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ABSTRACT

Principle component analysis (PCA) is commonly used to agma bounding box of a point set &4, The
popularity of this heuristic lies in its speed, easy impletaéon and in the fact that usually, PCA bounding
boxes quite well approximate the minimum-volume boundiogds. In this paper we give a lower bound on the
approximation factor of PCA bounding boxes of convex pghg®in arbitrary dimension, and an upper bound on
the approximation factor of PCA bounding boxes of conveygohs inR?.
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1. INTRODUCTION plexity. The running times of their algorithms are

- . . 1/e%5 & ively.
Substituting sets of points or complex geometric O(n+1/&™?) andO(nlogn-+n/e%), respectively

shapes with their bounding boxes is motivated by Numerous heuristics have been proposed for com-
many applications. For example, in computer graph- puting a box which encloses a given set of points.
ics, it is used to maintain hierarchical data structures The simplest heuristic is naturally to compute the
for fast rendering of a scene or for collision detec- axis-aligned bounding box of the point set. Two-
tion. Additional applications include those in shape dimensional variants of this heuristic include the
analysis and shape simplification, or in statistics, for well-known R-trege the packed R-tregfRL85], the
storing and performing range-search queries on a R*-tree[BKSS90], theR"-tree [SRF87], etc.

large database of samples. A frequently used heuristic for computing a bounding

Computing a minimum-area bounding box of a set box of a set of points is based principal component

of n points inR? can be done i(nlogn) time, for analysis The principal components of the point set
example with the rotating caliper algorithm [Tou83]. define the axes of the bounding box. Once the axis di-
O’'Rourke [O’'R85] presented a deterministic algo- rections are given, the dimension of the bounding box

rithm, a rotating caliper variant i3, for computing is easily found by the extreme values of the projection
the exact minimum-volume bounding box of a set of of the points on the corresponding axis. Two distin-
n points inR3. His algorithm requireO(n%) time guished applications of this heuristic are the OBB-tree

and O(n) space. Barequet and Har-Peled [BHP99] [GLM96] and the BOXTREE [BCG96], hierarchical
have contributed two (1&)-approximation algorithms  bounding box structures, which support efficient colli-
for computing the minimum-volume bounding box sion detection and ray tracing. Computing a bounding
for point sets inR3, both with nearly linear com-  box of a set of points ifR? andR* by PCA is quite
fast, it requires linear time. To avoid the influence of
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in the fact that usually PCA bounding boxes are tight-
fitting (see [LKM™00] for some experimental results).

Given a point se C RY we denote byBBpca(P)
the PCA bounding box ofP and by BBopt(P)
the bounding box of P with smallest possi-
ble volume. The ratio of the two volumes
Ad(P) = Vol(BBpca(P))/VoI(BBypt(P))  defines
the approximation factor fd?, and

A= sup{/\d(P) | PC RY,VOI(CH(P)) > 0}

defines the general PCA approximation factor. We are
not aware of any previous published results about this
quality feature of PCA. Here, we give lower bounds
on A4 for arbitrary dimensiord, and an upper bound
onA,.

The paper is organized as follows. In Section 2. we
review the basics of principal component analysis. In
particular, we present the continuous version of PCA,
which results in the introduction of a series of approx-
imation factorsAq;, wherei ranges from O tal and
denotes the dimension of the faces of the convex hull
that contribute to the continuous point set for which
the principal components are computed. In Section 3.
we give lower bounds oAy for arbitrary values ofl

and 1<i <d. An upper bound ord, is presented

in Section 4. We conclude with future work and open
problems in Section 5.

2. PRINCIPAL COMPONENT ANALY-
SIS

The central idea and motivation of PCA [Jol02]
(also known as the Karhunen-Loeve transform, or
the Hotelling transform) is to reduce the dimen-
sionality of a point set by identifyingthe most
significant directions (principal components) Let
X = {Xq,X2,...,Xm}, wherex is a d-dimensional
vector, andc = (C1,Cz,...,¢4) € RY be the center of
gravity of X. For 1< k < d, we usexj to denote the
k-th coordinate of the vectog. Given two vectorsu
andv, we use(u, V) to denote their inner product. For
any unit vecton € RY, thevariance of X in direction
vis

m

var(X,v) = “11‘21<Xi —c,v)2 (1)

The most significant direction corresponds to the unit
vectorv; such thatvar(X,vy) is maximum. In gen-
eral, after identifying thg most significant directions
Bj = {v1,V2,...,Vj}, the(j+ 1)-th most significant di-
rection corresponds to the unit vectgr,; such that
var(X,vjy1) is maximum among all unit vectors per-
pendicular tovg, vy, ..., Vj.

It can be verified that for any unit vectore R,

var(X,v) = (Cvv), (2)

whereC is the covariance matrixof X. Cis a sym-
metric d x d matrix where thei(j)-th component,
Gij,1<i,j <d, is defined as

Gij =

k;(xik —Gi)(Xjk — Cj). 3)

Sl

The procedure of finding the most significant direc-
tions, in the sense mentioned above, can be formu-
lated as an eigenvalue problemAlf > Ay > --- > Aq

are the eigenvalues @, then the unit eigenvecta;

for A; is the j-th most significant direction. AlAjs

are non-negative andlj = var(X,v;). Since the ma-
trix C is symmetric positive definite, its eigenvectors
are orthogonal. If the eigenvalues are not distinct, the
eigenvectors are not unique. In this case, an orthogo-
nal basis of eigenvectors is chosen arbitrary. However,
we can achieve distinct eigenvalues by a slight pertur-
bation of the point set.

The following result summarizes the above back-
ground knowledge on PCA. For any s& of
orthogonal unit vectors irRY, we usevar(X,S) to
denotey,csvar(X,v).

Lemmal For 1 <j < d, let A; be the j-th largest
eigenvalue of C and letj\denote the unit eigenvector
for Aj. Let Bj = {v1,vo,...,Vj}, sp(Bj) be the linear
subspace spanned by,Bind s(§B;)* be the orthogo-
nal complement of B;). ThenA; = max{var(X,v) :
veRY |lv| =1}, and forany2 < j <d,

i) Aj=max{var(X,v):vespBj_1)*,|v| = 1}.
i) Aj =min{var(X,v):vespBj),|v|]=1}.

iii) var (X,Bj) > var(X,S) for any set S of j orthog-
onal unit vectors.

Since bounding boxes of a point det(with respect

to any orthogonal coordinate system) depend only on
the convex hull ofCH(P), the construction of the co-
variance matrix should be based only G (P) and

not on the distribution of the points inside. Using the
vertices, i.e., the 0-dimensional facesGH (P) to de-
fine the covariance matri@ we obtain a bounding box
BBpcad,0)(P). We denote by\q o(P) the approxima-
tion factor for the given point sét and by

Aao=sup{Aqo(P) | PC R%,Vol(CH(P)) > 0}

the approximation factor in general. The example in
Figure 1 shows thak, o(P) can be arbitrarily large if
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Figure 1: Four points and its PCA bounding-box
(left). Dense collection of additional points signifi-
cantly affect the orientation of the PCA bounding-
box (right).

the convex hull is nearly a thin rectangle, but with a
lot of additional vertices in the middle of the two long
sides. Since this construction can be lifted into higher
dimensions we obtain a first general lower bound.

Proposition 2 Ago = forany d> 2.

To overcome this problem, one can apply a continu-

The covariance matrix of has the form

_ fxex (X_ C)(X_ C)de

¢ : ©)
Jxex dX
with its (i, j)-th component
Gij = Jxex (% — €i) (] —¢j)dx @)

fxexdx 7

wherex; andx; are thei-th andj-th component of the
vectorx, andc; andc; i-th andj-th component of the
center of gravity. It can be verified that relation (2) is
also true wherX is a continuous set of vectors. The
procedure of finding the most significant directions,
can be also reformulated as an eigenvalue problem and
consequently Lemma 1 holds.

For point set® in R? we are especially interested in
the cases wheK represents the boundary GH(P),

or all points inCH(P). Since the first case corre-
sponds to the 1-dimensional facesGifi(P) and the
second case to the only 2-dimensional fac€Hf(P),
the generalization to a dimensidr> 2 leads to a se-
ries ofd — 1 continuous PCA versions. For a point set

ous version of PCA taking into account (the dense set P ¢ RY, C(P,i) denotes the covariance matrix defined

of) all points on the boundary &H(P), or even all
points inCH(P). In this approaciX is a continuous
set ofd-dimensional vectors and the coefficients of the

by the points on the-dimensional faces o€EH(P),
and BBpc4q,i) (P), denotes the corresponding bound-
ing box. The approximation factork;(P) andAq;

covariance matrix are defined by integrals instead of are defined as

finite sums.

Note that for ford = 1 the above problem is trivial,

because the PCA bounding box is always optimal, i.e.,

AroandAq g are 1.

2.1 Continuous PCA

Variants of the continuous PCA, applied on tri-

Vol(BBycyd,i) (P))
Adi(P) = Wﬁ(é))’

Agji = sup{Aq;i(P) | P C RYVoI(CH(P)) > 0}.

and

3. LOWER BOUNDS

We start with straightforward conclusion from Propo-
sition 2.

angulated surfaces of 3D objects, were presentedProposition 3 Agj =co forany d>4andanyl <i <

by Gottschalk et. al. [GLM96], Lahanas et. al.
[LKM *t00] and Vrang et. al. [VSRO1]. In what
follows, we briefly review the basics of the continuous
PCA in a general setting.

Let X be a continuous set af-dimensional vectors
with constant density. Then, the center of gravity<of
is

_ Jxex XdX.
jxex dx

Here, [ dx denotes either a line integral, an area inte-
gral, or a volume integral in higher dimensions. For
any unit vectov € RY, thevariance of X in direction
vis

(4)

_ fxex <X7 C, V>2dX

var(X,v) = T ax
Xe

(5)

d-1.

Proof. We can use a lifting argument to establish
Ai < Akstirt, and thusAgi > Ag-gj-1 > ... >
Ad—i,0 = . O

This way, there remain only two interesting cases for
a givend: the factorAqq-1 corresponding to the
boundary of the convex hull, and the facfgry corre-
sponding to the full convex hull. The nontrivial lower
bounds we are going to derive are based on the fol-
lowing connection between the symmetry of a point
set and its principal components.

Lemma 4 Let P be a d-dimensional point set symmet-
ric with respect to a hyperplane H and assume that the



covariance matrix C has d different eigenvalues. Then,
a principal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that
the hyperplane of symmetry is spanned by the last
d— 1 standard base vectors of ttelimensional space
and the center of gravity of the point set coincides
with the origin of thed-dimensional space, i.ec,=
(0,0,...,0). Then, the components;; andc;s, for
2<j<d, are 0, and the covariance matrix has the
form:

C11 0 0
0 c» Cod
C= . (8)
0 ca Cdd
Its characteristic polynomial is
detC—A 1) = (cu—A)F(A), 9)

wheref(A) is a polynomial of degred — 1, with co-
efficients determined by the elements of fde- 1) x

(d — 1) submatrix ofC. From this it follows thatc;;

is a solution of the characteristic equation, i.e., it is an
eigenvalue ofC and the vector (1, O, ...,0) is its cor-
responding eigenvector (principal component), which

is orthogonal to the assumed hyperplane of symmetry.

O

3.1 Lower bounds inR?

Ry

Figure 2: An example which gives us the lower
bound of the area of the PCA bounding box of an
arbitrary convex polygon in R2.

as long its angles are not Q0This leads to the con-
clusion that the ratio between the area of the bounding
box on the left side in Figure 3, and the area of its
PCA bounding box, on the right side in Figure 3, in
limit goes to 2. |

Alternatively, to show that the given squared rhombus
fits into a unit cube, one can apply the following rota-

\/_ .

It can be verified easily that all coordinates of the ver-

1
1

1

Ry = 1

(10)

The result obtained in this subsection can be seenijces of the rhombus transformed By are in the in-
as special case of the result obtained in the subsec-joy g [—0.5,0.5]. We use similar arguments when we

tion 3.3. To gain a better understanding of the problem
and the obtained results, we consider it separately.

Theorem 5 A1 > 2andAz» > 2.

Proof. Both lower bounds can be derived from a rhom-
bus. Let the side length of the rhombus be 1. Since
the rhombus is symmetric, its PCs coincide with its
diagonals. On the right side in Figure 2 its optimal-
area bounding boxes, for 2 different angles;> 90°
andf3 = 90¢, are shown, and on the left side its cor-
responding PCA bounding boxes. As the rhombus’
angles in limit approach 90the rhombus approaches
a square with side length 1, i.e., the vertices of the
rhombus in the limit aré%,O), (—%, ), (0, %) and

(0, —\%) (see the left side in Figure 2), and the dimen-
sions of its PCA bounding box arg2 x /2. Accord-

ing to Lemma 4, the PCs of the rhombus are unique

prove the lower bounds in higher dimensions.

3.2 Lower bounds inR3

Theorem 6 Az > 4andAz3 > 4.

Proof. Both lower bounds are obtained from a
dipyramid, having a rhombus with side lengtf2

as its base. The other sides of the dipyramid have
length @’ Similarly as inR2, we consider the case
when its base, the rhombus, in limit approaches the
square, i.e., the vertices of the square dipyramid
are (1,0,0),(—1,0,0),(0,1,0),(0,~1,0),(0,0, %2
and (QO,—%Z) (see the left side in Figure 3). The
dimensions of its PCA bounding box are<2 x /2.
Now, we rotate the coordinate system (or the square



dimension R?2 | R3 | R* | R®

RG R7 ]RS RQ ]Rlo

lower bound 2 4 | 16 | 16

32 | 64 | 4096 | 4096 | 8192

Table 1: Lower bounds for the approximation factor of PCA bounding boxes for the first 10 dimensions.

Figure 3: An example which gives the lower bound
of the volume of the PCA bounding box of an arbi-
trary convex polygon in R3.

dipyramid) with the rotation determined by the
following orthogonal matrix

NI NI %‘H

11)

NIk NIk %‘
N Ll

S Sk o

It can be verified easily that the square dipyramid, after
rotation withRg fits into the box[—0.5,0.5]° (see the
right side in Figure 3). Thus, the ratio of the volume
of the bounding box, on the left side in Figure 3, and
the volume of its PCA bounding box, on the right side
in Figure 3, in limit goes to 4. O

3.3 Lower bounds inRY

Theorem 7 If d is a power of two, theAq g 1 > v/
andAqq > \/ad.

Proof. For anyd = 2K, leta; be ad-dimensional vector,
with g = ‘/75 anda;j =0 fori # j, and leth; = —a;.
We construct @-dimensional convex polytogd with
verticesV = {a;,bi|1 <i <d}. Itis easy to check that
the hyperplane normal tg is a hyperplane of reflec-
tive symmetry, and as consequence of Lemma i

an eigenvector of the covariance matrix/Rf To en-
sure that all eigenvalues are different (which implies
that the PCA bounding box is unique), we agjd> 0

to thei-th coordinate ofy, and —¢; to thei-th coor-
dinate ofb;, for 1 <i <d, whereg; < & < ... < &.
When allg;, 1 <i < d, arbitrary approach 0, the PCA

bounding box of the convex polytof® convergesto *!

a hypercube with side lengthgd, i.e., the volume of

the PCA bounding box d® converges taﬂd. Now,

we rotatePy, such that it fits into the cubg-1, %]d.

Ford = 2%, we can use a rotation matrix derived from
aHadamard matri%, recursively defined by

12)

where we start with the matriR, (10) defined above
for d = 2. A straightforward calculation verifies that
Py rotated withRy fits into the cubé—0.5, 0.5]d. O

Remark: Theorem 7 holds for all dimensiomsfor
which ad x d Hadamard matrix exists. Hadamard
conjectured that this is the case for all multiples of
four. This conjecture is known to be true for< 664
[KTRO5].

We can combine lower bounds from lower dimensions
to get lower bounds in higher dimensions by taking
Cartesian products. If, is a lower bound for the ra-
tio between the PCA bounding box and the optimal
bounding box of a convex polytope &, andlg, is

a lower bound inR%, thenlg, - lg, is a lower bound

in R%+%_ This observation together with the results
from this section enables us to obtain lower bounds
in any dimension. For example, for the first 10 dimen-
sions, the lower bounds we obtain are given in Table 1.

4. AN UPPER BOUND FORA; 1

Given a point seP C R? and an arbitrary bounding
box BB(P) we will denote the two side lengths lay
and b, wherea > b. We are interested in the side
lengthsagpt(P) > bopt(P) and apca(P) > bpca(P) of
BBopt(P) andBBycq2,1)(P), see Figure 4. The param-
etersa = d(P) = apca(P)/aopt(P) and B = B(P) =
bpca(P)/bopt(P) denote the ratios between the corre-
sponding side lengths. Hence, we havg(P) =
a(P)-B(P). If the relation toP is clear, we will omit
the reference t® in the notations introduced above.

Since the side lengths of any bounding box are
bounded by the diameter & we can observe that in

A Hadamard matrix is &1 matrix with orthogonal columns.
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Figure 4: A convex polygon 2, its PCA bounding box and the linelyc,, which coincides with the first
principal component of &2, are given in the left part of the figure. The optimal boundingbox and the line
I%, going through the middle of its smaller side, parallel withits longer side, are given in the right part of

the figure.

generalbpca(P) < apca(P) < diam(P) < v/2aop(P),

and in the special case when the optimal bounding 4<BBg \

box is a squarel1(P) < 2. This observation can L . |

be generalized, introducing an additional parameter 2 A 0

N (P) = @opt(P) /Bopt(P).- P~ ] bopt
Qopt

Lemma8 A21(P) <n+4 and Azp(P)<n+
for any point set P with fixed aspect ratidP) = n. Figure 5: The convex polygon 2, its optimal

bounding box, and the staircase polygorBBs (de-
Proof. We have for botta,ca andbpca the upper bound  picted dashed).

diam(P) < /@3p+ b3 = aopty/1+ ,712 Replacing

Popt DY 1 bOpé 'n the bound folbpea We obtaina < box, we assign a segment identicalfto To each re-
n (\/ 1+ ,»%) =n+7. . maining segmens of 2, with endpoints(xz,y1) and
(X2,¥2), with |y1| < |y2|, we assign two segments: a
Unfortunately, this parametrized upper bound tends to S€9Menss, with endpoints(xy,y1) and(xa,y2), and a
infinity for n — . Therefore we are going to de- S€IMent, with endpoints(x.,y2) and (xz,y2). All
rive another upper bound that is better for large val- (€S segments form the bounda#fZs of a stair-
ues ofn). In this process we will make essential use C@S€ Polygon (see Figure 5 for illustration).  Two
of the properties 0BByey.1)(P). In order to dis- straightforward consequences are tﬂﬁa(t@%’s,ll)
tinguish clearly between a convex set and its bound- dz(%%’c;pt,ll) andd?(s, FPRS d?(sy, |1)+d2(52,|1)
ary, we will use calligraphic letters for the bound- for each segmens of @ Therefore d2(2, |;)
aries, especially” for the boundary ofCH(P) and 2
BB for the boundary of the rectang®Bypi(P). o
Furthermore, we denote lnif(2,1) the integral of the by d2(B%opt,11) =4[y 2 ¥2dx+ 2]50”‘(@)2 dx=
squared distances of the pomts ﬂlto alinel, i.e., 2
d?(2,1) = [, »d?(x,1)ds Letlpca be the line going
through the center of gravity and parallel to the longer
side 0fBBpcy2,1)(P) andl% be the bisector 0BB, )
parallel to the longer side. By Lemma 1, part jjja is Us

at mostdz(ﬂﬂs,l%), which is bounded from above

boptzaopt bo pt3
— 5 + -5 - O

the best fitting line oP and therefore 3 = P
b/ : upp

2 2 .
< . ‘

d (galpca) <d (@J%) (13) L AN as Uy | Lo

AN by b
2 3 Trm,’ : ca
Lemma 9 d2(22, 1) < Dep P | Dop” ’ bre
2 .
Qpca L3

Proof. If a segment ofZ? intersects the Ilnél we

split this segment into two segments, with the inter- Figure 6: The convex polygon#, its PCA bound-
section point as a split point. Then, to each seg- |ng box, and a construction for a lower bound for
mentf of & flush with the side of the PCA bounding d*(2,lpca)
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Figure 7: Two polylines #/,,, and &, (depicted
dashed) formed from &2.

Now we look at%? and its PCA bounding box (Fig-
ure 6). The linelpca divides &7 into an upper and a
lower part,2ypp and Zjow. lupp denotes the orthogo-
nal projection of%?,p, ontol pca, With Uy andU; as its
extreme points, anlgh,, denotes the orthogonal projec-
tion of Hqy ONtolpcq, With Ly andL; as its extreme
points. Jupp = A(U1UoU3) is a triangle inscribed in
Zupp Where pointz lies on the intersection o pp
with the upper side of the PCA bounding box. Anal-
ogously, Jow = A(L1LoL3) is a triangle inscribed in
@Iow-

Lemma 10

dz(gzvlpca) > dz(%pp’lpca) erz(ﬁow’lpca)-

Proof. Let Q denote a chain of segments.@f, which

does not touch the longer side of the PCA bounding
box, and whose one endpoint lies on the smaller side
of the PCA bounding box, and the other endpoint on

the linelpca. We reflectQ at the line supporting the
side of the PCA bounding box touched @y All such

reflected chains of segments, together with the rest of |\ henp

2, form two polylines: &7} ppand%OW (see Figure 7

forillustration). As a consequence, to each of the sides

of the trianglesJow and Fypp, Lils, Lols, UiUs,
UoUs, we have a corresponding chain of segmdgts

LN~
N
~

Figure 8: Two types of chains of segments (depicted
dashed and denoted byr), and their corresponding
triangles’ edges (depicted solid and denoted b).

SinceZ is convex, the following relations hold:

bpca b/

||Upp| > apcaa and|ljow| > Apca: (14)
pca
The value
/a2 b/Z
d*(Tpplpcd) = o R b')2da
1y b’2
g g
+ fO (\/W ) a
= B(/R+b2+ [ +b2)

is minimal whena; = a, = @ With (14) we get

/3

b
2
d (%pwlpca) > 43bpcav a%ca"’ 4b;2)ca'

Analogously, we have for the lower part:

\/ @Bcat403ca

The sumd?(Fpp:lpca) + d%( Fiows lpca) is minimal
= %‘. This, together with Lemma 10, gives:

(bpca_ b/)s

2
>
d (eglow, Ipca) Z 3bpca

as shown in the two cases in Figure 8. In both cases Combining (13), (15) and Lemma 9 we have:

d2(t,l pca) < d?(R Ipca). Namely, we can parametrize
both curvesR andt, starting at the common endpoint
Athat is furthest fronyca. By comparing two points
with the same parameter (distance frémalong the
curve) we see that the point oralways has a smaller
distance tolyca than the corresponding point dR

In additiont is shorter, and some parts Bfhave no
match ort.

Consequeml)dz(@’; |pca) > dz(a%ppU aglow,lpca) =
d?(Fpp,lpca) + 92 Fiow: I pca) and  since,
dz(«@ﬂpca) = dz(e@a'pca) = dz(«@uppU «@IOWJpca),
the proof is completed. O

b2
dX( 2 lpea) > 5 T T 1)
2 b%ca / b%ca
ZaODIbopt+ bopt— 12 ca+4bpca— 12 5 Qpca
(16)

Replacingagpt with nbgpt on the left sideb%ca with
B2b3 5 andapca With aaop: = anbop on the right side
of (16), we obtain:

n,1\ s
<§+é>%m

which implies
6n +2
B<il—(7r an

B aan

opt



This gives the second upper bounden (P) for point
sets with parametey:

[Jol02]
ap < @n;aaf;JGTrz H+7% 17)

[KTRO5]
Theorem 11 The PCA bounding box of a point set P
in R? computed over the boundary of CP) has a
guaranteed approximation factde 1 < 2.737.

Proof. The theorem follows from the combination of
the two parametrised bounds from Lemma 8 and (17)
proved above:

O'R85
A21 < supg min r7+1, 6n +2 1+i2 [ ]
n>1 n n n
) ) [RL85]
It is easy to check that the supremsns 2.736 is ob-
tained forn ~ 2.302. g
5. FUTURE WORK AND OPEN PROB-  [SRF87]
LEMS
It should be possible to prove an upper bound\ep
along the same line as fdr,;, but the analogon of  [Tou83]

Lemma 9 seems to require some new analytical tools,

since, e.g., the reflection tricks do not apply in that

setting. However, there is some evidence that an upper[VSRm]
bound proof forA, » would give some ideas to attack

the 3-dimensional problem far; 3, and, maybe also a
generalization td 4 in higher dimensions.
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