deg f'_i$ are increasing, then $d'_i \leq d_i$.

Thus $|\operatorname{Ref}(W)'| = \sum_i (d'_i - 1) \leq \sum_i (d_i - 1) \leq |\operatorname{Ref}(W)|$ so we have equality everywhere so $d_i = d'_i$ and $|W'| = \prod d'_i = \prod d_i \geq |W|$ so W' = W.

Coinvariant algebra

Jean Michel (Université Paris VII)

Let *I* be the ideal of *S* generated by the elements of S^W of strictly positive degree. The *coinvariant algebra* is $S_W := S/I$. As *I* is graded, S_W is also. As *W* is finite, *I* admits a *W*-stable complement *H*, thus isomorphic to S_W as a *W*-module.

Theorem (Chevalley)

If W is generated by Ref(W), the natural map $S_W \otimes S^W \to S$ given by the isomorphism $S_W \simeq H$ and multiplication is a graded W-invariant isomorphism; further S_W is isomorphic to $\mathbb{C}[W]$ as a W-module.

The first part implies the second as a consequence of Galois theory, considering the extension Frac(S) of $Frac(S^W)$.

It follows from the theorem that S^W is a graded sub-algebra of S such that as an S^W -module S admits a finite homogeneous basis (take a basis of H). Chevalley deduces that S^W itself is a polynomial algebra.

Reflection cosets

We now consider $\phi \in N_{GL(V)}(W)$ and the coset $W\phi = \phi W$, called a *reflection coset*.

We are interested in eigenspaces of elements of $W\phi$.

For ζ a root of unity we denote by $V_{\zeta}(w\phi)$ the ζ -eigenspace of $w\phi$.

We assume ϕ semi-simple (this is automatic if W is irreducible on V).

 ϕ acts on S^W and

- We may choose the f_i eigenvectors of φ.
- If ε_i are the corresponding eigenvalues, the pairs (d_i, ε_i) are unique,
- and $\phi \in W \Leftrightarrow \forall i, \varepsilon_i = 1$.

For the last assertion, if $\varepsilon_i = 1$ for all *i* then the f_i are algebraically independent invariants of $\langle W, \phi \rangle$ so $|\langle W, \phi \rangle| \leq d_1 \dots d_n = |W|$.

Note that GradedTrace($\phi \mid S^W$) = $\prod_i \frac{1}{1-\varepsilon_i t^{d_i}}$.

Jean Michel (Université Paris VII)

Theorem of Solomon

Theorem (Solomon)

 $(S \otimes \Lambda V)^W \simeq k[f_1, \dots, f_n] \otimes \Lambda[df_1, \dots, df_n]$ where $df = \sum_i \frac{\partial f}{\partial x_i} dx_i$ where dx_1, \dots, dx_n denotes a basis of $\Lambda^1 V \simeq V$.

This translates into an identity of bi-graded dimensions, and of bi-graded traces of $\phi\colon$

$$|W|^{-1} \sum_{w \in W} \frac{\det(1 - yw\phi)}{\det(1 - xw\phi)} = \frac{\prod_i (1 - \varepsilon_i y x^{d_i - 1})}{\prod_i (1 - \varepsilon_i x^{d_i})}$$

Expanding both series around $x = \zeta^{-1}$, and setting $T = \frac{y - \zeta^{-1}}{x - \zeta^{-1}}$, we get

10 / 14

Theorem of Pianzola-Weiss

This has the following consequences

- max{dim V_ζ(wφ) | wφ ∈ Wφ} = |a(ζ)| where a(ζ) = {i | ζ^{d_i} = ε_i}.
- The exponent of W is lcm d_i.
- If W is irreducible on V, then |ZW| = gcd d_i.

Theorem of Springer-Lehrer

Let U be a ζ -eigenspace of dimension $|a(\zeta)|$ of some element of $W\phi$. Then

Theorem (Springer-Lehrer)

Jean Michel (Université Paris VII)

- Any other V_ζ(wφ) of dimension |a(ζ)| is W-conjugate to U.
- N_W(U)/C_W(U) is a complex reflection group on U with degrees {d_i | i ∈ a(ζ)}.
- The hyperplanes of N_W(U)/C_W(U) are the traces on U of the hyperplanes of W which do not contain U.

Sketch of proof

 $\pi : \mathbf{v} \mapsto (f_1(\mathbf{v}), \dots, f_n(\mathbf{v}))$ is the orbit map $V \mapsto V/W$. The fibers are the *W*-orbits. Now $\mathbf{v} \in V_{\zeta}(w\phi)$ iff $\phi(\mathbf{v})$ and $\zeta \mathbf{v}$ are in the same orbit, *i.e.* if for all *i* we have $f_i(\zeta \mathbf{v}) = f_i(\phi \mathbf{v})$ or equivalently $\zeta^{d_i} f_i(\mathbf{v}) = \varepsilon_i f_i(\mathbf{v})$, *i.e.* either $f_i(\mathbf{v}) = 0$ or $i \in a(\zeta)$.

Berlin, September 2009

Sketch of proof

We have thus

$$H:=\bigcup_{w\in W}V_{\zeta}(w\phi)=\bigcap_{i\notin a(\zeta)}f_i^{-1}(0).$$

By general properties in algebraic geometry, the dimension of the irreducible components of such an intersection is at least $|a(\zeta)|$, thus the irreducible components have to be the $V_{\zeta}(w\phi)$ of maximal dimension.

Consider the map $\pi: H \to \mathbb{C}^{|a(\zeta)|}$ given by $v \mapsto \{f_i(v) \mid i \in a(\zeta)\}$. Then π is surjective since it is the restriction of the orbit map to the inverse image of $\mathbb{C}^{|a(\zeta)|}$. Thus it is closed.

The image of any $|a(\zeta)|$ -dimensional eigenspace U is irreducible closed of dimension $|a(\zeta)|$ so it is equal to $\mathbb{C}^{|a(\zeta)|}$.

Sketch of proof (end)

Jean Michel (Université Paris VII)

This implies that

- The {f_i | i ∈ a(ζ)} restricted to U are algebraically independent.
- The maximal V_ζ(wφ) have the same image by the orbit map so they are conjugate;
- thus |W/N_W(U)| is the number of maximal V_ζ(wφ).
- By Pianzola-Weiss this number is ∏_{i∉a(()} d_i

Finally the { $f_i \mid i \in a(\zeta)$ } restricted to U are algebraically independant invariants of the group $N_W(U)/C_W(U)$ acting on U, and $|N_W(U)/C_W(U)| = \prod_{i \in a(\zeta)} d_i$, so by the Shepard-Todd-Chevalley this group is a c.r.g. on U.

Berlin, September 2009