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Abstract

We show that there is a matching between the edges of any two triangulations of

a planar point set such that an edge of one triangulation is matched either to the

identical edge in the other triangulation or to an edge that crosses it. This theorem also

holds for the triangles of the triangulations and in general independence systems. As an

application, we give some lower bounds for the minimumweight triangulation which can

be computed in polynomial time by matching and network 
ow techniques. We exhibit

an easy-to-recognize class of point sets for which the minimum-weight triangulation

coincides with the greedy triangulation.

1 Introduction

The aim of this paper is to prove and discuss some surprising and rather general intersection
properties of planar triangulations.

Given two triangulations of a point set, we can �nd a matching between their edge sets
such that matched edges either cross or coincide. This theorem and a few related statements

will be proved in Section 2.
The remaining part of the paper deals with applications of this result to the computation

of minimum-weight triangulations. In Section 3 we identify special cases of point sets for
which the minimum-weight triangulation can be computed e�ciently. An example is shown

in Figure 4. Section 4 o�ers several lower bounds on the weight of a triangulation, and
Section 5 describes some algorithms to compute these bounds. In Section 6 we will discuss

possible applications of our results and some open questions.
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The main matching result (Theorem 1) was discovered independently by two subsets

of the current authors, see [AART95] and [CX95]. Naoki Katoh contributed the ideas for
Section 4.3. This joint paper is a �nal version of [AART95] and some of the results of
[CX95].

2 The matching theorems

2.1 Matchings of triangulations

Let P be a set of n points in the plane. We assume that not all points lie on one line.
Consider the set E of all line segments connecting two points of P and containing no other

points of P . (If P is in general position then jEj =
�n
2

�
.) The elements of E are called

edges. Two distinct edges are said to cross if they intersect in their interior. In particular,
two edges sharing only one endpoint do not cross. A triangulation T of P is a maximal set

of non-crossing edges. It dissects the convex hull of P into triangular faces. We recall a
well-known fact on triangulations.

Lemma 1 Every triangulation of P consists of m = 3n�3�b edges, where b is the number

of points in P which lie on the boundary of the convex hull of P . Every set of non-crossing

edges consists of at most m edges. 2

The following is our main theorem. See Figure 1 for an illustration of the result.

Theorem 1 Let P be a �nite set of points in the plane and consider two triangulations R

and B of P . There exists a perfect matching (a one-to-one assignment, a bijective mapping)

between R and B, with the property that matched edges either cross or are identical.

Figure 1: Two triangulations and a perfect matching between them. When two identical

edges are matched this is indicated by a small box, and the intersection point of two crossing
edges which are matched is marked by a cross.

Proof. For notational simplicity, let us color the edges in B blue and the edges in R red.
We consider the intersection graph, G, of R [ B. To avoid confusion, we will consistently

speak of edges when we mean elements of R, B, E, etc., i. e., line segments considered as
geometric objects. They correspond to nodes of the graph G, which are connected by arcs.

G represents each edge in R by a red node and each edge in B by a blue node. Two nodes

are connected by an arc if the corresponding edges either cross or are identical. Clearly,
there are no arcs between nodes of the same color as edges in a triangulation do not cross.
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Hence G is bipartite. Note that, by Lemma 1, the number of red nodes equals the number

of blue nodes.
We prove that G contains a perfect matching by showing thatG ful�lls the Hall condition

of the marriage theorem (see for example Bollob�as [B79]). This condition requires that, for

each subset R1 of red edges, the number of their blue neighbors in G is at least jR1j.
Let R1 � R, and let B1 be the set of blue neighbors of R1. With this notation, the Hall

condition reads jB1j � jR1j. Let B2 be the complement of B1 in B. We claim that B2 [R1

is a non-crossing set of edges. The edges of R1 do not cross each other, since R1 � R, and

likewise, the edges of B2 do not cross each other. An edge b of B2 cannot cross an edge of
R1 because b would belong to B1, otherwise. For the same reason, R1 and B2 are disjoint,

which gives
jR1j+ jB2j = jR1 [B2j � m = jBj;

by Lemma 1. Thus we get jB1j = jBj � jB2j � jR1j, and the Hall condition is proved. 2

A maximum cardinality matching in any bipartite graph can be found in polynomial
time, and this holds in particular for the matching in Theorem 1. This will also be true of

the other theorems in this section. They are formulated as existence theorems, but there are
polynomial algorithms for constructing the matching in question. We will discuss speci�c

algorithms and their time and space bounds in Section 5.1.

Corollary 1 Let P be a �nite set of points in the plane. Let R be a set of non-crossing

edges between points of P and let T be a triangulation of P . Then there is a matching

between the edges in R and some edges in T (an injective mapping from R to T ) such that

every edge of R is either matched with the identical edge in T or with an edge which crosses

it.

Proof. Since R can be extended to a triangulation the corollary follows from Theorem 1. 2

Our proof mainly exploits the property about the number of edges of triangulations

expressed in Lemma 1. There is another version of Lemma 1 concerning triangles instead
of edges.

Lemma 2 Every triangulation of P dissects the plane into 2n � 2 � b interior triangular

faces plus the exterior face, where b is the number of points in P on the boundary of the

convex hull. Every set of non-crossing edges dissects the plane into at most 2n � 1 � b

connected components. 2

This enables us to prove, with exactly the same technique as above, the next theorem on

triangles.

Theorem 2 Let P be a �nite set of points in the plane and consider two triangulations R

and B of P . There exists a perfect matching between the set of triangles of R and the set

of triangles of B, with the property that matched triangles either overlap or are identical. 2

Figure 2 displays a perfect triangle matching for two triangulations of a convex point set.

We can impose a stronger condition which requires the matched triangles to share a vertex.
In Figure 2, for example, the triangle p2p4p7 is matched to the triangle p3p5p6. This would
not be allowed in a matching according to Theorem 3.
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Figure 2: A perfect matching of overlapping triangles between two triangulations of a 7-gon.

Every shaded area is the intersection between two matched triangles.

Theorem 3 Let P be a �nite set of points in the plane and consider two triangulations R

and B of P . There exists a perfect matching between the set of triangles of R and the set

of triangles of B, with the property that matched triangles

1. have common interior points, and

2. share at least one vertex.

Proof. An equivalent formulation of the two conditions is that two triangles which are

matched to each other have a vertex p in common, and the angular regions in the neighbor-
hood of p which are covered by the two triangles overlap (have common interior points).

We can show the Hall condition more directly by an argument about sums of angles. Let

R1 be an arbitrary subset of triangles in R, and let B1 be the set of triangles of B to which
some triangle in R1 can be matched. In other words, if a triangle in B shares a vertex and

some overlapping angular region around that vertex with a triangle in R1, then it belongs
to B1. We have to show jB1j � jR1j.

Fix a vertex p 2 P . For a triangle � we denote by �(�; p) the angle of � at p. If p is
not a vertex of � then �(�; p) = 0. Every triangulation partitions the full angular region

around p into disjoint sectors. (For vertices on the boundary of the convex hull, only the
interior region is partitioned.) Consider the subsets Rp � R1 and Bp � B1 of triangles that

have a vertex at p. At p, the union of the angles of triangles in Bp contains the union of
the angles of triangles in Rp, by construction. Thus, the following inequality between sums
of the angles holds for every vertex p:

X

�2B1

�(�; p) �
X

�2R1

�(�; p):

We can take the sum over all vertices p 2 P , and since
P

p2P �(�; p) = � for every triangle
�, we get �jB1j � �jR1j, and the Hall condition follows. 2

2.2 A more general matching theorem for independence systems

Our matching theorems may be generalized to the framework of independence systems. An

independence system I is a non-empty collection of subsets of a ground set E which is
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closed under taking subsets: if A 2 I and B � A then B 2 I. The elements of I are called

the independent sets, the remaining subsets of E are called dependent. A circuit of I is a
minimal dependent set.

In our example of triangulations, a set of non-crossing edges (or of non-overlapping

triangles) may be considered independent. The circuits of this independence system have
two elements; they are the pairs of crossing edges (or of overlapping triangles, respectively).

Theorem 4 Let R 2 I be any independent set, and let B 2 I be an independent set of

maximum cardinality in I. Then there is an injective mapping g:R! B such that for every

element e 2 R we have g(e) = e, or fg(e); eg is contained in a circuit.

Proof. The proof shows that the Hall condition is ful�lled, following the lines of the proof
of Theorem 1. Let R1 � R, and let B1 � B be the set of elements f 2 B such that f = e

or fe; fg is contained in a circuit, for some element e 2 R1. To show that jB1j � jR1j we
�rst claim that R1[ (B�B1) is independent. Otherwise, it would contain a circuit C. This

circuit cannot be included in R1 � R or in B�B1 � B because these sets are independent.
It follows that C contains an element e 2 R1 and an element f 2 B � B1. But this would

mean that f 2 B1, a contradiction. So we have jR1 [ (B � B1)j � jBj because B is an
independent set of maximum cardinality. R1 and B � B1 are disjoint by construction, and
hence

jR1 [ (B �B1)j = jR1j+ jB �B1j = jR1j+ jBj � jB1j � jBj;

which gives jR1j � jB1j. 2

Theorems 1 and 2 (but not Theorem 3) are corollaries of Theorem 4. Cheng and
Xu [CX95] have obtained additional results for independence systems where (as in the

case of triangulations)

1. every circuit has cardinality two, and

2. all maximal (with respect to set inclusion) independent sets (bases) have the same

cardinality.

For the case when I is a matroid (cf. e. g. Lawler [L76] for basic matroid-theoretic con-
cepts), a stronger statement than Theorem 4 was discovered by Brualdi [B69]; see also
Brylawski [B73] for a simple proof.

Theorem 5 Let R and B be two bases of a matroid. Then there is a bijective mapping

g:R! B such that for every element e 2 R, (R� feg) [ fg(e)g is a base. 2

It is straightforward to check that a matching ful�lling this condition ful�lls the condition

of Theorem 4, but not vice versa. Note that the condition of Theorem 5 is not symmetric
in R and B.

3 Light triangulations

The intersection properties of planar triangulations expressed in the preceding section should
have various applications in combinatorial and computational geometry. In this section and

the next, two applications of Theorem 1 to minimum-weight triangulations are demon-
strated. As before, let P be a set of n points in the plane, and let E be the set of all edges

de�ned by P . The length (weight) of an edge e = pq 2 E is the Euclidean distance between
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Figure 3: The light edges for a set of 100 points. The faces which are not triangles are
shaded.

p and q and will be denoted by jej or jpqj. The weight w(R) of a set R of edges is the sum
of the lengths of its edges.

A minimum-weight triangulation T � is de�ned to have w(T �) � w(T ) for all triangu-
lations T of P . Minimum-weight triangulations have some good properties (see Das and

Joseph [DJ89]) and are, for example, useful for numerical approximation of bivariate data
(Yoeli [Y75]). The complexity of computing a minimum-weight triangulation is unknown.

This is in fact one of the longstanding open problems listed at the end of Garey and John-
son's book about NP-completeness [GJ79].

In this section, we exhibit a class of planar point sets where the minimum-weight trian-

gulation can be computed in polynomial time.
Let us call an edge e 2 E light if any edge in E that crosses e is longer than e. Light

edges obviously do not cross, so the set L of light edges can form at most a triangulation
of P . Figure 3 shows the set L for a typical random point set. If L actually is a triangulation

then we call L the light triangulation of P . See Figure 4 for an example.
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Figure 4: Minimum weight (light) triangulation for 150 points.

Light edges are related to the greedy triangulation, which is obtained by iteratively

inserting the shortest edge of E that does not cross previously inserted edges. All light
edges are contained in the greedy triangulation: a light edge e can never be blocked by
previously inserted edges as E does not contain any shorter edge crossing e. Thus, if a light

triangulation exists, it is identical to the greedy triangulation.
In light of Theorem 1, it is easy to prove length optimality.

Theorem 6 If a planar point set P admits a light triangulation L then L is the minimum-

weight triangulation for P .

Proof. We show w(T ) � w(L), for any triangulation T of P . Consider a perfect matching

as in Theorem 1 between the edges of T and the edges of L. For each matched pair of edges
e 2 T and e0 2 L, either e = e0 or e crosses e0, in which case we know that jej > je0j since L
is light. Summing over all edges gives w(T ) � w(L). 2

Since the light edges can easily be identi�ed in polynomial time, the point sets admitting
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a light triangulation provide a polynomially solvable subclass of instances of the minimum-

weight triangulation problem. In Section 5.2, we will show how to �nd the set of light edges
in O(n2 logn) time.

l

T
�

Figure 5: A light edge l not included in the minimum-weight triangulation T �.

It is noteworthy that, in general, not all light edges occur in a minimum-weight trian-

gulation T �. Figure 5 gives an example.

4 Lower bounds for the minimum-weight triangulation

In this section, we o�er new methods for computing lower bounds for the weight of planar
triangulations. Such bounds can be used in a branch-and-bound algorithm for computing
the minimum-weight triangulation. If the bounds are very tight they help to prune many

branches of the branch-and-bound tree and thereby speed up the algorithm.
Apart from the trivial lower bound (the sum of the jT �j shortest edges in E), all known

bounds require the knowledge of a set of edges which is a subset of T �. Several local
geometric criteria which guarantee that an edge belongs to T � have recently been proposed,

see [K94, CX96, YXY94], but since the resulting subsets of edges are usually small, the
corresponding bounds are weak. We will see that Theorem 1 allows us to prove lower

bounds for w(T �) in a completely di�erent way, by solving an assignment problem and a
minimum-cost 
ow problem, respectively.

4.1 Single assignment bounds

Theorem 7 (The single assignment bound) Let R be a non-crossing set of edges and

let T � be a minimum-weight triangulation. Let X(R;E) denote the set of all injective map-

pings (matchings) g:R ! E with the properties required in Theorem 1: g(e) = e or g(e)
crosses e. Then

w(T �) � min
g2X(R;E)

X

e2R

jg(e)j: (1)

Proof. Let g� 2 X(R;E) be a matching g�:R ! T � which exists by Theorem 1 and

Corollary 1. We have

w(T �) =
X

e2T �

jej �
X

e2R

jg�(e)j � min
g2X(R;E)

X

e2R

jg(e)j: 2

The set X(R;E) is just the set of matchings with jRj arcs in a bipartite graph. Opti-

mizing over this set is an assignment problem (a special type of minimum-cost network 
ow
problem, see e. g. [L76]), which can be solved in polynomial time. A faster algorithm with

a running time of O(n3) will be developed in Section 5.3.
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Note that edges in the set g(R) = f g(e) : e 2 R g may cross each other. However, when

R is a triangulation and gopt(R) happens to be non-crossing for the optimal assignment gopt
in (1) then gopt(R) must be minimum-weight:

Corollary 2 Let R be a triangulation and let gopt 2 X(R;E) satisfy
X

e2R

jgopt(e)j = min
g2X(R;E)

X

e2R

jg(e)j:

If the set gopt(R) is non-crossing then it is a minimum-weight triangulation. 2

The optimal assignment gopt has another nice property.

Theorem 8 The optimal assignment matches no edge e to a longer edge, that is, jgopt(e)j �
jej for all e 2 R.

Proof. Suppose that a matching g 2 X(R;E) has jg(e)j > jej for some edge e. Then we can

improve g by assigning e to itself, i. e., by setting g(e) = e and leaving g unchanged for the
remaining edges. Since no other edge in R crosses e we still obtain a matching, and hence

the original matching g cannot be optimal. 2

If we relax the requirements on g in Theorem 7 and permit all injective mappings from

R to E, we get the trivial lower bound: the sum of the jRj shortest edges in E. This shows
that our bound can never be worse than the trivial one.

4.2 Relaxed bounds

We may weaken the single assignment bound in a di�erent way, by neglecting the fact that

the matching g must assign di�erent edges of R to di�erent edges of T �. The resulting
bound is very easy to compute once some auxiliary information on the edges in R has been

precomputed. For an edge e 2 E, let us de�ne its excess "(e) as

"(e) = maxf0; jej � �(e)g;

where �(e) is the length of the shortest edge crossing e. If e is crossed by no edge (for exam-

ple, if e is an edge of the convex hull) then we set �(e) = 1, hence "(e) = 0. Edges which
have no crossing edges are called unavoidable edges; they belong to every triangulation, see

Xu [X92]. Light edges have excess 0.

Theorem 9 Let R be a non-crossing set of edges and let T � be a minimum-weight triangu-

lation. Then

w(T �) � w(R)�
X

e2R

"(e):

Proof. Let g�:R ! T � be a matching as in the proof of Theorem 7. Then for all e 2 R,
either g�(e) crosses e or g�(e) = e. In the �rst case, we have

jej � "(e) � jg�(e)j (2)

by the de�nition of the excess "(e). In the second case, the same inequality holds because

"(e) � 0. By summing (2) over all e 2 R we get

w(R)�
X

e2R

"(e) �
X

e2R

jg�(e)j �
X

e2T �

jej = w(T �): 2

The consequences of this theorem for the set L � E of light edges are particularly

interesting. Since L is a non-crossing set and "(e) = 0 for all edges e 2 L, we have:
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Corollary 3

w(T �) � w(L): 2

We stress the fact that, despite L 6� T � in general, summing up the light edges provides

a valid lower bound. This bound covers the bounds in [K94, CX96, YXY94] as the subsets
of T � considered there are built of light edges only. If R0 � R, then the bound given by R

in Theorem 9 is at least as strong as the bound given by R0. Thus it pays to complete the
non-crossing set R (or L) to a triangulation before applying Theorem 9. Note �nally that if

L happens to be a triangulation then w(L) = w(T �) and we obtain Theorem 6 of Section 3.

4.3 Double assignment bounds

We can improve the single assignment bound by starting with two di�erent triangulations
T1 and T2 instead of one set R.

Theorem 10 (The double assignment bound) Let T1 and T2 be two triangulations and

let T � be a minimum-weight triangulation. With the notation of Theorem 7,

w(T �) � min
g12X(T1;E)
g22X(T2;E)
g1(T1)=g2(T2)

X

e2T1

jg1(e)j; (3)

and this bound can be computed in polynomial time.

Proof. Theorem 1 ensures the existence of bijective mappings g�1:T1 ! T � and g�2:T2 ! T �

with the required properties, and the bound follows.
To get the polynomial-time result, we show that the required injective mappings g1 and g2

can be modeled as a 
ow in a network, and the optimal solution can be found by determining
a minimum-cost 
ow. For basics of network 
ow terminology, see for example Tarjan [T87].

The network consists of four layers. The �rst layer contains a node for each edge of T1;

the second and third layers are identical: each of them contains a node for every edge in E;
and the fourth layer contains a node for each edge of T2. There is an arc from a node of the

�rst layer to the second layer whenever the corresponding edges intersect or are identical.
The third and fourth layer is connected in the same manner. There is an arc from a node

in the second layer to a node in the third layer whenever the corresponding edges in E are
identical. The arcs between the second and third layers carry costs which are equal to the

lengths of the corresponding edges. The other arcs have cost 0.
All arcs have capacity 1, and we give a supply of 1 to each node in the �rst layer and

a demand of 1 to each node in the fourth layer. Now, an integral 
ow in this network will
decompose into unit 
ows running from sources to sinks along disjoint paths. The arcs
between layers 1 and 2 which carry positive 
ow will induce the injective mapping g1, and

g2 is obtained from the arcs between layers 3 and 4. The arcs between layers 2 and 3 ensure
that g1(T1) = g2(T2), and the cost of the 
ow is the total length of the edges in the set

g1(T1) = g2(T2). 2

When T1 = T2, we just get the single assignment bound (for the case when R is a

triangulation). This means that, in general, the double assignment bound is stronger than
the single assignment bound.

Similarly as in the previous subsection we obtain the following corollary.

Corollary 4 Let g1; g2 be the optimal solution in (3). If the set g1(T1) = g2(T2) is non-

crossing then it is a minimum-weight triangulation. 2
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The following relaxation of the bound (3) is obtained from the double assignment bound

by omitting the requirement that the functions gi are injective, just as Theorem 9 is obtained
from the single assignment bound.

Theorem 11 Let T1 and T2 be two triangulations and let T � be a minimum-weight trian-

gulation. For e 2 T1 and f 2 T2 we de�ne the cost c(e; f) of assigning e to f as the length of

the shortest edge which crosses or coincides with e and f . (Thus, if e and f cross, then both

e and f are also candidates for the shortest edge.) If e and f do not cross and no common

crossing edge exists, then c(e; f) =1. Let �(T1; T2) denote the set of all bijections between

T1 and T2. Then

w(T �) � min
h2�(T1;T2)

X

e2T1

c(e; h(e)): (4)

Proof. From an optimal solution (g1; g2) of (3) in Theorem 10 we may obtain a feasible
solution h 2 �(T1; T2) by setting h = g�12 � g1. This composition is well-de�ned since
g1(T1) = g2(T2). For all e 2 T1, the edge g1(e) crosses or coincides with e and h(e), and

hence c(e; h(e)) � jg1(e)j. By summation of this inequality we get

X

e2T1

c(e; h(e)) �
X

e2T1

jg1(e)j � w(T �): 2

The optimization problem (4) in the last theorem is just a standard assignment problem,

i. e., a minimum-cost perfect matching problem in a bipartite graph. In terms of the network
in the proof of Theorem 10, the weaker bound (4) can be obtained by giving the arcs from

layer 2 to layer 3 unlimited capacity.

4.4 A matroid-theoretic interpretation

It is instructive to review the results of this section in terms of matroid theory. The single
assignment bound can be formulated as the solution of a weighted matching problem in a

bipartite graph with node classes R and E: we are looking for a matching which covers
every node of R and has minimum total weight. However, in contrast to the standard

setting of weighted matching problems, the costs are not associated with the arcs of the
graph but with the node set E. This does not prevent standard matching algorithms from

being applied, because we can set the cost of an arc (e; f) to jf j and get the same result,
but it opens an alternative approach.

The subsets of nodes in a graph which are matchable (for which there exists a matching

which covers all of them) is a matroid, in our case of a bipartite graph a transversal matroid,
see [L76, Corollary 7.4.3, p. 272, and Section 5.4, p. 192]. (This is in contrast to the

independence system of the arc sets which form a matching.) Thus we have the problem of
�nding in the matroid a basis with minimum weight. It follows from basic matroid theory

that it is possible to solve this problem by a greedy algorithm on the set E. We start with
the empty matching and process the edges of E in order of increasing weight. For each

edge, we try to augment the current matching to include the corresponding node. Such an
augmentation may involve the replacement of some matching arcs by other arcs along an

alternating path. A node which is matched in this process will never become unmatched.
We may stop if we have jRj matching pairs. Our e�cient algorithm in Section 5.3 follows
this approach.

In the double assignment bound, the solution set g1(T1) = g2(T2) is in the intersection
of two transversal matroids. There is a general algorithm for �nding an optimal set in the

intersection of any two matroids in polynomial time, see Lawler [L76, Chapter 8], whereas
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the matroid intersection problem for three matroids may already be NP-hard. This explains

why the improvement from the single assignment bound to the double assignment bound
cannot be pushed further to a \triple assignment bound" which is computable in polynomial
time.

5 Algorithmic issues

In Sections 3 and 4 algorithmic issues were only discussed to the extent that the problems

raised were reduced to well-studied combinatorial problems and polynomial time bounds
were obvious. In some cases, we are able to improve over the time and space bound that

one obtains by straightforward application of standard algorithms. Some familiarity with
graph algorithms is desired for the understanding of this section.

5.1 Finding the matching e�ciently

Let us consider the cost of computing the perfect matchings which are shown to exist in

Theorems 1, 2, and 3. We �rst deal with Theorem 1. The crossings of a red triangulation R
and a blue triangulation B of a set P of n points de�ne a bipartite graph G, to which we can

apply standard bipartite matching algorithms. This graph has O(n) nodes and K = O(n2)
arcs, where K is the total number of crossings between R and B plus the number of edges

in R \B.
A direct application of the bipartite matching algorithm of Hopcroft and Karp [HK73]

(see also [T87]) would result in O(K
p
n) time and O(K) space. We will show how to reduce

the space requirement to O(n).

Theorem 12 For two triangulations R and B of a planar point set P which have K =

O(n2) crossings, we can �nd a perfect matching between the edge sets R and B which satis�es

the condition of Theorem 1 in O(K
p
n) = O(n5=2) time and O(n) space.

Proof. We have to show how the algorithm of Hopcroft and Karp can be carried out
without explicitly storing the bipartite intersection graph G. For a detailed description of
this algorithm we refer to the literature, but in order to enable the reader to see how the

reduction of the space requirement works, we will present certain parts of the algorithm in
more detail.

The algorithm of Hopcroft and Karp performs breadth-�rst search and depth-�rst search
on certain directed subgraphs of G. The elementary operation in scanning a graph is ac-

cessing the next unexplored arc on the adjacency list of a given node. In [HK73], as in the
standard setting of graph algorithms, it is assumed that the adjacency list of each node is

stored explicitly as a sequential or linked list. Then it is easy to have a marker pointing to
the current position in the list and to advance to the next arc when desired.

Although the algorithm works on subgraphs of G, it is not necessary to store explicit
copies of these subgraphs, because when an arc of G is scanned, it can be checked in constant
time whether it belongs to the subgraph in question, and if not, the arc is simply skipped.

In our geometric setting, we need not store adjacency lists at all but we extract them
on-line. We store the two triangulations as plane graphs, such that standard operations

like �nding the two triangles incident to a given edge or �nding the three edges bounding
a given triangle can be executed in constant time. We also preprocess R and B to locate,

for each point p 2 P , the incident red edges among incident blue triangles. So we store for
each red edge the �rst blue triangle which we enter as we walk from p along this edge. This
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can be done in O(n) overall time by merging, for each p, the lists of red and blue edges in

angular order around p. We also perform this preprocessing with the roles of red and blue
reversed.

Now, to obtain the successive neighbors of, say, a red node e, we simply walk along the

red edge it represents, proceeding from triangle to adjacent triangle in the blue triangulation
and collecting all blue intersected edges. We can also \leave a marker" on e's adjacency list

by remembering the current crossed blue edge. Later we can simply continue from there.
In this way, all graph exploration steps can be done in constant time without more than

O(n) storage. 2

In case of face matchings (Theorem 3), we will see that the bipartite graph of \matchable"

pairs of faces has only linearly many arcs. This leads to the following time bound.

Theorem 13 For two triangulations R and B of a planar point set P , we can �nd a perfect

matching between the triangular faces of R and B which satis�es the conditions of Theorem 3

(and hence also the condition of Theorem 2) in O(n3=2) time and O(n) space.

Proof. Let G0 be a bipartite graph with a node for each triangular face of R and B. Two
nodes are connected by an arc if the corresponding triangles ful�ll the two conditions of

Theorem 3. We are looking for a perfect matching in G0.
A red triangle �R can be matched with a blue triangle �B if they have a common

vertex p and share an angular region around p. Fix a vertex p 2 P , and denote by dR(p)
and dB(p) the degree of p in the triangulation R and B, respectively, i. e., the number of

edges in R (or B) incident to p. We claim that the number of pairs (�R;�B) which can be
matched because they share an angular region around p is at most dR(p)+ dB(p). Consider

a ray sweeping around p. Each time it crosses an edge incident to p, we \generate" a new
pair (�R;�B) consisting of the two triangles into which the ray points. Since we cross

dR(p) + dB(p) edges, we generate at most dR(p) + dB(p) pairs. If we repeat this for all
vertices p we generate all necessary pairs, i. e., all arcs of the graph G0 in which we want
to �nd the matching. Since

P
p2P dR(p) =

P
p2P dB(p) = 2jRj = 2jBj = O(n), we generate

only a linear number of arcs. The time bound of O(n3=2) is now obtained by plugging this
into the complexity of Hopcroft and Karp's algorithm. 2

5.2 Computing excesses and light edges

Theorem 6 asks for a method to decide whether a given planar n-point set P admits a light
triangulation, or in other words, whether the light edges triangulate P . Also, to compute

the lower bound in Corollary 3, all light edges realized by P are required. More generally,
the bound in Theorem 9 needs knowledge of the excess of all edges in a given non-crossing

set.
We solve these problems in time O(n2 logn) and space O(n) by giving an algorithm for

the following problem: given an arbitrary triangulation T of P , compute �(e) for each e 2 T ,
where �(e) is the length of the shortest edge crossing e. As a by-product, all unavoidable
edges are those with �(e) unde�ned.

We describe an O(n logn)-time routine which, for a given point p 2 P , computes

�p(e) = min
q2P

f jpqj : pq crosses e g

for all e 2 T . Calling the routine for all p 2 P and maintaining the minimum for each e

then gives �(e).
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Figure 6: A triangulation which is cyclic when seen from p. The triangulation is cut by

a horizontal ray from p to the left, and the resulting quadrangles are triangulated. The
faces of the resulting triangulation are numbered in a topological order in which they can
be processed. A (sub-)edge is processed when its incident triangle with the larger number

is processed. Incidentally, when the point p is removed, the resulting triangulation is the
minimum-weight triangulation, demonstrating that a minimum-weight triangulation is not

necessarily \cycle-free".

Given the point p, we set up a semi-dynamic data structure for a point set Q and for

the following type of queries: for a wedge V with apex p and angle less than �, return the
closest point to p in Q \ V . We initialize Q with P and allow only deletions from Q. The

data structure we use is a binary search tree whose leaves store Q in cyclic order around p.
Each interior node stores the minimum distance from p to all points in the subtree.

We then query the structure with wedges induced by edges e in the triangulation T . The
queries and deletions are carried out in a speci�c order. This guarantees that, when we query

for the wedge induced by edge e, Q contains no point that lies between e and p and includes
all points that lie opposite to p with respect to e. To this end, a topological order for the
edges of T with respect to the in-front/behind relation as seen from p is necessary. Problems

may arise if this relation contains cycles, as shown in Figure 6. We circumvent this di�culty
by cutting T with a ray emanating from p, and re-triangulating where necessary, in O(n)

time. For an edge e cut into subedges e0 and e00 we clearly have �p(e) = minf�p(e0); �p(e00)g.
A topological order is now obtained in O(n) time by starting with the set of triangles

incident to p, and adding adjacent triangles one by one while keeping the invariant that the
boundary of their union U is star-shaped as seen from p. At each point in time, the search

tree stores exactly the points of P exterior to U . As queries and deletions take O(logn)
time each, the claimed O(n logn) time bound is obtained. A topological order of the edges

is given in Figure 6.

Theorem 14 Let P be a set of n points in the plane.

(i) Given a triangulation T of P , the excesses for all edges in T can be computed in

O(n2 logn) time and O(n) space.
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(ii) The excesses for all edges induced by P can be computed in O(n3 logn) time and O(n2)

space.

(iii) The set of light edges induced by P can be computed in O(n2 logn) time and O(n)

space.

Proof. Statement (i) follows from the preceding discussion. Statement (ii) follows from (i)

since we can cover all edges by n triangulations: we simply connect a �xed point p to all other
points and complete this to a triangulation. Repeating this for all points p, we will have
covered every edge between two points of P at least once. For proving (iii), note that the

greedy triangulation contains all light edges. So we �rst generate the greedy triangulation,
and then check each of the O(n) greedy edges for being light. Several algorithms exist which

compute the greedy triangulation of P in the claimed time and space bounds, the easiest
being perhaps the one of Goldman [G89]. The fastest algorithm for the greedy triangulation

is due to Levcopoulos and Krznaric [LK94] and runs in O(n logn) time and O(n) space; see
also [DDMW94, DRA95] for fast expected-time algorithms. 2

5.3 Computing the single assignment bound

The problem whose solution is required for computing the single assignment bound of The-
orem 7 is an assignment problem between two edge sets R and E, where R is a given

triangulation and E is the set of all edges between points of P . (R could be any non-
crossing set but we restrict our attention to a triangulation.) The standard algorithm for
the assignment problem leads to a complexity of O(n4) time and O(n3) space. However,

we can follow the greedy approach outlined in Section 4.4 to obtain a faster algorithm that
uses less space.

First, we generate the edges in E in increasing order of length until jRj of them are
matched. Dickerson et al. [DDS92] have shown that the m shortest edges in an n-point set

P may be generated in O((m+ n) logn) time and O(m+ n) space. By trying successively
the values m = n; 2n; 4n; 8n; : : : we can make sure that we never generate more than twice

as many edges as we actually need.
In the iterative step we have a partial matching between E and R, an edge e0 2 E, and

we try to augment the current matching to include the node corresponding to e0.
Let us focus on the form of an augmenting path which we are looking for when processing

an edge e0. The path goes from e0 to an adjacent node r1 (an edge of R), from r1 to the

node e1 to which r1 is matched, from e1 to an adjacent node r2, from r2 to the node e2 to
which r2 is matched, and so on until it terminates in an unmatched node ri 2 R, i � 1. The

augmentation consists of exchanging the i� 1 matching arcs with the i non-matching arcs
on this path.

We may search for such an augmenting path starting from e0 using any graph search
method, for example breadth-�rst search. We make several observations:

(i) We only need to explore the list of adjacent nodes for the edges of E; when we are at
a node of R we simply proceed to the node of E to which it is matched. Since the neighbors

of e 2 E are the edges of the triangulation R which cross e, we can �nd these neighbors
by walking through the triangulation as described in Section 5.1, without any need to store
adjacency lists. For each edge e 2 E, there is an overhead of O(logn) for locating the �rst

triangle in the triangulation R cut by e (as we walk along e from one endpoint).
(ii) Since we are using a greedy algorithm, if we fail to match a node of E, we can ignore

it in the future. We need not remember to which nodes it is adjacent. Thus if e 2 E is not
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matched in the optimal solution, its incident arcs are explored only once during the whole

algorithm.
(iii) If we have processed a node in R or E during an unsuccessful search for an aug-

menting path, we know that no unmatched node of R can be reached from this node, and

we may skip the search from this node in all subsequent searches. This situation remains
unchanged as long as no augmentation occurs. Thus, between two successful augmentations,

every edge of the current graph is visited at most once. The current graph is the subgraph
induced by the nodes R and the subset E0 of nodes of E which are currently matched.

(iv) There are jRj = O(n) successful augmentation steps. Hence, if Eopt = f gopt(e) : e 2
R g denotes the set of matched nodes of E in the optimal matching gopt, each of the arcs

between R and Eopt is visited at most O(n) times.
Putting everything together, we have the following theorem.

Theorem 15 Let Eopt = f gopt(e) : e 2 R g denote the set of edges to which the edges of R

are assigned in the optimal matching gopt of the single assignment bound. Let K = O(n2)
denote the number of crossings between Eopt and R. Furthermore let Es � E be the set of

edges which are not longer than the longest edge of Eopt, and let L � jEsj � jRj = O(n3)
denote the number of crossings between Es and R. Then the optimal matching gopt can be

computed in O(Kn+L+jEsj logn) = O((K+jEsj)n) = O(n3) time and O(n+jEsj) = O(n2)

space.

Proof. By observation (iv), each of the K arcs is explored at most O(n) times. In addition,
each of the L �K remaining arcs is explored only once. The term jEsj logn accounts for

generating the edges according to length and for locating the �rst triangle cut by each edge
as mentioned in observation (i). 2

The de�nition of Es depends on the largest edge weight of Eopt. Since we do not know
this beforehand, we may replace it, using Theorem 8, by the largest edge weight of R in

the de�nition of Es in order to get an a-priori upper estimate. In either case, unavoidable
edges such as the boundary edges, which belong to every triangulation, can be ignored when
computing the longest edge of Eopt or R.

The worst-case time bound of O(n3) is rather high, but the explicit parameters of the
complexity indicate that for a good starting triangulation R the complexity might be quite

good. Within the worst-case time of O(n3), Es can also be enumerated in O(n) space instead
of O(n+ jEsj) by a more primitive method.

Theorem 8 implies that we may skip every arc between e 2 E and a node r 2 R if r is
shorter than e. This observation might speed up the algorithm, but we can make use of it

only at the expense of storing the current graph.

5.4 Computing the double assignment bound

Theorem 16 The double assignment bound of Theorem 10 for two triangulations T1 and

T2 can be computed in O(n � (K1 +K2) + n3 logn) = O(n4) time and O(K1 +K2) = O(n3)

space, where K1 (K2) denotes the number of crossings between T1 (T2, respectively) and E.

The relaxed double assignment bound of Theorem 11 can be computed in O(n3+K1n) =
O(n4) time and O(n2) space.

Proof. As described in the proof of Theorem 10, the computation of the double assignment

bound can be reduced to a minimum-cost network 
ow problem. The network has 2 � jEj+
O(n) = O(n2) nodes and K1+K2+O(n)+ jEj = O(K1+K2) arcs. We can easily construct

it in O(n3) time by checking for each possible pair (e; g) of edges with e 2 T1[T2 and g 2 E
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whether it contributes an arc. The network can be stored in O(K1 +K2) space. Since the

total supply of the network is jT1j, a minimum-cost 
ow can be computed in jT1j = O(n)

ow augmentation steps along shortest augmenting paths, cf. [T87]. Each augmentation
requires one shortest path computation in the network. A shortest path in a graph with

v nodes and a arcs can be found in O(a + v log v) time. Therefore, O(n) shortest path
computations can be carried out in the claimed time complexity.

In the case of the relaxed bound of Theorem 11, most of the time is needed to compute
the costs c(e; f). In O(n3) time we can generate all K1 + O(n) pairs (e; g) of crossing or

identical edges with e 2 T1 and g 2 E. For each generated pair (e; g), we scan all edges
f 2 T2, and if g crosses f or equals f , then g is one of the edges whose length contributes

to the minimum in the de�nition of c(e; f). This takes O(n3 +K1n) time. Finally, solving
the assignment problem (4) takes O(n3) time. 2

6 Conclusion and open problems

Theorems 1 and 2 are easily seen to hold for triangulations of arbitrary polygonal regions,

possibly with holes. They can also be extended to triangulations of closed surfaces, when
they are viewed as topological and graph-theoretic structures, as opposed to the geometric

view taken in this paper.

It seems natural to try to prove Theorem 1 in a direct way, without resorting to the

marriage theorem. For example, any triangulation of a planar point set can be changed into
an arbitrary other one by repeated application of edge 
ips. An edge 
ip exchanges the diag-

onals of a convex quadrilateral in the current triangulation and thus naturally corresponds
to a match of the involved edges. However, 
(n2) edge 
ips may be necessary to transform
one triangulation of n points into another, see Hurtado, Noy, and Urrutia [HNU96]. This is

an indication that there might be no proof of Theorem 1 based on the 
ipping paradigm.

We are planning to use our bounds in a branch-and-bound algorithm to compute the
minimum-weight triangulation for arbitrary point sets. The bounds of Section 4 can be

strengthened for subproblems where some speci�ed edges are forced into the solution or
excluded from the solution. We hope that a practically e�cient algorithm for computing

the minimum-weight triangulation may make experiments possible which lead to a better
understanding of the properties of minimum-weight triangulations, with the ultimate goal

of resolving the complexity status of the problem.
Another approach to compute the minimum-weight triangulation has recently been pro-

posed by Dickerson and Montague [DM96]. They identify a subset of edges that must be part

of every locally minimal triangulation. A locally minimal triangulation is a triangulation
which cannot be improved by a single edge 
ip. Their very simple procedure | essentially

they just use the de�nition of a locally minimal triangulation | is remarkably successful
in identifying a large subset of edges which belongs to the minimum-weight triangulation.

Levcopoulos and Krznaric [LK96] have recently obtained an approximation algorithm for
the minimum-weight triangulation problem that achieves a constant approximation ratio.

Various open questions are raised by our results.

The point sets for which the light edges form a triangulation are interesting. What
good properties do they and their associated triangulations have? Using a straightforward
experimental program that �nds and displays the light edges, we found it quite easy to draw

light triangulations by choosing \well" distributed point sets. In fact, the light edges of a
random point set chosen from a uniform distribution will in general leave just a few small

polygonal regions which are not triangulated, see Figure 3. By putting a few more points
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into these regions, it is then not di�cult to arrive at a point set with a light triangulation.

This is how we obtained the point set in Figure 4. This leads to the following question.
Given a planar n-point set P , can it always be extended by adding, say, O(n) points so that
it admits a light triangulation? Can we �nd such \enlightening" points in polynomial time?

These questions might be interesting from the point of view of engineering applications,
where only some points on the boundary rather than the complete set of points of the

triangulation are �xed in advance.
In the single assignment bound it seems plausible that the \starting triangulation" R

should have small weight (and therefore not be too di�erent from the minimum-weight tri-
angulation T �) in order to get the best bounds. For the double assignment bound, however,

we need two triangulations T1 and T2. Setting T1 = T2 does not yield an improvement over
the single assignment bound. T1 and T2 should rather be chosen to be very di�erent from

each other, and thus they cannot both be close to T �. How to choose T1 and T2 to get the
best bounds is a question which is open to computational experiments.

Can we bound the quality of the bounds of Theorems 7 and 9 when R is, for instance, the

greedy triangulation or the Delaunay triangulation? What is the maximum ratio between
the two sides of the inequality?

The general Theorem 4 for independence systems can be applied for any special kind of
independence system. However, we have not been able to �nd any interesting consequences

of this matching result except for triangulations. Are there any applications to other areas?
The algorithms of Section 5.1 for �nding matchings between edges or faces of two trian-

gulations are the standard graph-theoretic matching algorithms. Geometry enters only in
the implementation of adjacency lists in Theorem 12 and in the bound on the number of

arcs in Theorem 13. It is conceivable that algorithms that exploit the geometric nature of
the problem in a better way would be faster.

A triangulation can be viewed either as a set of edges or as a set of triangles. When we

take the weight of a triangle to be its perimeter, the minimum-weight triangulation problem
is identical for both formulations. In the triangle formulation, all edges are counted twice

except for the boundary edges, which are counted once but are of �xed length. Nevertheless,
we get two di�erent greedy algorithms from the two formulations. We are not aware of any

previous investigations of the \triangle-greedy" algorithm. Since there are O(n3) triangles
but only O(n2) edges, it seems plausible that it may beat the usual \edge-greedy" algorithm

in practice. We have examples which show that none of the two greedy algorithms beats
the other for all problems. Some recent numerical investigations of many alternative greedy

algorithms are reported in [AARX96]. For most point sets, the triangle-greedy algorithm
does not beat the edge-greedy algorithm. This holds in particular for uniformly distributed
point sets. How fast can the triangle-greedy triangulation be computed?
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