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ABSTRACT
We introduce the smoothed analysis of algorithms,

which is a hybrid of the worst-case and average-case

analysis of algorithms. Essentially, we study the per-

formance of algorithms under small random pertur-

bations of their inputs. We show that the shadow-

vertex simplex algorithm has polynomial smoothed

complexity.

1. INTRODUCTION
The Analysis of Algorithms community has been chal-

lenged by the existence of remarkable algorithms that are
known by scientists and engineers to work well in practice,
but whose theoretical analyses are negative or inconclusive.
The root of this problem is that algorithms are usually an-
alyzed in one of two ways: by worst-case or average-case
analysis. Worst-case analysis can improperly suggest that
an algorithm will perform poorly by examining its perfor-
mance under incredibly contrived circumstances that may
never occur in practice. On the other hand, while many
algorithms perform unusually well on random inputs con-
sidered in average-case analysis, randomly generated inputs
often bear little resemblance to those actually encountered
in practice.
We propose an analysis that we call smoothed analysis

that can help explain the success of many algorithms that
both worst-case and average case cannot. In smoothed anal-
ysis, we measure the performance of an algorithm under
slight random perturbations of arbitrary inputs. In partic-
ular, we consider Gaussian perturbations of inputs to algo-
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rithms that take real and complex inputs, and we measure
the running time of algorithms in terms of the input size
and the variance of the Gaussian perturbations.
We show that the shadow-vertex simplex algorithm has

polynomial smoothed complexity. The simplex algorithm is
the classic example of an algorithm that is known to per-
form well in practice but which takes exponential time in
the worst case. In the late 1970's and early 1980's the sim-
plex algorithm was shown to converge in expected polyno-
mial time on various distributions of inputs. However, one
cannot infer from these analyses that the algorithm should
perform well on the distributions encountered in practice.
For every matrix A with entries of absolute value at most

1, every vector z, and every vector y whose entries are 1 or
�1, we show that the simplex algorithm using the shadow-
vertex pivot rule almost always takes time polynomial in
1=� and the sizes of A and z to solve

maximize z
Tx

subject to (A+ �G)x � y: (1)

We remark that these restrictions do not change the fam-
ily of linear programs expressible, and that it is simple to
transform any linear program into one of this form. More-
over, if A is well-scaled, then the solution to this program is
an approximation to the solution of the original.
This extended abstract merely outlines the proofs

of our results. The complete paper may be found at

http://math.mit.edu/�spielman/simplex.

1.1 Background
It is diÆcult to overstate the importance of linear pro-

gramming to optimization. Linear programming problems
arise in innumerable industrial contexts. Moreover, linear
programming is often used as a fundamental step in other
optimization algorithms. In a linear programming problem,
one is asked to maximize or minimize a linear function over
a polyhedral region. The general form of a linear program
is

maximize z
T
x

subject to Ax � y; (2)

where A is a m-by-d matrix, z is a d-vector, and y is an
m-vector.
Perhaps one reason that we see so many linear programs

is that we can solve them eÆciently. In 1947, Dantzig [7]
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introduced the simplex method, which was the �rst practi-
cal approach to solving linear programs and which remains
widely used today. To state it roughly, the simplex algo-
rithm proceeds by walking from one vertex to another of
the polyhedron de�ned by the inequalities in (2). At each
step, it walks to a vertex that is better with respect to the
objective function. The algorithm will either determine that
the constraints are unsatis�able, determine that the objec-
tive function is unbounded, or reach a vertex from which it
cannot make progress, which necessarily optimizes the ob-
jective function.
Two provably polynomial time algorithms for linear pro-

gramming are known: the ellipsoid algorithm [17] and the
interior-point method [16]. In spite of the good practical
performance of some interior-point methods, the simplex
method remains the most popular method for solving linear
programs. However, there has been no satisfactory theoret-
ical explanation of its excellent performance. A fascinating
approach to understanding the performance of the simplex
algorithm has been the attempt to prove that there always
exists a short walk from each vertex to the optimal vertex.
The Hirsch conjecture states that there should always be
a walk of length m � d. Signi�cant progress on this con-
jecture was made by Kalai and Kleitman [15], who proved
that there always exists a walk of length at most mlog2 d+2.
However, the existence of such a short walk does not imply
that the simplex method will �nd it.
A simplex method is not completely de�ned until one

speci�es its pivot rule|the method by which it decides which
vertex to walk to when it has many to choose from. There is
no deterministic pivot rule under which the simplex method
is known to take a sub-exponential number of steps. In fact,
for almost every deterministic pivot rule there is a family of
polytopes on which it is known to take an exponential num-
ber of steps[18, 22, 11, 10, 3, 13]. The best present analysis
of randomized pivot rules shows that they take expected

time mO(
p
d)[14, 19], which is quite far from the polyno-

mial complexity observed in practice. This inconsistency
between the exponential worst-case behavior of the simplex
algorithm and its everyday practicality leave us wanting a
reasonable theoretical analysis.
Various average-case analyses of the simplex algorithm

have been performed. Most relevant to this paper is the
analysis of Borgwardt [5, 6] who proved that the simplex al-
gorithm with the shadow vertex pivot rule runs in expected
polynomial time for polytopes whose constraints are drawn
independently from spherically symmetric distributions (e.g.
Gaussian distributions centered at the origin). Indepen-
dently, Smale [25, 24] proved bounds on the expected run-
ning time of the related parametric Lemke algorithm on
random instances of the linear complementarity problem
(LCP) chosen from a particular spherically-symmetric dis-
tribution. Another model of random linear programs was
studied in a parallel line of research initiated independently
in unpublished manuscripts by Haimovich (Columbia, 1983)
and Adler (Berkeley, 1983). Their works considered linear
programs with arbitrary de�ning matrices in which the only
randomness appears in the random choice of the directions of
the inequalities. They proved that parametric simplex meth-
ods would take expected linear time to solve phase II linear
programming problems. Complete algorithms for linear pro-
gramming under this model were analyzed by Todd [26] and
Adler and Megiddo [2] who proved quadratic bounds on the

expected time taken by the lexicographic Lemke algorithm
to solve LCP problems derived from linear programming
problems. Further average-case results were obtained in [1]
and [20].
While these average-case analyses are signi�cant accom-

plishments, they do not explain the performance of the sim-
plex method in practice. Problem instances encountered in
practice may have little resemblance to those generated at
random. Moreover, it is now well-understood that random
combinatorial objects have many special properties. Edel-
man [8] writes on this point:

What is a mistake is to psychologically link
a random matrix with the intuitive notion of a
\typical" matrix or the vague concept of \any
old matrix."

1.2 Smoothed Analysis of Algorithms
We introduce the smoothed analysis of algorithms in the

hope that it will succeed in explaining the good practical
performance of many algorithms for which worst-case and
average-case analysis have failed. Our �rst application of
the smoothed analysis of algorithms will be to the simplex
algorithm. We will consider the running time of the simplex
algorithm on inputs of the form

maximize z
T
x

subject to (A+ �G)x � y; (3)

where we let A be arbitrary and G be a matrix of inde-
pendently chosen Gaussian random variables of mean 0 and
variance 1. If we let � go to 0, then we obtain the worst-case
complexity of the simplex algorithm; whereas, if we let � be
so large that �G swamps out A, we obtain the average-case
analyzed by Borgwardt. By choosing polynomially small �,
this analysis combines advantages of worst-case and average-
case analysis.
In a smoothed analysis of an algorithm, we assume that

the inputs to the algorithm are subject to slight random per-
turbations, and we measure the complexity of the algorithm
in terms of the input size and the variance of the perturba-
tions. If an algorithm has low smoothed complexity, then
one should expect it to work well in practice since most real-
world problems are generated from data that is inherently
noisy. Another way of thinking about smoothed complexity
is to say that if an algorithm has low smoothed complexity,
then one must be unlucky to choose an input instance on
which it performs poorly.
We now provide some de�nitions for the smoothed anal-

ysis of algorithms that take real or complex inputs. For an
algorithm A and input x, let

C(A; x)

be a complexity measure of A on input x. Let X be the
domain of inputs to A, and let Xn be the set of inputs of
size n. The size of an input can be measured in various
ways. Standard measures are the number of real variables
contained in the input and the sums of the bit-lengths of
the variables. Using this notation, one can say that A has
worst-case C-complexity f(n) if

max
x2Xn

(C(A;x)) = f(n):

Given a family of distributions �n on Xn, we say that A has
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average-case C-complexity f(n) under � if

E
x
�n Xn

[C(A;x)] = f(n):

Similarly, we say that A has smoothed C-complexity f(n; �)
if

max
x2Xn

Eg [C(A; x+ �max(x)g)] = f(n; �);

where g is a vector of Gaussian random variables of mean 0
and variance 1 and max(x) is the maximum entry in x. Even
if we cannot bound the expectation over the perturbations,
we can still obtain computationally meaningful results for
an algorithm by proving that it has �-smoothed-complexity
f(n; �), by which we mean that

8x2XnPrg [C(A;x+ �max(x)g) � f(n; �)] � 1� �:

One criticism of smoothed complexity as de�ned above is
that the Gaussian perturbations destroy any zero-structure
that the problem had, as it will replace the zeros with small
values. One can re�ne the model to �x this problem by
studying relative perturbations. Under a relative perturba-
tion, an input is mapped to a constant multiple of itself.
For example, a reasonable de�nition would be to map each
variable by

x 7! x(1 + �g);

where g is a Gaussian random variable of mean zero and
variance 1. Thus, each number is usually mapped to one
of similar magnitude, and zero is always mapped to zero.
When we measure smoothed complexity under relative per-
turbations, we call it relative smoothed complexity. Smooth
complexity as de�ned above can be called absolute smoothed
complexity if clari�cation is necessary.
In Section 5, we present some further generalizations of

these de�nitions.

1.3 The Shadow Vertex Pivot Rule
Gass and Saaty [9] introduced the shadow vertex algo-

rithm as a parametric approach to solving linear programs.
Starting at a vertex x, the algorithm chooses some objec-
tive function, t, that is optimized by x. The algorithm then
slowly transforms t into the objective function of the linear
program, z, �nding the vertex that optimizes each interme-
diate objective function. By remembering t, this provides
a pivot rule, known as the Gass-Saaty rule. The vertices
encountered during the resulting walk are contained in the
set of vectors that optimize functions in the span of t and
z. The algorithm gets its name from the fact that if one
projects the polytope to the plane spanned by t and z, then
these are pre-images of the corners of the resulting polygon.
Borgwardt's analysis used the shadow vertex algorithm.
The shadow-vertex pivot rule is best described through

a polar formulation. To understand this formulation, �rst
recall what it means for a point x to be a solution to

maximize z
T
x

subject to haijxi � yi; for 1 � i � m (4)

Claim 1.1. A point x is a solution to (4) if and only if

1. x is feasible, that is haijxi � yi, for 1 � i � m.

2. x is extremal: there exists a set B of inequalities such
that haijxi = yi, for fai : i 2 Bg, and

3. x is optimal: z can be expressed as

z =
X
i2B

�iai; with �i � 0:

The polar of vertex x is the convex hull of fai : i 2 Bg.
For points in general position, B is a set of d linearly in-
dependent inequalities and their convex hull is a simplex of
co-dimension 1. Condition (3) says that z lies in the cone
from the origin through this simplex.

Definition 1.2. For vectors a1; : : : ;am, and a unit vec-
tor z, we let

optSimpz;y(a1; : : : ;am)

denote the simplex Simplex (fai : i 2 Bg), where B is as
in Claim 1.1. If the program (4) is unbounded or infeasible,
then we let optSimpz;y(a1; : : : ;am) be the empty set.

If the origin is feasible, then optSimpz;y(a1; : : : ;am) is
a facet of the convex hull of a1; : : : ;am and every facet of
the convex hull optimizes some objective function. If some
yi < 0, then we do not obtain as nice a characterization of
optSimpz;y(a1; : : : ;am).
For linear programs in which the origin is feasible, the

shadow-vertex simplex algorithm can be seen to walk along
the exterior of the convex hull of a1; : : : ;am. We assume
that it begins knowing a facet of the convex hull (how one
�nds a starting facet or handles a program with infeasible
origin is discussed in Section 4). It then chooses some point
inside this facet, and forms the unit vector in the direction of
this point, which we will call t. The algorithm then examines
the directions that are encountered as it transforms t into z,
and tracks the facets encountered along the way. To make
this formal let

t� =
�t+ (1� �)z

k�t+ (1� �)zk ;

so, t1 = t and t0 = z. As � goes from 1 to 0, the shadow-
vertex simplex algorithm encounters the facets

optSimpt� ;y(a1; : : : ; am):

Of course, the algorithm does not actually modify � contin-
uously, but rather computes each facet along the path from
the facet previously encountered.
For general linear programs, the simplices encountered by

the shadow vertex algorithm do not necessarily lie on the
convex hull of the ais. So, we introduce the notation

optSimpsz;t;y(a1; : : : ;am)
def
=[

v2Span(z;t)

optSimpv;y(a1; : : : ;am);

which captures the set of simplices the shadow vertex algo-
rithm could encounter during its walk.

1.4 Our Results
We consider linear programming problems of the form

maximize z
T
x

subject to haijxi � yi; for 1 � i � m (5)

where each yi 2 f1;�1g ; and kaik � 1: We remark that
these restrictions do not change the family of linear pro-
grams expressible, and that it is simple to transform any
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linear program into one of this form: �rst map x 7! x+ v

for some vector v so that none of the yis are zero, and then
map x 7! xmaxi kaik.
We study the perturbations of these programs given by

maximize z
T
x

subject to hbijxi � yi; for 1 � i � m (6)

where

bi = ai + gi

and gi is a Gaussian random vector of variance �2 centered
at the origin. Thus, bi is a Gaussian random vector of vari-
ance �2 centered at ai. Throughout the paper, we will as-
sume 0 � � � 1.
Our �rst result, Theorem 3.1, says that, for every pro-

gram of form (5) and for every vector t, the expected size
of optSimpsz;t;y(a1; : : : ;am) is polynomial in m, the di-

mension, and 1=�. To state this in terms of smoothed com-
plexity, let C(S) count the number of items in the set S.
Let Xd;m be the set of inputs in d-dimensions with m con-
straints:

Xd;m =
n
(t; z;y;a1; : : : ;am)

���t 2 IRd; z 2 IRd; y 2 f0; 1gm ;

ai 2 IRd; and kaik � 1; for 1 � i � m
o
:

Then, our result says that the smoothed C-complexity of
optSimpst;z;y(a1; : : : ;am) is polynomial in m, d, and 1=�,
where we only apply perturbations to the ais. This roughly
corresponds to analyzing Phase II of a simplex algorithm.
In Section 4, we describe a simple two-Phase shadow-

vertex simplex algorithm that almost always solves the lin-
ear program (6) in time polynomial inm, the dimension, and
1=�. If we let C measure the running time of an algorithm,
then Theorem 4.2 shows that the �-smoothed C-complexity
of this simplex algorithm is polynomial in m, d, 1=� and 1=�
for every �.
To justify perturbing linear programs, we show in Sec-

tion 2.1 that if the polytope corresponding to the equations
(5) contains a ball of radius r and is contained in a co-centric
ball of radius R, then for � < r=dR the solution to (6) is an
approximation to the solution of (5), with high probability.

2. GAUSSIAN PERTURBATIONS
In this section, we formally describe how we perturb linear

programming problems and explore how these perturbations
change polytopes.
Recall that a d dimensional Gaussian distribution with

variance �2 centered at a point a is de�ned by the proba-
bility density function

�(b) =
�
1=
p
2��

�d
e�ka�bk

2
=2�2 :

Throughout the paper, we will assume 0 � � � 1.
For a polytope Pa given by the equations

haijxi � yi;

where yi 2 f1;�1g and kaik � 1, we will examine polytopes
Pb de�ned by

hbijxi � yi;

where bi = ai + gi and gi is a Gaussian random vector of
variance �2 centered at the origin. We remark that Pb is a

simple polytope with probability 1. That is, each vertex of
Pb is the intersection of exactly d hyperplanes.
We will make frequent use of the following fundamental

fact about Gaussian distributions.

Lemma 2.1. Let b1; : : : ; bm be d-dimensional Gaussian ran-
dom vectors of variance �2 centered at a1; : : : ;am respec-
tively. Assuming d � 3 and k � 3d,

Pr [9i : dist (ai; bi) � k�] � me�k
2=4:

In particular, for k = 8d
p
log(m=�), this probability is at

most me�16d
2 log(m=�).

We will make use of this lemma throughout the paper, and
we will �x the value of k throughout the paper to

k = 8d
p
log(m=�):

We will frequently assume that dist (ai; bi) � k�. As the

probability that this assumption is false is at mostme�16d
2 log(m=�),

and Pb has at most
�
m
d

�
vertices, the estimate of the ex-

pected number of steps taken by the simplex algorithm that
we make under this assumption can be o� by at most an
additive

me�16d
2 log(m=�)

 
m

d

!
< 1:

2.1 Well-scaled polytopes
In this section, we show that if the polytope de�ned by

(5) is well-scaled and contains the origin, then it is close to
the polytope de�ned by (6). Note that the origin is inside
the polytope if and only if yi = 1 for all i. The results in
this section are not necessary for the results in the rest of
the paper.
For every polytope in d dimensions, there is a linear trans-

formation under which the polytope contains a ball of radius
1 and is contained in a ball of radius d (c. f. [12, 3.1.9]) with
the same center. In this section, we assume that the poly-
tope Pa is contained between two concentric balls, with the
origin as the center, of radii 1 and R, respectively. In par-
ticular, we assume that, for all i, 1=R � kaik � 1:
Let Pa be the polytope de�ned by a1; : : :am and Pb be

the polytope de�ned by b1; : : : bm. We will now show that
Pa and Pb do not di�er too much.

Lemma 2.2. Let a1; : : :am be planes that determine a
polytope Pa that contains the ball of radius 1 around the
origin and is contained in the ball of radius R around the
origin. Let g1; : : : gm be Gaussian random vectors of vari-
ance �2 centered at the origin. Let bi = ai+gi and let Pb be
the polytope given by planes b1; : : : bm. Then for � < �=Rk,

where we recall k = 8d
p
log(m=�), the following hold with

probability at least 1�me�16d
2 log(m=�).

(a) For every direction, given by a unit vector z,

(1� �)optz(a1; : : : ;am) � optz(b1; : : : ; bm)

� optz(a1; : : : ;am)

1� �
;

where by

optz(a1; : : : ;am);

we mean the solution to (5) assuming yi = 1 for each
i.
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(b) For every vertex v of Pb and every linear function z

optimized by v, the angle of v to z is at most arccos(1�
�=(R + �)).

3. THE MAIN ARGUMENT
Our main result is that for any two vectors t and z, the

expected size of

optSimpsz;t;y(b1; : : : ; bm)

is polynomial in m, d, and 1=�.

Theorem 3.1. Let a1; : : : ;am be points of norm at most
1 and let z and t be unit vectors. Let �1; : : : ; �m be Gaus-
sian measures of variance �2 < 1 centered at a1; : : : ;am
respectively, and let b1; : : : ; bm be random points distributed
independently according to �1; : : : ; �m. Then, the expected
size of

optSimpsz;t;y(b1; : : : ; bm)

is at most f(d;m; �) + 2, where

f(d;m; �) = 2�
2 � 1012(d+ 1)d4m2(1 + 8d

p
log(m=�)�)11

�12
:

Proof. To bound the number of simplices in this set, let
q be a unit vector in the span of t and z that is perpendicular
to z. Then, let

z� = z cos(�) + q sin(�):

We want to bound the size of

Eb1;:::;bm

"�����
([

�

optSimpz� ;y(b1; : : : ; bm)

)�����
#

(7)

Our approach is to consider N points located uniformly
around the circle, �0; : : : ; �N�1, and to compute

Eb1;:::;bm

2
4
������
8<
:

[
i2[0;:::;N�1]

optSimpz�i ;y
(b1; : : : ; bm)

9=
;
������
3
5 (8)

for N suÆciently large that it is exceedingly unlikely that
any simplices have been missed.
We will bound (8) by counting those i for which z�i and

z�i+1 have di�erent optimal simplicies. That is, we use������
8<
:

[
i2[0;:::;N�1]

optSimpz�i ;y
(b1; : : : ; bm)

9=
;
������

=
���ni : optSimpz�i ;y

(b1; : : : ; bm) 6=

optSimpz�((i+1) mod N)
;y(b1; : : : ; bm)

�����
We let

Æ = �=(4
p
em2dd2); and

N = 7(2(1 + k�)=Æ)d:

The angle between z�i and z�i+1 is 2�=N . Applying Theo-
rem 3.3 with � = 2�=N , we �nd that if optSimpz�i ;y

(b1; : : : ; bm)

is non-empty, then the chance that this simplex contains a
cone radius � around z�i , and therefore z�i+1 , is at least

1 � (2�=N)

 
2 � 1012(d+ 1)d4m2(1 + 8d

p
log(m=�)�)11

�12

!

� me�11d
2 log(m=�):

Therefore, the probability that z�i and z�i+1 are optimized
by di�erent simplices is at most

(2�=N)

 
2 � 1012(d+ 1)d4m2(1 + 8d

p
log(m=�)�)11

�12

!

+ me�11d
2 log(m=�):

So, the expected number of simplices that optimize rays in�
z�0 ; : : : ; z�N�1

	
is at most

f(m; d; �) +Nme�11d
2 log(m=�):

Assuming m � d � 3, one can show Nme�11d
2 log(m=�) � 1.

So, the number of simplices that optimize rays in z�0 ; : : : ; z�N�1

is at most

f(m; d; �) + 1:

To bound the probability that these N points have missed
a simplex entirely, we use a result whose proof appears in
the full paper which implies that the probability that the in-
tersection of any simplex with Span (t; z) subtends an angle
less than �

Æ

2(1 + k�)

�d
� 2�=N

is at most 
m

d

! 
d

2

!�
4
p
e(Æ=�)

�
+me�16d

2 log(m=�) � 1�
m
d

� :
As this bad event occurs with probability less than the

total number of possible simplices, it can add at most 1 to
the expected size of

optSimpsz;t;y(b1; : : : ; bm):

3.1 Integral Formulation
Let z be a unit vector and let b1; : : : ; bm be the pertur-

bations of a1; : : : ;am. In this section, we will show that it
is unlikely that z makes a small angle with any vector in
the boundary of optSimpz;y(b1; : : : ; bm). That is, there
is probably a cone around z of reasonably large angle that
is strictly contained in the cone from the origin through
optSimpz;y(b1; : : : ; bm). The proof has two parts: we show
that the point of intersection of the ray through z with
optSimpz;y(b1; : : : ; bm) is probably far from the bound-
ary of the simplex, and we show that it is unlikely that z
intersects the simplex at a small angle. To make this formal,
we de�ne

Definition 3.2. For a unit vector z and vectors b1; : : : ; bd
for which the ray from the origin through z intersects the
simplex spanned by b1; : : : ; bd,

ang (z; @Simplex (b1; : : : ; bd))

is the minimum of the angle of z to v, where v ranges over
the boundary of Simplex (b1; : : : ; bd).
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Let p
(1)
z (�) be the probability that z is � close in angle to

the boundary of the simplex it intersects:

p
(1)
z (�)

def
=

Prb1;:::;bm

h
ang

�
z; @optSimpz;y(b1; : : : ; bm)

�
< �
i
:

So that this makes sense when the polytope is unbounded in
direction z or infeasible, we adopt the convention that the
angle of z to the empty set is 0.
The main result of this section is

Theorem 3.3. Let z be a unit vector and let a1; : : : ;am
be points of norm at most 1. Let �1; : : : ; �m be Gaussian
measures of variance �2 centered at a1; : : : ;am respectively,
and let b1; : : : ; bm be random points distributed independently
according to �1; : : : ; �m. Then,

p
(1)
z (�) � �

2 � 1012(d+ 1)d4m2(1 + k�)11

�12
+me�11d

2 log(m=�):

To prove Theorem 3.3, we analyze an integral expression

for p
(1)
z (�). To simplify the notation in this integral, let

�(d;m) be the set of all permutations on m elements in
which the �rst d elements are sorted and the last m � d
elements are sorted. For example,

�(2; 4) = f(1; 2; 3; 4); (1; 3; 2; 4); (1; 4; 2; 3);
(2; 3; 1; 4); (2; 4; 1; 3); (3; 4; 1; 2)g :

The other notational convention we introduce is

Definition 3.4. For an event A, we let

[A]

denote the function that is 1 if A is true and 0 otherwise.

Let Cone
�
b�(1); : : : ; b�(d)

�
denote the cone from the origin

through Simplex
�
b�(1); : : : ; b�(d)

�
.

Definition 3.5. For a permutation �, let

CHy (�(1); : : : ; �(d)jb1; : : : ; bm)

be the event that there exists ! 2 Sd and r such that

!jb�(i)

�
= yir; for 1 � i � d, and


!jb�(i)
� � yir; for 1 � i � m.

In the case that each yi = 1, this is equivalent to the condi-
tion that Simplex

�
b�(1); : : : ; b�(d)

�
be a facet of the convex

hull of b1; : : : ; bm.

By Claim 1.1, we haveh
Simplex

�
b�(1); : : : ; b�(d)

�
= optSimpz;y(b1; : : : ; bm)

i
= [CHy (�(1); : : : ; �(d)jb1; : : : ; bm)] ��

z 2 Cone
�
b�(1); : : : ; b�(d)

��
That is, (!; 1=r) is the polar coordinate representation of x
from Claim 1.1.
Using this notation, we write:

Lemma 3.6.

p
(1)
z (�) =X
�2�(d;m)

Z
b1;:::;bm

[CHy (�(1); : : : ; �(d)jb1; : : : ; bm)] �
�
z 2 Cone

�
b�(1); : : : ; b�(d)

�� ��
ang

�
t; @Simplex

�
b�(1); : : : ; b�(d)

��
< �
� �

�1(b1) � � � �n(bn)db1 ; : : : ; dbm :

Proof. We have enumerated over every possible choice
of simplex, and set up the integral so that it is zero if that
choice of simplex is not the one that optimizes z.

3.2 Focusing on one simplex
Our analysis will be by brute force: we will bound the

integral for every choice of �. We apply more brute force by
introducing a change of variables that allows us to restrict
b�(1); : : : ; b�(d) to an arbitrary plane. In the new variables,
we specify the plane in which b�(1); : : : ; b�(d) lie using polar
coordinates, and we then specify their locations using local
coordinates in that plane. The Jacobian of this change is
computed by a famous theorem of integral geometry due to
Blaschke [4] (for more modern treatments, see [21] or [23,
12.24]).

Theorem 3.7 (Blaschke). For b1; : : : ; bd variables tak-
ing values in IRd, c1; : : : ; cd taking values in IRd�1, ! 2
Sd�1, r 2 IR, let

P : (b1; : : : ; bd) 7! ((!; r); c1; : : : ; cd);

denote the map from the d points b1; : : : ; bd to the plane
through those points represented in spherical coordinates as
(!; r), and the locations of those points on the plane, c1; : : : ; cd.
The Jacobian of the map P is

jjP jj = Vol (Simplex (c1; : : : ; cd)) :

That is,

db1 : : : dbd = Vol (Simplex (c1; : : : ; cd)) d! dr dc1 : : : dcd

We let �!;r�(i)(ci) denote the restriction of ��(i) to the plane

(!; r). The restriction of a Gaussian distribution to a plane
is a Gaussian distribution with the same variance centered
at the projection of the center of the original to the plane;
so, �!;r

�(i)
has variance �2 and is centered at âi, the projection

of ai to the plane (!; r). To help express p
(1)
z (�) in these new

variables, we let

Cone (!; r; c1; : : : ; cd)
def
= Cone (b1; : : : ; bd) :

Lemma 3.8.

p
(1)
z (�) =

X
�2�(d;m)

Z
!;r

mY
i=d+1

 Z
b�(i)

�

!jb�(i)

� � yir
�
��(i)(b�(i)) db�(i)

!
�

Z
c1;:::;cd

[z 2 Cone (!; r;c1; : : : ; cd)]

[ang (z; @Simplex (c1; : : : ; cd)) < �] �
dY
i=1

�!;r�(i)(ci)Vol (Simplex (c1; : : : ; cd))

d! dr dc1 � � � dcd
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From this expression, one can see that the distribution on
b�(d+1); : : : ; b�(m) can in
uence the distribution of (!; r),
but once ! and r are �xed, they do not e�ect the distribution
of the points on that plane.

3.3 Division into Distance and Angle
Our bound on ang (z; @Simplex (c1; : : : ; cd)) will have

two parts. We �rst let p!;r denote the intersection of plane
(!; r) with the ray through z, and we bound

dist
�
p
!;r; @Simplex

�
b�(1); : : : ; b�(d)

��
;

which denotes the distance from p!;r to the boundary of
the simplex. We then bound the angle between z and !.
We combine these bounds with the following lemma:

Lemma 3.9. Let z be a unit vector de�ning a ray that in-
tersects Simplex

�
b�(1); : : : ; b�(d)

�
and let p!;r be the point

of intersection. Let

h = dist
�
p
!;r; @Simplex

�
b�(1); : : : ; b�(d)

��
:

Then,

ang
�
z; @Simplex

�
b�(1); : : : ; b�(d)

��
� arctan(h h!jzi =(

p!;r

+ h)):

Using this lemma, we can bound p
(1)
z using the following

lemma.

Lemma 3.10. For � < 1=100,

p
(1)
z (�) � p

(2)
z (�) +me�16d

2 log(m=�);

where

p
(2)
z (�) =

X
�2�(d;m)

Z
!;r

K

�
�;!; r;

�

h!jzi
2(1 + k�)

:99

�
d! dr :

and

K(�;!; r; �) =
mY

i=d+1

 Z
b�(i)

�

!jb�(i)

� � yir
�
��(i)(b�(i)) db�(i)

!
�

Z
c1;:::;cd

[z 2 Cone (!; r;c1; : : : ; cd)] ��
dist

�
p
!;r; @Simplex (c1; : : : ; cd)

�
< �
� �

dY
i=1

�!;r�(i)(ci)Vol (Simplex (c1; : : : ; cd)) dc1 � � � dcd :

So, p
(2)
z (�) is roughly the probability that

:99�dist �p!;r; @Simplex
�
b�(1); : : : ; b�(d)

�� h!jzi =2(1+k�)
is less than �.

Proof. Follows by Lemma 3.9,

1=100 > arctan(x) =) arctan(x) > (99=100)x;

and the fact that the probability that

p!;r

 � 1 + k�; or

dist
�
p
!;r; @Simplex (c1; : : : ; cd)

� � 1 + k�

is at most me�16d
2 log(m=�).

3.4 Bounding the distance
Roughly speaking, we want to bound

Prb1;:::;bm

h
dist

�
p
!;r; @optSimpz;y(b1; : : : ; bm)

�
< �
i
:

In particular, for every choice of �, !, and r, we bound

K(�;!; r; �)=K(�;!; r;1):

Once we �x �, !, and r, the term

mY
i=d+1

 Z
b�(i)

�

!jb�(i)

�
< yir

�
��(i)(b�(i)) db�(i)

!

becomes a constant. Using the observation that

[z 2 Cone (!; r;c1; : : : ; cd)],
�
p
!;r 2 Simplex (c1; : : : ; cd)

�
;

we see that the integral:R
c1;:::;cd

�
p
!;r 2 Simplex (c0; : : : ; cd)

�
�
dist

�
p
!;r; @Simplex (c1; : : : ; cd)

�
< �
� �

Vol (Simplex (c1; : : : ; cd))
dY
i=1

�!;r�(i)(ci);

is proportional to K(�;!; r; �). A theorem whose proof oc-
cupies a substantial fraction of the full paper implies

K(�;!; r; �)

K(�;!; r;1)
� (d+ 1)�

�
97d2(1 + k�)3

�4

�2

+ me�16d
2 log(m=�): (9)

3.5 Bounding the Angle
Let ! be the unit normal to optSimpz;y(b1; : : : ; bm). We

show that it is unlikely that h!jzi is small. In particular,
we show that the probability that h!jzi is less than � is at
most proportional to �2. Our argument uses quite a bit of
brute force: we show that this is true under the assumption
that

optSimpz;y(b1; : : : ; bm) = Simplex
�
b�(1); : : : ; b�(d)

�
;

for any �.
For any �, we can express the probability that h!jzi < �

by R
!2Sd�1:0�h!jzi<�

R
r>0

K(�;!; r;1) d! drR
!2Sd�1

R
r>0

K(�;!; r;1)d! dr
(10)

To simplify this expression, let

J(�;!; r)
def
= K(�;!; r;1):

In the full paper we prove that for every choice of �R
!2Sd�1:0�h!jzi<�

R
r
J(�;!; r) d! drR

!2Sd�1
R
r
J(�;!; r)d! dr

<

�2(2 � 107)m2(1 + k�)4=�4 +me�16d
2 log(m=�): (11)

3.6 Combining the bounds
To combine the bounds on angle and distance, we apply

the following lemma:

Lemma 3.11. Let L(!; �) be a function such that

L(!; �)

L(!;1)
� min (1; c2�+ c0) ;
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and R
!:0�h!jzi�� L(!;1)d!R
!:0�h!jzi L(!;1)d!

� c1�
2 + c0:

ThenR
!:0�h!jzi L(!; �= h!jzi) d!R

!:0�h!jzi L(!;1)d!
� (4c2 + �)c1�+ (4c2 + 2)c0:

Proof of Theorem 3.3 We �rst bound p
(2)
z (�). Equation

(11 ) says that for all �,R
!2Sd�1:0�h!jzi<�

R
r
K(�;!; r;1)d! drR

!2Sd�1
R
r
K(�;!; r;1) d! dr

< �2c1 + c0;

where

c1 = (2 � 107)m2(1 + k�)4=�4; and

c0 = me�16d
2 log(m=�):

Moreover, equation (9 ) says that for all �, ! and r

K(�;!; r; �)

K(�;!; r;1)
< �c2 + c0;

where

c2 = (d+ 1)

�
97d2(1 + k�)3

�4

�2

�:

So, we can apply Lemma 3.9 to show that for all �R
!;rK

�
�;!; r; �

h!jzi
2(1+k�)

:99

�
d! dr ;R

!;rK(�;!; r;1) d! dr :
�

�(4c2 + (2�(1 + k�)=:99))c1((1 + k�)=:99) + (4c2 + 2)c0:

Summing over �, we get

p
(2)
z (�) � �(4c2+(2�(1+k�)=:99))c1((1+k�)=:99)+(4c2+2)c0:

Applying Lemma 3.10 and simplifying, we then obtain for
� < 1=100 and m� 1 � d � 3,

p
(1)
z (�) � 2 � 1012(d+ 1)d4m2(1 + k�)11

�12
+me�11d

2 log(m=�):

Of course, if the original polytope were contained between
two spheres as described in 2.1, we could apply Lemma 2.2
and the angle analysis would be unnecessary and much tighter
bounds could be derived.

4. PHASE I
Phase I of a two-phase simplex algorithm has the job of

�nding an initial vertex on the polytope determined by the
constraints of a linear program, or determining that the con-
straints are infeasible. It is a relatively simple task to �nd
a vertex of a polytope that contains the origin. If the origin
is not feasible, then Phase I algorithms typically construct
a linear program in one higher dimension whose solution
provides a vertex of the original polytope, if such a vertex
exists. Ideally, the higher-dimension polytope should have
an easily identi�able vertex. In this section, we describe a
Phase I simplex algorithm that we will employ to �nd a ver-
tex of the constraint polytope whether or not it contains the

origin. We will again use the shadow-vertex pivot rule. To
prepare for Phase II, this algorithm will also choose a vector
t optimized by the vertex it �nds.
Consider a polytope Pb given by the equations

hxjbii � yi; for 1 � i � m:

where yi 2 f1;�1g and bi 2 IRd. We construct a polytope
P�b in d+1 dimensions that has Pb as a facet, and for which
we can easily �nd a vertex.
If we think of IRd as being coordinatized by x = (x1; : : : ; xd),

then we appeand an extra dimension by prepending a vari-
able x0 and coordinatizing IRd+1 by �x = (x0; : : : ; xd). We
extend the constraints to handle x0 by chosing m Gaussian
random variables g0;1; : : : ; g0;m of variance �2 and mean 0,
and setting

�bi
def
=

�
[gi; bi] if i � d, and
[�	+ gi; bi] if i > d,

(12)

for some suÆciently large 	 satisfying conditions explained
later. We also add two constraints given by


�b0j�x
� � y0; and



�b�1j�x

� � y�1;

where

�b0
def
= [�1; 0; : : : ; 0]; and y0

def
= 0,

�b�1
def
= [1; 0; : : : ; 0]; and y�1

def
= 1. (13)

Together, these imply 0 � x0 � 1. Moreover, Pb is obtained
by restricting P�b to x0 = 0.
If 	 satis�es certain conditions related to the least sin-

gular value of the matrix of b1; : : : ; bd, which we denote
�(b1; : : : ; bd), then it easy to �nd a vertex of P�b:

Lemma 4.1. Let v be the solution to

hvjbii = yi; for 1 � i � d;

and let 	 satisfy

	 � k1� +

p
dk1� (maxi kbik)
�(b1; : : : ; bd)

+ max
d+1�i�m

hvjbii � yi;

where

k1
def
= 4

p
d logm:

Let �b�1; : : : ; �bm and y�1; : : : ; ym be as de�ned in this section.
Let �v be the solution to


�vj�bi
�
= yi; for i 2 f�1; 1; : : : ; dg:

Then, with probability at least 1�me�4d logm over the choice
of g0;1; : : : ; g0;m, �v is a vertex of P�b. For each direction t

optimized by v, the vector

�t
def
=

"p
d (maxi kbik)
�(b1; : : : ; bd)

; t

#
(14)

is optimized by �v.

We now de�ne our two-phase shadow vertex algorithm.
Our Phase I minimizes x0 over P�b using the shadow-vertex
simplex algorithm. The starting vertex will be �v as de�ned
in Lemma 4.1, and the start vector �t will be as described in
(14) where t is chosen from a subset of Simplex (b1; : : : ; bd)
by choosing �1; : : : ; �d uniformly at random subject to

P
i �i =

1 and �i � 1=3d2, and setting t =
P

�ibi.
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Let �w be the �rst vertex such that w0 = 0 encountered
by the shadow-vertex simplex algorithm as it minimizes x0
starting from �t. �w is the vertex of Pb that optimizes t. We
run the phase II shadow vertex algorithm on Pb starting
from vertex �w and initial direction t.

Theorem 4.2. Let z be a unit vector and let a1; : : : ;am
be points of norm at most 1. Let �1; : : : ; �m be Gaussian
measures of variance �2 < 1 centered at a1; : : : ;am respec-
tively, and let b1; : : : ; bm be random points distributed inde-
pendently according to �1; : : : ; �m. Then, for any � < 1,
with probability at least 1� 2�, the number of steps taken by
the two-phase shadow-vertex simplex algorithm as it solves
the linear program (6) is at most

(5 (f(d+ 1;m; �2=(1 + 	)) + f(d;m; �) + 6) + 2) =�;

where

	 =
42
p
e(1 + 4

p
d logm�2)

2d2

10��
;

and

�2 =
�2�2

5600d6 logm
;

and where f(d;m; �) is as de�ned in Theorem 3.1.

The proof has two steps. We �rst imagine that Pa is
a polytope in which Simplex (a1; : : : ;ad) has good aspect
ratio. We then let Pb be a slight Gaussian perturbation
of Pa as usual. Given that Simplex (a1; : : : ;ad) has good
aspect ratio and the perturbation is small, the initial vec-
tor we choose, t, will intersect Simplex (a1; : : : ;ad) and be
chosen almost uniformly from those well-inside this simplex.
By showing that most choices of vectors t intersecting well-
inside Simplex (a1; : : : ;ad) result in both the Phase I and
Phase II algorithms running quickly, we can show that our
choice of vector t in Simplex (b1; : : : ; bd) probably results
in the Phase I and Phase II algorithms running quickly. We
then prove the theorem by considering any Pa and decom-
posing the perturbation g1; : : : ; gm into two perturbations:
one after which the �rst simplex almost de�nitely has good
aspect ratio, and a smaller perturbation that we can analyze
by the preceeding analysis.

5. DISCUSSION AND OPEN QUESTIONS
The results proved in this paper support the assertion

that the shadow-vertex simplex algorithm usually runs in
polynomial time. However, our understanding of the per-
formance of the simplex algorithm is far from complete. In
this section, we discuss problems in the analysis of the sim-
plex algorithm and in the smoothed analysis of algorithms
that deserve further study.

5.1 Practicality of the analysis
While we have demonstrated that the smoothed complex-

ity of the shadow-vertex algorithm is polynomial, the poly-
nomial we obtain is quite large. Yet, we believe that the
present analysis provides some intuition for why the shadow-
vertex simplex algorithm should run quickly. It is clear
that the proofs in this paper are very loose and make many
worst-case assumptions that are unlikely to be simultane-
ously valid. In the full version of the paper, we give some
indication as to how one should be able to reduce the �12

term in Theorem 3.1 to �4.

5.2 Further analysis of the simplex algorithm

� While we have analyzed the shadow-vertex pivot rule, there
are many other pivot rules that are more commonly used
in practice. Knowing that one pivot rule usually takes
a polynomial walk makes it seem reasonable that others
should as well. We consider the maximum-increase and
steepest-increase rules to be good candidates for smoothed
analysis.

� As many sparse linear programming problems arise in prac-
tice, the relative smoothed complexity of the shadow vertex
simplex method should be analyzed.

� Many linear programs encountered in practice have de-
generacies. Is there a model of perturbations that result
in or preserve degeneracies? We note that some simplex
methods handle the problem of degeneracies by slightly
perturbing the linear program.

� Even if we cannot perform a smoothed anlysis of other
pivot rules, we might be able to measure the diameter of a
polytope under smoothed analysis. It would be interesting
to know if it is expected to be polynomial inm, d, and 1=�.

� Given that the shadow-vertex simplex algorithm can solve
the perturbations of linear programs eÆciently, it seems
natural to ask if we can follow the solutions as we un-
perturb the linear programs. For example, having solved
an instance of type (6), it makes sense to follow the solu-
tion as we let � approach zero. Such an approach is often
called a homotopy or path-following method. So far, we
know of no reason that there should exist an A for which
one cannot follow these solutions in expected polynomial
time, where the expectation is taken over the choice of
G. Of course, if one could follow these solutions in ex-
pected polynomial time for every A, then one would have
a randomized strongly-polynomial time algorithm for lin-
ear programming!

5.3 Smoothed Analysis
We believe that many algorithms will be better under-

stood through smoothed analysis. Scientists and engineers
routinely use algorithms with poor worst-case performance.
Often, they solve problems that appear intractable from the
worst-case perspective. While we do not expect smoothed
analysis to explain every such instance, we hope that it can
explain away a signi�cant fragment of the discrepancy be-
tween the algorithmic intuitions of engineers and theorists.
To aid the reader in the application of smoothed analysis,

we now outline a generalization of the de�nitions made in
Section 1.2. The key is to generalize the notion of pertur-
bation.
Let X be a space of inputs containing Xn for all n. For

each x 2 X, we de�ne a monotone increasing neighborhood
system around x parameterized by a real variable Æ taking
values between zero and in�nity such that

1. Sx0 = fxg.
2. For Æ < Æ0, we have SxÆ � SxÆ0 . (monotone increasing)

We then de�ne a family of decaying density functions on
these neighborhood systems parameterized by a real variable
� taking values between zero and in�nity that should satisfy
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1. �x� is a probability measure.

2. For all Æ, �, y 2 SxÆ and z 62 SxÆ , we have �x�(y) >
�x�(z). (decaying)

3. For all Æ and � < �0, �x�(S
x
Æ ) > �x�0(S

x
Æ ). (concentra-

tion)

4. For all Æ, lim�!0 �
x
�(S

x
Æ )! 1. (concentration in limit)

With these measures de�ned, we can generalize the de�ni-
tion of smoothed complexity of an algorithm A on inputs of
length n to

max
x2Xn

E
y
�x� X

[C(A; y)]

The de�nition of �-smoothed complexity can be similarly
generalized.
As these de�nitions are very broad, one must be careful to

exercise good taste when applying them. In particular, one
should be very cautious when applying them to the analy-
sis of any discrete combinatorial algorithm. We expect that
the appropriate notion of perturbation for algorithms with
discrete inputs such as graphs will depend heavily on the
algorithm being analyzed. A good indication of whether a
smoothed analysis is meaningful is whether it allows approx-
imation for a general collection of input instances.
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