
Technische Universit�at Graz Institut f�ur Mathematik

The Convergence Rate of the Sandwich Algorithm

for Approximating Convex Functions

G�unter Rote

Report 118 January 1992

Technische Universit�at Graz, Steyrergasse 30, A-8010 Graz, Austria

Version 2b

A slightly shortened version of this report appeared in Computing 48 (1992), 337{361.

This version is a little extended and shortened with respect to the printed revised version of October 1991.

Title page processed by TEX on February 10, 1995

The Convergence Rate of the Sandwich Algorithm

for Approximating Convex Functions

G�unter Rote �

Institut f�ur Mathematik, Technische Universit�at Graz,

Steyrergasse 30, A-8010 Graz, Austria

Bericht Nr. 118, revidierte Fassung October 1991

Abstract | Zusammenfassung

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Func-

tions. The Sandwich algorithm approximates a convex function of one variable over an interval by
evaluating the function and its derivative at a sequence of points. The connection of the obtained
points is a piecewise linear upper approximation, and the tangents yield a piecewise linear lower
approximation. Similarly, a planar convex �gure can be approximated by convex polygons.

Di�erent versions of the Sandwich algorithm use di�erent rules for selecting the next evaluation
point. We consider four natural rules (interval bisection, slope bisection, maximum error rule, and
chord rule) and show that the global approximation error with n evaluation points decreases by the
order of O(1=n2), which is optimal.

By special examples we show that the actual performance of the four rules can be very di�erent
from each other, and we report computational experiments which compare the performance of the
rules for particular functions.

Die Konvergenzrate des Belegten-Brot-Algorithmus zur Approximation konvexer Funk-

tionen. Der Belegte-Brot-Algorithmus approximiert eine konvexe Funktion einer Variablen �uber
einem Intervall, indem er die Funktion und ihre Ableitung an einer Folge von St�utzstellen ausrechnet.
Die Verbindung der Punkte ergibt eine st�uckweise lineare obere Approximation, und die Tangenten
liefern eine st�uckweise lineare untere Approximation. Auf �ahnliche Art kann man einen konvexen
Bereich der Ebene durch konvexe Polygone approximieren.

Verschiedene Versionen des Belegten-Brot-Algorithmus unterscheiden sich durch die Regel, nach
der sie die n�achste St�utzstelle bestimmen. Wir zeigen f�ur vier nat�urliche Regeln (Intervallhalbierung,
Steigungshalbierung, maximaler-Fehler-Regel und Sehnenregel), da� der globale Approximations-
fehler mit der Anzahl n der St�utzstellen mit der bestm�oglichen Ordnung O(1=n2) abnimmt.

Anhand von besonders konstruierten Beispielen zeigen wir, da� die vier Regeln sehr unter-
schiedliches Konvergenzverhalten haben k�onnen, und wir berichten �uber Rechenexperimente zum
Vergleich der Regeln f�ur einige ausgesuchte Funktionen.

AMS 1991 mathematics subject classi�cation: 52-04, (41A15, 41A25, 52A10, 65D07, 68U05)

CR categories and subject descriptors (1987 version): F.2.1. [Analysis of algorithmsand problem
complexity]: Numerical algorithms and problems; G.1.2. [Numerical analysis]: Approximation
| spline and piecewise polynomial approximation; I.3.5. [Computer graphics]: Computational
geometry | geometric algorithms

General terms: algorithms, theory

Additional key words and phrases: piecewise linear convex approximation, convex polygonal approx-
imation, Sandwich algorithm.

�Electronicmail: rote@ftug.dnet.tu-graz.ada.at. This work was partially supported by the Fonds zur F�orderung

der wissenschaftlichen Forschung, Project P7486-Phy.

1

G�unter Rote: The Sandwich Algorithm for Convex Approximation 2

1 Introduction

The Sandwich algorithm is an iterative procedure for approximating a convex function of one variable
by piecewise linear convex functions. It starts by evaluating the function and its one-sided derivatives
at the endpoints of the given interval. The line connecting the two endpoints of the graph of the
function yields an initial upper bound of the function, and the two supporting lines described by
the derivatives at the endpoints give an initial lower bound of the function (cf. �gure 1). Now
we select some point in the interval and evaluate the function and its derivative. (If the function
is not di�erentiable, any subgradient will do.) In this way, we get an improved upper and lower
approximation, and the problem is split into two subintervals. Now we select the subinterval in
which the error is larger, and we partition it in the same way as above. We continue this process for
a given number of iterations or until a speci�ed error bound is met.

Since the convex function in which we are interested is enclosed from above and below by the
two approximations, we call such a pair of piecewise linear approximating functions a Sandwich

approximation, and an algorithm which produces a Sandwich approximation in the way described
above is called a Sandwich algorithm (cf. Burkard, Hamacher, and Rote [1992], Martelli [1962]).

`̀
`̀`̀`̀`̀`̀`̀`̀

`̀`̀`̀`̀`̀
`̀`̀`̀`̀`̀

`̀`̀`̀`̀
`̀`̀`̀`̀

`̀`̀`̀`̀
`̀`̀`̀

`̀`̀`̀
`̀`̀`̀

`̀`̀`̀
`̀`̀`̀

`̀`̀`̀
`̀`̀`̀

`̀`̀`̀
`̀`̀

`̀`̀`̀
`̀`̀

`̀`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`̀

`̀`̀
`̀`

r

r

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

�
�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

r

r

Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
QQ

- x

Figure 1: The Sandwich algorithm after two partitioning steps.

The error measure that we consider in this paper is the maximum vertical distance between the
lower and the upper approximation. Other error measures, like the area between the two approxima-
tions or their maximum projective distance (normal distance, Hausdor� distance), can be handled
by the Sandwich algorithm in the same way (see also section 5).

Di�erent versions of the Sandwich algorithm di�er in the way how they partition their inter-
vals into subintervals. We consider four partition rules, that would naturally come to one's mind
(cf. �gure 2):

(i) The interval bisection rule: The interval is partitioned into two equal parts.

(ii) The slope bisection rule: We �nd the supporting line whose slope is the mean value of the
slopes of the tangents at the endpoints. We partition the interval at some point where this line
touches the function.

(iii) The maximum error rule: The interval is partitioned at the breakpoint of the lower approxi-
mation, i. e., at the point where the error between the two approximations is maximum.

G�unter Rote: The Sandwich Algorithm for Convex Approximation 3

(iv) The chord rule is similar to the slope bisection rule. However, we take the slope of the line
connecting the two endpoints as the slope of the supporting line.

`̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀
`̀`̀`̀`̀ `̀`̀`̀

`̀`̀`̀`̀ `̀
`̀`̀`̀`̀

`̀ `̀`̀`̀
`̀`̀`̀`̀

`̀`̀`̀`̀
`̀`̀`̀ `̀

`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀ `̀`̀
`̀`̀`̀
`̀`̀
`̀`̀`̀
`̀`̀
`̀ `̀`̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀
`̀`̀
`̀ `̀`

r

r

!!
!!
!!
!!
!!
!!

aaaa

#
#

#
#

#
#

#
#

r

I

- -� �

the interval bisection rule

`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀
`̀ `̀`̀`̀`̀`̀`̀

`̀`̀`̀`̀`̀
`̀`̀ `̀`̀

`̀`̀`̀`̀
`̀ `̀`̀`̀

`̀`̀`̀ `̀
`̀`̀`̀`̀

`̀`̀ `̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀ `̀`̀
`̀`̀`̀
`̀ `̀`̀
`̀`̀
`̀`̀`̀
`̀`̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀
`̀`̀
`̀`̀`

r

r

!!
!!
!!
!!
!!
!!

aaaa

#
#
#
#
#
#
#
#

 r

aaaa

6?
6?

S

the slope bisection rule

`̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀
`̀`̀`̀ `̀`̀`̀

`̀`̀`̀`̀ `̀
`̀`̀`̀`̀`̀

`̀`̀`̀`̀
`̀`̀`̀ `̀

`̀`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀`̀
`̀`̀
`̀`̀`̀
`̀ `̀`̀
`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`

r

r

!!
!!
!!
!!
!!
!!

aaaa

#
#

#
#

#
#

#
#
r

M

the maximum error rule

`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀ `̀`̀`̀`̀`̀`̀`̀
`̀`̀`̀`̀`̀`̀

`̀`̀`̀`̀`̀
`̀`̀ `̀`̀`̀

`̀`̀`̀`̀
`̀`̀`̀`̀

`̀`̀ `̀`̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀ `̀
`̀`̀`̀
`̀`̀ `̀
`̀`̀`̀
`̀`̀
`̀ `̀`̀
`̀`̀`̀
`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`̀`̀
`̀`

r

r

!!
!!
!!
!!
!!
!!

aaaa

#
#
#
#
#
#
#
#

!!
!!
!!

!!!
r

C

the chord rule

Figure 2: Four partition rules for the Sandwich algorithm

The rules fall into two classes: Rules (i) and (iii) specify the abscissa of the new point, whereas
rules (ii) and (iv) �nd the point by specifying the slope of a supporting line. Which way of specifying
the new breakpoint is more convenient depends on the application. However, we will see in section 2
that there is a very close connection between rules (i) and (ii) and between rules (iii) and (iv).

There is another classi�cation of the rules: The two bisection rules (i) and (ii) are the \stubborn"
rules, whereas rules (iii) and (iv) are more adaptive to the shape of the function.

The chord rule is actually also a kind of maximum error rule, since it selects the point on the

function whose distance from the upper approximation is maximum. The chord rule also locally
minimizes the area between the upper approximation and the function (cf. for example Lew and
Quarles [1989]).

The main result of this paper is that, for all four partition rules, the maximum error decreases
quadratically with the number of iterations.

Motivation of the problem. A very closely related and equally important problem is that of
approximating a convex plane �gure by a polygon: The convex hull of the graph of a convex function
is a convex �gure, and on the other hand the boundary of a convex �gure can be decomposed into,
say, four pieces, each of which can be described as a convex function.

The applications for approximation of convex bodies and convex functions can be classi�ed into
two categories:

1. It is computationally expensive to evaluate the function and its derivative at a given point, but
we want to get an approximate idea what the function looks like.

2. The function is completely known, but it is nevertheless expedient to replace it by a piecewise
linear function with few pieces.

We list two examples of applications falling into the �rst category and three examples of the
second category:

� Bicriteria linear programs: We are given two linear objective functions (describing, e. g., time
and costs) which are to be optimized subject to a set of linear constraints. Since not both
objectives can be optimized at the same time, we have to be satis�ed with a description of
the feasible (time,cost)-pairs. These pairs form a polygon in the plane (cf. �gure 3), and the

G�unter Rote: The Sandwich Algorithm for Convex Approximation 4

QQHH
QQHH((�

�
��

J
J
JJ

ZZ����
�
�
��
C
C
CC
@
@

C
C
CC
@
@
Z
Z
Z
Z
ZZ

Z
Z
Z
Z

r

��/ ��/ ��/ ��/ ��/ ��/ ��/
-

6

time

costs

Figure 3: The feasible region of a bicriteria linear program.
The emphasized part of the boundary is the e�cient point curve.

e�cient points form part of its boundary. For large problems, the work to compute all vertices
of this polygon might be prohibitive. In such a situation, an approximation of the polygon
which can be computed at reasonable cost is better than nothing. For the case of bicriteria
minimum-cost network
ow problems, the Sandwich algorithm was successfully tested with a
couple of di�erent partition rules by Fruhwirth, Burkard, and Rote [1989].

� Parametric linear programs with one parameter in the objective function or on the right-hand
sides are similar to the previous case.

� In mathematical programming a convex constraint is often replaced by a piecewise linear con-
straint, since such constraints can better be dealt with.

� In computational geometry, the dependence of the running time of algorithms on the number of
polygon vertices is often quadratic or of even higher degree. (for example in motion planning).
Replacing the input of a problem by a simpler approximation is a way to get approximate
results while speeding up the calculations. (A di�erent approximation problem from ours,
which was motivated in this way, has been considered in Fleischer et al. [1990], [1992].)

� In image processing, a complicated polygon boundary might be replaced by a simpler polygon
in order to eliminate input noise or to reduce the storage requirement.

In the applications of the �rst category, the problem is to get an acceptable approximation with
as few function evaluations as possible. Here the Sandwich algorithm is the ideal candidate, because
it uses just the best approximation that can be obtained from the information that is known.

In the second case, the problem of �nding an approximating function with a speci�ed error bound
and the smallest possible number of linear pieces can be solved in principle, and there are direct
methods for it: For optimal approximations, cf. Imai and Iri [1986], Cantoni [1971], or the surveys
in Imai and Iri [1988] or Kurozumi and Davis [1982]. For approximations which are asymptotically
optimal for small error bounds, cf. McClure and Vitale [1975] and M�uller [1992]. However, some
of these methods are complicated and slow, and it is often not even clear what the optimization
criterion of the approximation should really be. Thus, the Sandwich algorithm might still be the
method of choice if a simple and fast algorithm with a good performance guarantee is asked for.

Previous and related results. The problem of approximating a convex body by a polygon (or
polytope) has attracted a great deal of attention in the theoretical literature (cf. the surveys in
Gruber [1983], [1992] or Gruber and Kenderov [1982]). It is well known that the distance between
a given convex plane �gure and its best approximating n-gon is O(1=n2). regardless of whether we
This holds for approximations by enclosed or enclosing or arbitrary polygons, and for a variety of
error measures, like Hausdor� distance and area of the symmetric di�erence (cf. Gruber [1983]).
This convergence rate is best possible (as is easy to see, by considering the case of a circle). For the
approximation of convex functions, with the maximum vertical distance as the error, no algorithm
can guarantee a convergence rate better than O(1=n2): The parabola y = x2 is the worst case.

G�unter Rote: The Sandwich Algorithm for Convex Approximation 5

The Sandwich algorithm is so natural that is has been proposed very often, with di�erent ap-
plications in mind; especially the chord rule has been popular, sometimes even for approximating
non-convex curves (see e. g. Ramer [1972], Freeman and Shapiro [1975], Aneja and Nair [1979], or
Khang and Fujiwara [1989] in higher dimensions). However, steps towards a thorough analysis were
taken only in recent years. Noltemeier [1970] considered the maximum error rule for approximations
which do not use derivatives and proved that the approximation error converges to zero. Ruhe [1988]
(see also Ruhe [1991]) proved that the error of the chord rule decreases at least linearly. Lew and
Quarles [1989] considered the chord rule for maximizing the area of a polygon inscribed inside a
convex curve in the plane. However, in each iteration they subdivide every interval of the approxi-
mation, They showed that this non-adaptive method yields maximum-area inscribed polygons if and
only if the convex curve is an arc of a conic section. Gruber [1991] showed that by this simple method
of subdividing intervals uniformly a quadratic convergence rate can be achieved if the function h(x)
is twice continuously di�erentiable in the whole interval including the endpoints (see Gruber [1991],
theorem 4 and remarks 8 and 4). Uniform subdivision is however not su�cient for a function like
h(x) = x3=2, 0 � x � 1, or for non-di�erentiable functions. The Sandwich algorithm with any of the
four partition rules can handle these functions well because it is more adaptive.

Incidentally, when the Sandwich algorithm is used to approximate a parabola h(x) = x2, the
sequence of upper approximations is just the sequence which Archimedes used to exhaust the area
of a parabolic segment, in his second proof of his area formula (Archimedes [xx17{24], cf. also
Boyer [1968], pp. 142{143). Archimedes constructed his sequence of polygons according to the chord
rule.

A proof of the quadratic convergence rate of the Sandwich algorithm for the interval bisection rule
was given in Sonnevend [1984] (in a more general setting), and for the case of the interval bisection
slope bisection rules in Burkard, Hamacher, and Rote [1992] (with a di�erent proof). Fruhwirth,
Burkard, and Rote [1989] proved analogous results for the angle bisection rule, a natural variation
of the slope bisection rule. The relation between these proofs and our proof will be discussed in the
concluding section.

Ruhe and Fruhwirth [1990] considered the approximation criterion of "-e�ciency, which is useful
in connection with multicriteria problems (see also Ruhe [1991]). They investigated the performance
of the chord rule in this context.

Our results are a quantitative counterpart to the results on probing of polygons (cf. Cole and
Yap [1987] or Skiena [1989]), where a polygon is to be reconstructed by asking for the intersection
of the polygon with a speci�ed line or for the supporting line with a speci�ed direction. These two
types of probes correspond, in our problem setting, to a function evaluation and to �nding the point
with a given value of the derivative. The results on probing are more qualitative in nature, since the
polygons are to be reconstructed exactly and the number of probes depends only on the number of
polygon sides.

Overview of the paper. In section 2 we discuss duality between convex functions and we establish

a close connection between the partition rules which specify the abscissa and those which specify
the slope. The next two sections (sections 3{4) are devoted to the quadratic convergence theorems,
which constitute the main part of the paper. They are applied to the approximation of convex
plane �gures in section 5. The next two sections complement our worst-case convergence results by
studying how the di�erent rules may behave for particular functions: In section 6 we compare the
four partition rules from a theoretical point of view. We will see that there is no reason to prefer any
rule to another, because each rule can perform arbitrarily badly when compared to the other rules.
In section 7 we show the behavior of our partition rules for a few selected functions. In the �nal
section 8 we summarize the conclusions from the comparison of the rules, and we discuss possible
extensions and open problems.

2 Geometric duality of convex functions

We can describe a convex function h: [a; b]! R as the set of all pairs ((p; q); (k; d)), where (p; q) is a
point on the graph of the function, i. e., q = h(p), and y = kx+ d is a supporting line in this point:

q = kp+ d = h(p), and for all x 2 [a; b]: h(x) � kx+ d:

G�unter Rote: The Sandwich Algorithm for Convex Approximation 6

The dual transformation D maps each pair ((p; q); (k; d)) to the pair ((k;�d); (p;�q)). It maps
points to lines and lines to points by the polarity with respect to the parabola y = x2=2. (This
mapping is also a special projective duality.) This transformation is a tool which is often used
in computational geometry (cf. Edelsbrunner [1987], section 1.4 or 15.2). It transforms the given
function h into another convex function D(h). If the derivatives of h and D(h) are de�ned, they are
inverse functions of each other. D(h) is also known as the conjugate of h (cf. Rockafellar [1970], x12
and x26) or the Legendre transform of h (cf. Arnol0d [1978], pp. 61-63).

As the slopes of the supporting lines at the endpoints of the de�nition interval are not unique,
there is some arbitrariness regarding the domain of D(h). At the left endpoint a, there are supporting
lines with slopes in the range between �1 and h+(a), the right derivative of h at a. If we include
the all, D(h) will be de�ned on the whole of R and it will have linear pieces in [�1; h+(a)] and
in [h�(b);1], but usually we don't want this. On the other hand, if we always de�ne D(h) on the
interval [h+(a); h�(b)], we loose the involutory property of D: If h has linear pieces at its ends,
D(D(h)) will have lost these pieces. However, if h is strictly convex, then we will always have
D(D(h)) = h.

Applying the interval bisection rule to a function corresponds to applying the slope bisection rule
to its dual (with the above precautions regarding the domain of the dual). The vertical errors are
the same in both cases. Similarly, the maximumerror rule and the chord rule are dual to each other:
With the maximum error rule, we look for the point with the same abscissa as the intersection of
the two supporting lines at the boundaries of the interval; with the chord rule, we look for the line

with the same slope as the connection of the two points at the boundaries of the interval.
Therefore, in the proofs below, it will be su�cient to consider only one rule of each pair of rules.

3 The interval and slope bisection rules

The following elementary lemma, which is also the heart of all existence proofs of O(1=n2) approxi-
mations, is the basis of our proofs.

Lemma 1 (Lemma 2.1 of Burkard, Hamacher, and Rote [1992]) Let L = b� a denote the length of

an interval [a; b], and let � = h�(b)�h+(a) denote the slope di�erence of the two parts of the lower

approximation. Then the maximal vertical error " in this interval is bounded as follows:

" � L�

4
:

Proof: If the greatest error between the lower and the upper approximation occurs at some point x
in the interval [a; b], elementary geometric considerations lead to a lower bound for � in terms of
x� a, L, and ". The smallest value of this bound is assumed when x is the midpoint of the interval,
and it yields the inequality in the lemma.

The next lemma is the basis of the induction step in our inductive proofs:

Lemma 2 If L1; L2;�1;�2 � 0, " > 0, L1 + L2 � L, �1 +�2 � �, thenp
L1�1="+

p
L2�2=" �

p
L�=":

Proof: �p
L1�1 +

p
L2�2

�2
�
�p

L1�1 +
p
L2�2

�2
+
�p

L1�2 �
p
L2�1

�2
= (L1 + L2)(�1 +�2) � L�:

The lemma follows by dividing by " and taking square roots.

We need two more elementary lemmas, whose proofs are omitted. The next one is needed to
ensure that the induction hypothesis can be applied, and lemma 4 will help us to deal with the
rounding that occurs in the theorem:

Lemma 3 For x > 3 we have: lp
1=2 � x

m
� dxe � 1:

G�unter Rote: The Sandwich Algorithm for Convex Approximation 7

Lemma 4 If c � a+ b then dc� 2e � 1 + da � 2e+ db� 2e.
Now we are ready for the main theorem of this section. In the statement of the theorem we

assume that the Sandwich algorithm computes h(x) and the two one-sided derivatives h�(x) and
h+(x) for each new breakpoint x, and it uses h�(x) as the slope of the lower approximation to the
left of x and h+(x) on the right side of x. Since h is convex, the one-sided derivatives exist always.
However, it is su�cient and sometimes more practical to just take any value between h�(x) and
h+(x) as the slope of the lower approximation (as long as we take a steeper slope to the right of x
than to the left of x), and the theorem still holds. (Some care has to be taken in the case of the
slope bisection rule; see the remarks at the end of this section.)

Theorem 1 (Theorem 2.3 of Burkard, Hamacher, and Rote [1992]) Let h be a convex function

de�ned on an interval [a; b] of length L = b� a, and suppose that the function values f(a) and f(b)
and the one-sided derivatives h+(a) and h�(b) have been evaluated. Let � = h�(b)�h+(a). Then, in

order to make the greatest vertical error between the upper and the lower approximation smaller than

or equal to ", the interval bisection rule or the slope bisection rule needs at most z(L�=") additional
evaluations of h(x), h�(x), and h+(x), where

z(L�=") =

8><
>:

0; for L�=" � 4,&r
9

8

L�

"
� 2

'
; for L�=" > 4.

Before proving the above bound, we would like to point out that the expression L�=" is really
the natural measure in terms of which z(L�=") should be expressed: If we scale the function in the
y-direction (replacing h(x) by f � h(x) for some f > 0), � and all vertical dimensions are multiplied
by f . Thus, we also replace " by f", and indeed, L�=" is invariant under this transformation.
Similarly, if we scale the function equally in both directions, replacing h(x) by f �h(x=f), � remains
unchanged but L and " are multiplied by f , and L�=" is again unchanged.

Proof: We �rst consider the interval bisection rule. We prove the theorem by induction on the integer
number z(L�="). More precisely, our induction hypothesis is that the given expression for z(L�=")
is an upper bound on the number of iterations for all convex functions for which z(L�=") is less
than a certain value n, and then we prove it for z(L�=") = n. The �rst case (z(L�=") = 0), which
establishes the basis for the induction, is directly equivalent to lemma 1.

In the other case, z(L�=") is at least one. If the vertical error is greater than " then the interval
bisection rule will evaluate h(x), h�(x), and h+(x) for x = (a+ b)=2, thus splitting the interval into
two intervals of length L=2, with slope di�erences �1 and �2, where �1 +�2 � �. Thus we have
to prove

z(L�=") � max
�1+�2��

�
1 + z

�
L
2
�1

�
") + z

�
L
2
�2

�
")
�
:

We distinguish three subcases:

(i) Both z
�
L
2
�1

�
") and z

�
L
2
�2

�
") are zero. Then there is nothing to prove.

(ii) z
�
L
2
�2

�
") = 0, but z

�
L
2
�1

�
") > 0 (or vice versa): This means that L

2
�1=" > 4. We have

to show that z(L�=") � 1 + z
�
L
2
�1

�
"). Lemma 3, applied to x =

q
9

8
L�1=", implies that

z
�
L
2
�1

�
") is strictly smaller than z(L�1="), which in turn is smaller than z(L�="). This

ensures that the induction hypothesis can be applied, and it also proves the theorem.

(iii) Both z
�
L
2
�1

�
") and z

�
L
2
�2

�
") are > 0. We have to show:

&r
9

8

L�

"
� 2

'
� 1 + max

�1+�2��

0
@
2
666
s

9

8

L
2
�1

"
� 2

3
777+

2
666
s

9

8

L
2
�2

"
� 2

3
777
1
A :

As in the previous case, it follows from lemma 3 that the induction hypothesis can be used.
By lemma 4, it is su�cient to show the following relation:

p
(9=8)L�=" � max

�1+�2��

 r
9

8"

L

2
�1 +

r
9

8"

L

2
�2

!
:

G�unter Rote: The Sandwich Algorithm for Convex Approximation 8

By canceling the common factor
p
9=8 on both sides, the above statement becomes a direct

consequence of lemma 2.

For the slope bisection rule, the roles of L and � must simply be interchanged.

The constant 9=8 in the theorem is best possible. For a worst-case example, x in lemma 3 must
be just greater than 3. We de�ne a function h on two adjacent intervals of lengths L1 = L2 = 1,
with slope di�erences �1 = 0 in the left interval and �2 just a little bigger than 4", in the right
interval. This function is linear in the left interval. In the right interval, L2 and �2 just barely
fail to satisfy the inequality of lemma 1. Thus, we can set up the function h in the right interval
in such a way that the error is greater than ", for example by setting h h(x) = (�2=2)x

2 + ax + b,
for appropriate constants a and b. For the whole interval we have L = 2 and � = �2 > 4", and
thus we get z(L�=") = dp9 + something� 2e = 2, which is the true number of additional function
evaluations. By taking 2k instead of 2 intervals of length 1, alternatingly with � = 0 and � > 4",
one can create in�nitely many examples where the theorem is tight.

Corollary 1 If we always subdivide the interval with largest error according to the interval bisection

rule or the slope bisection rule, then the maximum vertical error after n � 2 evaluations of h, h�,

and h+ is at most
9

8

L�

n2
:

Proof: For the case n = 2 (evaluation only at the endpoints), we get the error bound " = 9=32 �L�>

L�=4, and the result follows from lemma 1. For n � 3 we have L�=" = 8n2=9 � 8 > 4, and from
theorem 1 we conclude that we need at most

z(L�=") =

&r
9

8

L�

"
� 2

'
= dn� 2e = n� 2

additional evaluations to achieve the claimed error bound ".

The best possible Sandwich approximation (assuming that the whole function is given in advance,
before any of the n� 2 partition points have to be chosen) would have the bound (1=4)L�=(n� 1)2,
as can be shown with the help of lemma 1. Thus, the bisection rules are only by a factor of 9=2 o�
the optimum.

A word of caution about implementing the slope bisection rule. Before the statement of
theorem 1 we said that we may take any subgradient of h at x instead of the value h�(x) or h+(x).
However, we cannot let this subgradient, which we denote by h�(x), depend only on x. Consider
the function h(x) = max(0; x2 + 4x) in the interval �1 � x � 1, which has a breakpoint at x = 0.
After one iteration of the slope bisection we have two subintervals [�1; 0] and [0; 1]. For the right
subinterval, the Sandwich algorithm determines the mean value between the slopes h�(0) and h�(1).
If we always took h�(0) = h�(0) = 0 and h�(1) = h�(1), we would get (h�(0) + h�(1))=2 = 3 for
the slope of next partition point. But this would again yield the point x = 0, and the Sandwich
algorithm would cycle forever.

Therefore we have to take the following precaution. The Sandwich algorithm with the slope
bisection rule uses derivatives on two occasions: as slopes of the lower approximation, and for
computing the slope (h+(a) + h�(b))=2 of the next partition point. In both cases, if a point x has
previously been determined as the point where a supporting line of slope s touches the function h

then we may take instead of the value of h+(x) any subgradient of h at x which is at least s; similarly,
the value that we take instead of h�(x) must be at most s. It is easy to incorporate this rule into the
algorithm, and thus the slope bisection rule is viable even if we do not want to compute one-sided
derivatives.

4 The maximum error rule and the chord rule

We need an additional lemma which is used to bound the product L1�1 for the left subinterval from
below when the error in the right subinterval is more than " after the maximum error rule has been
applied. This, in connection with lemma 2, will take the place of lemma 3 in ensuring that the

G�unter Rote: The Sandwich Algorithm for Convex Approximation 9

induction hypothesis can be applied. (This is in fact the only point where the di�erence between the
partition rules comes in.)

Lemma 5 Consider an interval [b; c] which has been subdivided at the breakpoint d of the lower

approximation, as in the maximum error rule (see �gure 4). Suppose that in one of the subintervals

(say, [d; c]), the vertical error GG0 is greater than ". Then the length L1 = d� b of the other interval

and its slope di�erence �1 = h�(d)� h+(b) satisfy the following relation:

L1�1 > ":

`̀`

rC

c

rB

b

r

F

f

r

r

D

E

d

r

r

G

G0

!!!!!!!!!!!!!!!!!!!!!!!!

%
%
%
%
%
%
%
%
%
%

- x

Figure 4: Proof of lemma 5. GG0 is greater than ".

Proof: We clearly have DE � GG0 > ", since the lines EG0 and DG meet in C, which is to the
right of G, and D is to the left of G. We denote the slope of the line through two points X and Y
by slope(XY). From the triangle DEF , we have then

DE = (d� f) � (slope(FE)� slope(FD))

= (d� f) � (h�(d)� h+(b)) � (d� b) � (h�(d)� h+(b)) = L1�1:

By duality, the above lemma is also true if the interval is subdivided according to the chord rule.

Theorem 2 Let h be a convex function de�ned on an interval [a; b] of length L = b�a, and suppose

that the function values f(a) and f(b) and the one-sided derivatives h+(a) and h�(b) have been

evaluated. Let � = h�(b) � h+(a). Then, in order to make the greatest vertical error between the

upper and the lower approximation smaller than or equal to ", the maximum error rule or the chord

rule needs at most m(L�=") additional evaluations of h(x), h�(x), and h+(x), where

m(L�=") =

8><
>:

0; for L�=" � 4,&r
L�

"
� 2

'
; for L�=" > 4.

Note that the �rst formula in the de�nition of m(L�=") is a special case of the second one, except
for L� � ", where it would be negative.

Proof: We consider only the maximum error rule. For the chord rule, the result follows by duality.
We prove the theorem by induction on m"(L�). The induction basis, m"(L�) = 0, is equivalent

to lemma 1.
In the other case, m"(L�) � 1. Thus, if the error is at most " in both subintervals after the

function has been evaluated at the point of largest error, we have had only one additional evaluation
and the theorem is true.

Otherwise, let L, �, L1, �1, L2, and �2 denote the lengths and slope di�erences of the original
interval [a; b] and of the left and right subintervals. We assume w. l. o. g. that the vertical error
exceeds " in the right subinterval. From lemma 5 we get L1�1=" > 1, and from lemma 1 we get
L2�2=" > 4.

G�unter Rote: The Sandwich Algorithm for Convex Approximation 10

Thus all we have to prove is that

m(L�=") � max
�1+�2��

L1+L2=L

L1�1>"; L2�2>4"

(1 +m(L1�1=") +m(L2�2=")) :

Lemma 2, together with
p
L1�1=" � 1, implies that m(L2�2=") is strictly smaller than m(L�="),

and similarly,m(L1�1=") < m(L�="). Hence the induction hypothesis can be applied. Ifm(L1�1=") =
0 the theorem follows directly; otherwise, we have to show the following relation:lp

L�="� 2
m
� 1 + max

�1+�2��

L1+L2=L

L1�1>"; L2�2>4"

�lp
L1�1="� 2

m
+
lp

L2�2="� 2
m�

:

By lemma 4, it is su�cient to show

p
L�=" � max

�1+�2��

L1+L2=L

�p
L1�1=" +

p
L2�2="

�
;

which follows directly from lemma 2.

Corollary 2 If we always subdivide the interval with largest error according to the maximum error

rule or to the chord rule, then the greatest vertical error after n � 2 evaluations of h, h�, and h+ is

at most

L�=n2:

Proof: Similar to the proof of the corollary of theorem 1.

Note that lemma 1 is a special case of this corollary.
The above proof shows that we could even mix the application of the chord rule and the maximum

error rule arbitrarily and still get the same bounds. (If we also include the bisection rules, we would
get the bounds of theorem 1.)

It is quite easy to �nd examples where the bounds of theorem 2 and its corollary cannot be
improved. Simply take the function h(x) = x2, 0 � x � 1. We have L = 1 and � = 2, and any of
our four partition rules will split every interval into half. After n = 2k evaluations of h, the interval
[0; 1] will thus be split into 2k � 2 intervals of lengths 1=2k and one interval of length 1=2k�1, in
which the error is 1=22k�1. This coincides with the bound in the corollary. If we impose a bound "
which is slightly smaller than this error, we have to evaluate h at 2k + 1 points, which is equal to
the bound m(L�=") of theorem 2.

A comparison with the best possible \o�-line" approximation bound (cf. the discussion after
corollary 1) shows that the maximum error rule and the chord rule are worse by a factor of 4.
The above example shows why one cannot expect more from a simple \on-line" algorithm that
selects its next partition point without taking into account how many further iterations it will make
in the future: If every subinterval looks completely symmetric, the Sandwich algorithm can do
nothing better than split each interval into half. But after 2k evaluations, this partition will be very
unfavorable, with one left-over interval that is twice as long as the remaining intervals and almost
twice as long as in an optimal (equal-length) partition into 2k � 1 intervals.

5 The approximation of convex plane �gures

We shall now apply our results to the approximation of convex plane �gures. For approximating a
convex �gure (or a convex curve), it makes no sense to measure the error in the \vertical" direction.
Thus, we take the Hausdor� distance, which is de�ned for an inner approximation Pinner and an
outer approximation Pouter as follows:

sup
x2Pouter

inf
y2P inner

d(x; y):

G�unter Rote: The Sandwich Algorithm for Convex Approximation 11

Here d(x; y) denotes the Euclidean distance. When we consider the graph of a convex function as
a convex curve, the Hausdor� distance is always bounded by the maximum vertical distance. Thus
the bounds of theorems 1 and 2 for the \vertical" error in some direction immediately carry over to
the Hausdor� metric.

Theorem 3 The Sandwich algorithm approximates a convex plane �gure P of circumference D by

two n-gons (n � 4) with an error at most 9D=(n � 2)2 in case of the interval or slope bisection

rule, or at most 8D=(n� 2)2 in case of the maximum error rule or the chord rule. Or vice versa, to

achieve a speci�ed error bound ", the Sandwich algorithm needs at most ~z(D=") or ~m(D=") points,

respectively, where

~z(D=") = max
n
4;
lp

9D="+ 2
mo

;

and

~m(D=") = max
n
4;
lp

8D=" + 2
mo

:

Proof: We determine the smallest enclosing axis-parallel rectangle of P . The points where this
rectangle touches P divide the boundary into four pieces. By looking from the proper \diagonal"
direction, each piece can be viewed as a convex function with slope between �1 and +1. Thus we
have � � 2, and the lengths L1; L2; L3; L4 are bounded by the lengths of the corresponding pieces
of P 's circumference. Then we apply the Sandwich algorithm to each piece individually. Now let
us prove the last part of the theorem. For the maximum error rule or the chord rule, we get from
theorem 2:

m(Li � 2=") �
p
Li � 2=", for i = 1; 2; 3; 4.

Assuming that we need at least 5 points we even get m(Li � 2=") <
p
Li � 2="� 1 for at least one i.

Thus the number of points is bounded by

4 +m(2L1=") +m(2L2=") +m(2L3=") +m(2L4=") < 3 +
p
2="

�p
L1 +

p
L2 +

p
L3 +

p
L4

�
:

We have L1 + L2 + L3 + L4 � D. The sum of the square roots is thus maximized when L1 = L2 =
L3 = L4 = D=4. Therefore, the number of points is an integer number less than 3 +

p
8D=", and

our expression for ~m(D=") is the largest such number. The proof for ~z(D=") works in the same way.
The proof of the error bounds in the �rst part of the theorem is analogous to the proof of corollary 1.

We could decrease the multiplicative constants from 8 arbitrarily closely towards 2� and from 9
towards 9�=4, by initially decomposing the boundary of P into more than four pieces. This would
reduce the error of bounding the Hausdor� distance by the vertical distance. The constant for the
best possible Sandwich approximation is �=2.

The only partition rule which carries over naturally from convex functions to convex �gures
is the chord rule, which is completely insensitive to directions. This might be a reason why the
approximation of plane �gures seems to be less convenient to deal with than the approximation of
functions. The analog of slope bisection is angle bisection, which has been treated in Fruhwirth,
Burkard, and Rote [1989]. Analogs of the interval bisection rule and the maximum error rule can
be applied if some point in the interior of P is chosen. Corresponding rules would then be related
to each other by a polarity with respect to a circle centered at this point. However, this polarity
preserves only the \relative error" with respect to the center of that circle, but it does not preserve
absolute distances like the dual transform D.

6 Comparison of the partition rules | theoretical results

All partition rules that we have considered are optimal in the worst-case: For given values of L
and � their worst case is only by a constant factor o� the worst case for an \optimal" Sandwich
approximation. It is conceivable that the Sandwich algorithm with some partition rule would even
remain \close to optimal" for all functions, in the following sense: If there is an optimal approximation
for a given function with n intervals, achieving an error ", then the Sandwich algorithm constructs
an approximation with an error c" in at most dn iterations, for some constants c and d independent
of the function, ", and n.

G�unter Rote: The Sandwich Algorithm for Convex Approximation 12

The purpose of this section is to dismiss any hopes about such an optimality property for any of
the four partition rules.

Bad examples for the bisection rules. It is easy to construct an example where the interval
bisection rule takes many iterations to reduce the error to E, whereas only one interval partition
would be required (see �gure 5): Take an interval of length 2n where the function is constant except
in the left-most piece of length 1 where it has slope �2E. Then the interval bisection rule will make
n� 1 iterations, whereas all other rules will �nd the exact function after the �rst iteration.

rD
D
D
D
D
D

r L
L
L
L
L
L
r

```
```

```
```

```
```

```
```

```
`̀

2n � 211

2E

Figure 5: A bad example for the interval bisection rule.

By duality, an analogous example can be constructed where the slope bisection rule is arbitrarily
bad when compared to the optimumor to the other rules. Before applying the duality to the example
of �gure 5, the function should be made strictly convex, for example by adding the function x2=10n

to it (see section 2).

Bad examples for the adaptive rules. We now construct an example where the chord rule per-
forms badly. It is a piecewise linear function which we describe as a polygonal chain (Q;O; Pn; Pn�1; : : : ; P1; P0),
where Q = (�E;E) for some parameter E > 1, O = (0; 0), and the points Pi have the following
properties (see �gure 6):

1. All points Pi lie above the x-axis, and each line PiPi+1 intersects the x-axis in the point
(1�i=n; 0). This implies in particular that the function is indeed convex.

2. The line parallel to QPi supporting the chain from below touches it in Pi+1. This implies
that the chord rule, when subdividing the interval QPi, will select Pi+1 as its next partitioning
point.

If we denote the coordinates by Pi = (xi; yi) and write di := 1 � i=n, these conditions can be
written as follows:

1.
yi+1

xi+1 � di
=

yi

xi � di
; for i = 0; 1; : : : ; n� 1 (1)

2. The slope of QPi is steeper than the slope Pi+2Pi+1; the latter line goes through the point
(di+1; 0), and thus we can write

yi � E

xi +E
>

yi+1

xi+1 � di+1
; for i = 0; 1; : : :; n� 1 (2)

Now we de�ne Pi recursively by setting Pn = (xn; yn) = (E + n;E) and

yi = (2E + 1)n � xi+1, for i = n� 1; n� 2; : : : ; 2; 1; 0:

xi is then de�ned from yi, xi+1, and yi+1 by (1). We have to show that this sequence also ful�lls (2).
But �rst we show the following, by induction on i (from i = n down to 0):

xi � yi � i, for i = n; n� 1; : : : ; 1; 0:



G�unter Rote: The Sandwich Algorithm for Convex Approximation 13

,
,
,
,
,
,
,,��

�
�
�

�
�

�

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#>

-

6

>

q

q

q,
,
,
,
,
,
,
,
,
,
,
,
,

�
�

�
�

�
��

@
@

@
@

Q = (�E;E)

9>>>>>>>=
>>>>>>>;
Pi = (xi; yi)

Pi+1 = (xi+1; yi+1)

di
O

x

y = f(x)

Figure 6: Construction of the bad example for the chord rule.
Because of the huge dimensions which arise in the actual construction, this �gure cannot give true
proportions. Although it is hard to notice, the two rays do eventually meet. Their intersection is Pi.

The case i = n is true by the de�nition of Pn. For the inductive step, we have

xi � yi = yi

�
xi � di

yi
� 1

�
+ di

= yi

�
xi+1 � di

yi+1
� 1

�
+ di � yi

�
xi+1 � 1

yi+1
� 1

�

� yi

�
yi+1 + (i+1)� 1

yi+1
� 1

�
=

yi

yi+1
� i � i:

In particular, y0 � x0 and thus P0 lies below the line y = x. As the tangent at P0 goes through
the point (d0; 0) = (1; 0), the function between O and P0 is contained in the triangle O; (1; 0); P0,
and the initial Sandwich approximation for the interval OP0 or any subinterval PiP0 has an error
less than 1. On the other hand, the error of the approximation over an interval QPi is always at
least E, for all i.

Equation (2) is is shown as follows, using (1) and the de�nition of yi:

yi+1

xi+1 � di+1
=

yi+1

xi+1 � di
� xi+1 � di

xi+1 � di+1
=

yi

xi � di
� xi+1 � di

xi+1 � di+1

� yi

xi � di
� xi+1 � 1=n

xi+1
� yi

xi � 1
�
�
1� 1

nxi+1

�

=
yi

xi � 1
�
�
1� 2E + 1

yi

�
=
yi � 2E � 1

xi � 1
<
yi �E

xi +E
:

Now, when we start the chord rule with the interval QP0 and give it the error bound " = E, it
will take n iterations until it stops, whereas the single partition at point O would have su�ced to
achieve even " = 1.

If we extend our polygonal chain in the left through the points Q2 = (�x0; y0 + 2x0 + 1) and
Q1 = (�x0=2; y0=2+1), the other partition rules �nd a good approximation fast. This does not help
the chord rule, since it will �rst split the interval [�x0; x0] between Q2 and P0 at Q, in the right



G�unter Rote: The Sandwich Algorithm for Convex Approximation 14

subinterval it idin the same position as before. It is not hard to check that the three other rules
�nish after at most four iterations.

By duality, an analogous family of bad examples exists for the maximum error rule.

Bad examples for an arbitrary subset of rules. By gluing together such bad examples that
we constructed above, we can establish the following statement.

Theorem 4 For any subset of the four partition rules finterval bisection, slope bisection, maximum

error rule, chord ruleg, there are functions where these rules perform close to the bounds of theorems

1 and 2, whereas the remaining rules perform arbitrarily much better than these bounds. More

speci�cally: for any positive integer numbers N and m and real numbers E � " > 0, there exists a

convex function with the following properties:

(i) There is no Sandwich approximation with error bound " and fewer than m intervals, but there

is such a Sandwich approximation with at most 40m intervals.

(ii) The Sandwich algorithm with any of the designated \bad" partition rules does not achieve the

error bound E in at most Nm iterations.

(iii) The Sandwich algorithm with any of the remaining partition rules achieves the error bound "

in at most 40m iterations.

What this theorem says is that no partition rule \beats" another partition rule consistently for
all functions; and one cannot even beat a partition rule by using any combination of other partition
rules, letting them run independently, and taking the best approximation.

Proof: We take a bad example for the interval bisection rule (�gure 5) with n = dN=2e + 1; and we
take a bad example for the chord rule with n = dN=2e, with E=" instead of E, and we scale it in the
y-direction to make the error bound equal to " instead of 1. Before gluing these \bad" pieces (and
their duals) for the selected partition rules together we must make them look more uniform. Note
that we can increase their slope di�erence � arbitrarily without destroying the essential properties
of our examples, by replacing a very small piece at the left end with another piece of the appropriate
steeper slope. In this way we can achieve that the two examples have equal values of the product
L�. By scaling each example in the x-direction, we can change the length L arbitrarily while leaving
the product L� constant. Thus we can even achieve L = � =

p
L�, and our two bad examples

will now have equal L and � values. By applying duality, we get two more examples for the dual
rules with the same L and � values. Now we glue together side by side two copies of each of the
four functions: We �rst add an appropriate linear function to the right copy so that the combined
function has a breakpoint at the midpoint x with h+(x)� h�(x) = 1.

Now we have four function pieces, one for each rule, which look essentially the same from outside:
They all have the same length L and the same slope di�erence �, and the two parts of the lower
approximation intersect at the midpoint of the interval. We takem function pieces of each designated
rule which we want to perform badly with respect to the other rules, we add more of these pieces to
make the total number of pieces a power of two, and we glue them all together. This is the function
whose existence is claimed in the theorem. Any rule will �rst decompose the interval evenly until
it has broken the function into the half-pieces from which it was built. The function has less than
8m half-pieces, and the initial phase takes at most 8m iterations. Each of the \bad rules" of our
designated subset will �nd at least 2m half-pieces which have been especially designed for it, and
which will each take at least N=2 more iterations to achieve the bound E. This proves (ii). The
other rules will �nish o� each half-piece in at most 4 iterations and achieve ". Thus, we get a total
number of at most 8m + 8m � 4 iterations, and this proves (iii) and the second part of (i).

7 Comparison of the partition rules | computational exper-

iments

In this section we shall demonstrate the behavior of the Sandwich algorithm with the di�erent
partition rules for a couple of selected convex functions. We will show results for three functions



G�unter Rote: The Sandwich Algorithm for Convex Approximation 15

that are given as explicit expressions and average results for convex functions that might be more
typical of convex functions that occur in practice.

We have always subdivided the interval with the largest error, as in corollaries 1 and 2, and so
we could observe the smallest possible error that the Sandwich algorithm achieves, for any number
of iterations.

Example 1. The square root function. Our �rst function is the square root function h(x) =
�2px, 1 � x � 4 (�gure 7). The �gure shows the maximum error for the four partition rules,
interval bisection (I), slope bisection (S), maximum error rule (M) and chord rule (C), after n = 240
to n = 1100 iterations. Since the error " decreases quadratically with n the ordinate axis has been
normalized to show "n2 instead of " itself. Both axes are drawn to the same logarithmic scale. Thus,
a period in the algorithm during which " remains constant would be shown as a line of slope 2.

- n

6"n
2

0:5

0:6

0:7

0:8

0:9

1:0

256 512 1024

pppp
pp
pppp

ppp
pp
pppp

ppp
pp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppp
pppppp

ppppp
ppppppp

pppppp
ppppp
ppppppp

ppppppp
pppppp
ppppp
ppppppp

ppppppp
ppppppp

pppppp
ppppppp

ppppppp
ppppppp
pppppppp

ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppppp

pppppppp
ppppppp
ppppppppp

ppppppppp
ppppppp
ppppppp
ppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pppppppppppp
ppppppppppp
ppppppppppp
pppppppppppppp

ppppppppppp
pppppppppppp
ppppppppppppp
pppppppppppppp
ppppppppppppp
pppppppppppp
ppppppppppppp
pppppppppppppp
ppppppppppp
pppppppppppppp
ppppppppppppp
pppppppppppppp
ppppppppppppppp
pppppppppppppp
pppppppppppppppp

ppppppppppppppp
pppppppppppppp
pppppppppp I

pppp
ppp
pp
pppp

ppp
pppp

ppppp
pppp

ppppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppp
pppp
ppppp
pppp
pppppp
ppppp
ppppp
pppppp
ppppp
ppppppp

ppppppp
pppppp
ppppp
ppppppp

pppppp
ppppppp

ppppppp
ppppppp
ppppppp
ppppppppp

ppppppp
ppppppppp

ppppppppp
ppppppppp

ppppppppp
ppppppppp

ppppppppp
ppppppppp

ppppppppp
ppppppppppp

ppppppppppp
pppppppppppppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppp
pppppppppp
pppppppp
pppppppppp
ppppppppppp
ppppppppp
ppppppppp
ppppppppp
ppppppppppp
ppppppppppp
pppppppppppp
ppppppppp
ppppppppp
ppppppppppp
pppppppppppppp
ppppppppppppp
pppppppppppp
ppppppppppppp
pppppppppppppp
ppppppppppppppp
pppppppppppppppp
pppppppppppppppp

pppppppppppppppp
ppppppppppppp S

ppp
ppp
ppp
ppp
ppp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
pppppp
pppppp
ppp

ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
pppp
ppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
pppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
pppppppp
ppppppp
pppppppp
pppppppp
ppppppp
ppppppppp
pppppppp
pppppppp
ppppppppp
ppppppppp
ppppppppp
ppppppppp
pppppppppp
pppppppppp
pppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pppppppppppp
ppppppp

pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
pppp M

pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
pp
pp
ppp
pp
ppp
pp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
pppp
pppp
ppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
p

ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
pppppp
ppppppp
pppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppppppp
ppppppp
ppppppp
pppppp

pppppppp
ppppppp
pppppppp
pppppppp
pppppppp
ppppppp
pppppppp
pppppppp
pppppppp
ppppppp C

Figure 7: The error " of the Sandwich algorithm for the function h(x) = �2px, 1 � x � 4, for
iterations n = 240; : : : ; 1100. The four partition rules are designated by their initial letters.

We can make several observations: The curves are essentially periodic, with one period for every
time the number of iterations is doubled: After the �rst few iterations the de�nition interval is
divided into a number of subintervals. Subsequently, the Sandwich algorithm splits each of those
intervals into two until the number of intervals is doubled.

For the maximum error rule and the chord rule, " decreases very slowly until n reaches a power

of two, where it suddenly drops. This means that these rules were rather successful in splitting the
de�nition interval into 2k subintervals where the approximation errors are quite balanced. The error
decreases slowly for a long period of time, and then the error decreases drastically. (This phenomenon
is shown in an extreme way by the function h(x) = x2, see the remark at the end of section 4.) The
other two rules have also a characteristic periodic shape, although there are no such sharp jumps
and the error behaves more uniformly. Notice the tiny periodic oscillations on the rising portions of
the curves.

In this example we have L = 3 and � = 1=2. Thus corollaries 1 and 2 yield "n2 � 27=16 = 1:6875
for the interval bisection rule and the slope bisection rule, and "n2 � 3=2 for the maximum error
rule and the chord rule. The dual of h is (D(h))(x) = �1=x, �1 � x � �1=2. Thus, �gure 7 could
equally well represent D(h), with I and M interchanged with S and C, respectively.

Example 2. A hyperbolic arc. The next function that we are going to look at is an arc of
the hyperbola y2 � x2 = 1. We have h(x) =

p
1 + x2, 0 � x � 3=4 (see �gure 8). This time, all

partition rules have big jumps at the powers of two. Quite di�erent shapes of curves occur. We have
L = 3=4 and � = 3=5. Corollaries 1 and 2 yield "n2 � 0:50625 and "n2 � 0:45, respectively. The
dual function is an arc of the unit circle: (D(h))(x) = �p1� x2, 0 � x � 3=5.



G�unter Rote: The Sandwich Algorithm for Convex Approximation 16

- n

6"n
2

0:15

0:20

0:25

0:30

0:35

0:40

256 512 1024

pppppppppppppppp

p
p
p
p
p
p
p
p
p
p
p
p
pp
p
pp
p
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppppp

ppppppp
pppppppp

pppppppppp
ppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppppp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
pppppp
pppppp
ppppp
pppppp
pppppp
ppppppp
pppppp
ppppppp
pppppppp
ppppppp
ppppppppp
pppppppp
pppppppppp
pppppppppp
ppppppppppp
ppppppppppppp
pppppppppppppp

pppppppppppppppppp
ppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppp
pppp
ppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
pppp
pp I

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

pppppp
ppppp

ppppp
ppppp

pppp
pppp
pppp

pppp
pppp
pppp
pppp
ppp
pppp
pppp
ppp
ppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
ppp
pp
ppp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pppppppppp
ppppppppppp

ppppppppp
pppppppppp

pppppppp
ppppppppp

pppppppp
ppppppp
pppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppppp
ppppppp
ppppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppp
pppppp
ppppp
pppppp
ppppp
pppppp
ppppp
ppppp
pppppp
pppppp
pppppp
ppppp
ppppp
pppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
pppp
ppppp
pppp
ppppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppp
pppppppppppppppp S

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
ppp
pppp
ppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp

ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppppp
ppppp
pppppp
pppppp
pppppp
p M

pp
pp
pp
pp
pp
pp
pp
pp

p
p
p
p
p
p
p
p
p
p
p
p
p
p
pp
p
p
p
p
p
pp
p
pp
pp
pp
pp
pp
p
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
pp
pp
ppp
pp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
pppppp
ppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp

pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp C

Figure 8: The error " of the Sandwich algorithm for the function h(x) =
p
1 + x2, 0 � x � 3=4, (a

hyperbolic arc).

Example 3. The sine function. Our third example is the sine function: h(x) = � sinx, 0 � x �
�=2 (see �gure 9). This example exhibits quite a variety of shapes, sometimes with little periodic
jumps occurring between the main periods. We have L = �=2 and � = 1, giving the bounds
"n2 � 1:77 and "n2 � 1:57, respectively. The dual function is (D(h))(x) = �x arccos(�x)�p1� x2,
�1 � x � 0.

Convex functions that \occur in practice". Since arti�cial examples alone are not satisfactory,
we generated ten bicriteria minimum-cost network 
ow problems, similar to those in Fruhwirth,
Burkard, and Rote [1989], and we computed the e�cient point curves (cf. �gure 3). We got ten
piecewise linear convex curves which had between 4260 and 4800 linear pieces, with an average
number of about 4550. Then we approximated these curves with each of the four partition rules.
The plots of the approximation error are quite erratic and not so uniform as for the previous examples
and are therefore not shown. Still, certain characteristic patterns that appear between iterations n
and 2n tend to reappear between iterations 2n and 4n.

Thus, we have measured for each function and each partition rule the average value, the min-
imum, and the maximum of "n2 over the iterations n = 51; 52; : : :; 100, over the iterations n =
101; 102; : : :; 200, and over the iterations n = 201; 202; : : : ; 400. The following table shows the aver-
ages over these numbers over the ten examples.



G�unter Rote: The Sandwich Algorithm for Convex Approximation 17

- n

6"n
2

0:4

0:5

0:6

0:7

0:8

0:9

1:0

1:1

1:2

256 512 1024

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
pppp
pppp
pppp
pppppp

pppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

p
p
p
p
p
p
ppp
p
p
p
p
p
p
p
pp
p
p
p
p
p
p
p
p
pp
p
p
p
p
p
p

p

pp

p

p

ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
pp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
ppppp
pppp
pppp
ppppp
pppppp
ppppp
ppppppp
ppppp
ppppppp
ppppppp
ppppppppp
ppppppppp
ppppppppppppp

pppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppp
p
pp
p
ppp
p
p
p
ppp
p
ppp
p
p
p
p
p
p
ppp
p
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp I

pp
p
pp
pp
p
pp
p
p
p
p
p
pp
p
p
p
p
p
p
p
p
p

p

p

p
p
p

p

p

p

p

p

p

p

pppp
p
p
p
p
p
p
p
ppp
p
p
ppppppppppppppppppppppppppppppppppppppppppppp

ppppppp
ppppppp

ppppp
ppppp
pppp
pppp
ppp
pppp
pppp
pppp
pp
pppp
pp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
pp
ppp
ppp
pp
pp
ppp
ppp
ppp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp

p

p

p
ppp
p

p

p

p
p
p
p
pp
p
p
p
p
p
p
p
ppp
p
p
p
p
p
p
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppppppppppppp
pppppppppppp

ppppppppp
ppppppp
ppppppp
pppppp
ppppppp
pppppppp
ppppppp
ppppppp
ppppp
ppppppp
ppppp
ppppppp
ppppppp
ppppp
pppppp
pppppp
ppppp
pppppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
pppp
pppp
ppppp
ppppp
pppp
ppppp
pppp
pppp
ppppp
pppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
p
p
p
pp
p
p
p
p
p
p
p
ppp
p
p
p
p
p
p
ppp
pp
ppp
pppppppppp S

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p

p

p

p

p

p

p

p
p
p
p
p
ppp

pppppppppppppppp

ppppp
pppp
ppp
ppp
ppp
ppp
pp
ppp
pp
ppp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

p

p

p

p

p

p

p

p

p
p
p
p
p
p
p

p
p
pppppppppppppp

ppppppppppppppppppppppppppppppppp

pppppppppp
ppppppp
pppppp
pppppp
pppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp

pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp

pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp

p

p

p

p

p

p

p

p

p
p
p
p
p
p

p
p
p
p
p
ppp
pppppppp

ppppppppppppppppppppppppppppppppp

pppppppppppp M

p
p
p
p
p
p

p

p

p

p

p

p

p

p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
pp
p
p
pp
p
pp
pp
pp
p
pp
p
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

p

pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
pppp
pppp
ppppp
pppppp
ppppppp

pppppppppppppppppppppppppppppppp

p

pppppppp
p
p
p
p
p
p
p
p

p
p
p

p

p

p

p

p

p

p

p

p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
ppp
ppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp

pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppppp
pppppp
ppppppp
ppppppp
pppppppp
pppppppppp
pppppppppppp
ppppppppppp

p
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp

p

ppp
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p

p

p

p

p

p

p

pppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp C

Figure 9: The error " of the Sandwich algorithm for the function h(x) = � sinx, 0 � x � �=2.

rule
"n2: average, minimum, and maximum

50 < n � 100 100 < n � 200 200 < n � 400

interval bisection 352:5 (316:0{387:0) 341:1 (315:9{367:1) 327:8 (309:2{353:3)
maximum error rule 334:3 (304:5{367:7) 326:1 (302:1{359:0) 308:9 (285:5{337:4)

slope bisection 332:0 (303:2{370:5) 309:7 (283:0{341:0) 273:9 (249:6{302:2)
chord rule 322:1 (291:4{361:2) 302:3 (280:4{332:7) 266:7 (246:1{293:5)

The three intervals from n to 2n are su�ciently wide to level out accidental deviations from the
average behavior, and the maxima and minima are not just local irregularities.

If the function that is to be approximated is already piecewise linear, as in our case, the two rules
which specify the slope (slope bisection and the chord rule) will terminate with the exact function
after a �nite number of iterations. This is re
ected in the falling tendency of "n2 as n gets larger.
The maximum error rule will also eventually terminate with the exact function, although it will
take about twice as many iterations. The interval bisection rule will in general never obtain the
approximated function exactly. This gives the slope-specifying rules an advantage on the long run,
but since we consider only n � 400 iterations, this e�ect is not so strong. (It is possible to modi�y
the maximum error rule and the interval bisection rule so that they take care of linear pieces of the
function, and then this drawback disappears.)

The two adaptive rules are slightly superior to the corresponding bisection rules on the average.
Unlike in the other three examples, the range of variation of the bisection rules is not always smaller
than for the adaptive rules.

To get meaningful error bounds from theorems 1 and 2, we have to turn the e�cient point curve
counterclockwise by 45�, as in section 5. The average value of this bound for the chord rule was
about 366, which compares reasonably with the actual �gures.



G�unter Rote: The Sandwich Algorithm for Convex Approximation 18

Conclusion. When we compare the four partition rules as to their performance, we may say that
the adaptive rules (maximum error rule and chord rule) are usually more successful in �nding a
good partition into intervals where the error is distributed evenly and the maximum global error is
therefore small. However, this occurs only at certain times during the algorithm. With sequential
algorithms that select the points one by one, the price that one may have to pay for a very good
approximation at certain times is a great variation of the error at other times. On the average, the
adaptive rules seem to win slightly. Generally, the bounds in theorems 1 and 2 and their corollaries
estimate the order of magnitude of the actual error quite well.

8 Concluding remarks

The relation to other proofs. The proofs in the present paper work by induction on the number
of function evaluations that are needed to make the global error smaller than a given error bound ".
In Burkard, Hamacher, and Rote [1992], our theorem 1 is proved in a di�erent way: They consider the
tree of intervals that is implicitly built during the algorithm. This proof gives more insight into the
structure of the algorithm but it cannot be extended to cover the other two rules. Sonnevend [1984]
establishes his results in a more general setting. His proof for the interval bisection rule works
inductively, similarly to our proof; he does not specify constants in the expression O(1=n2).

Comparison of the partition rules. We have seen in section 6 that, in theory, everything can
happen as regards the relative performance of the four rules for a particular function. In practice,
the rules do not di�er too much in their average behavior (see section 7). This is con�rmed by
the results reported in Fruhwirth, Burkard, and Rote [1989], who compared the chord rule and the
angle bisection rule. The adaptive rules seem to be slightly better, but sometimes their performance
may exhibit a much greater variation for di�erent numbers of iterations, and thus the bisection rules
might be preferable.

By the duality of convex functions, there is no theoretical di�erence between a rule which speci�es
the abscissa of the partition point and the corresponding slope rule. This is rather a matter of the
practical implementation of computing the partition point. Consider the example of bicriteria linear
programs mentioned in the introduction. Finding the point with a given slope is just an ordinary
linear program with a single objective function (Figure 3 shows such an objective function.) Finding
the point with a given abscissa amounts to solving the problem with one additional linear constraint,
which might destroy some structure that is inherent in the problem (for example, the structure of a
maximum 
ow problem).

All rules are invariant under a�ne transformations which leave the y-axis vertical. This includes
in particular scalings of the coordinate axes. The chord rule is the only rule which is invariant under
all a�ne transformations, including rotations. This makes it attractive for bicriteria problems, since
it does not favor one objective function over the other.

One possible conclusion from the results of section 6 would be the development of some sort of
combined \primal-dual" partition rule that would exclude most of those pathological examples. This
would be of theoretical value only, and furthermore, we believe that it would be possible to construct
for any conceivable \super-rule" pathological examples that fool this rule.

Higher dimensions. The problem of approximating a convex function of two variables is consid-
erably more di�cult, from an algorithmic viewpoint. If such a function and its (sub-)di�erentials
have been evaluated at some points, the best upper approximation is the convex hull of a set of
points in three dimensions, and the best lower approximation is the intersection of halfspaces.

Whereas these subproblems are still quite tractable in three dimensions | they can be solved in
O(n logn) time, cf. Preparata and Shamos [1985] | they become more and more complex in higher
dimensions. Moreover, in the one-variable case, the approximation problems for the subintervals
are completely independent of each other. In higher dimensions, there is no straightforward way to
de�ne subregions into which the given domain is decomposed.

Sonnevend [1983] proposed an approximation scheme for convex functions of two variables which
avoids the above di�culties by constructing the approximating functions only from local information:
He essentially uses \square quadrisection" (in analogy to interval bisection). The resulting approx-
imating function is in general not convex, and the bound on the global error could only be shown



G�unter Rote: The Sandwich Algorithm for Convex Approximation 19

to be O(logn=n), as opposed to a rate of O(1=n) for optimal approximations. It is open whether
O(logn=n) is the true worst-case bound for that algorithm.

Gruber's result [1991] which was mentioned in the introduction holds in arbitrary dimensions:
Essentially, it implies that one can evaluate the function on a set of points which form a \regular grid",
and the resulting approximation will be asymptotically optimal if the function is twice continuously
di�erentiable.

A bivariate extension of the Sandwich algorithm with the maximum error rule has been im-
plemented and visualized (see Fruhwirth [1991]). Fruhwirth also discusses implementation issues,
data structure representations, and he reports some numerical experience with tricriteria network

ow problems. Khang and Fujiwara [1989] essentially use the maximum error rule as a method for
�nding all vertices of a higher-dimensional polytope which is given by linear inequalities.

Optimal Sandwich algorithms. The Sandwich algorithm acquires information about the func-
tion to be approximated step by step, it does not \see" the whole function. Therefore, it makes no
sense to ask for optimality of the resulting approximation in the traditional meaning, with as few
points as possible. However, the following type of question would still make sense:

Given an initial Sandwich approximation and a number n, what is the best strategy to
choose partition points so that the worst possible error after n iterations becomes as small
as possible?

In other words, we ask for the best possible performance guarantee. Already for small values of n,
this problem looks far from trivial. Even if the starting approximation is completely symmetric, and
we are allowed to query the function at n = 2 additional points, it is hard to �nd the best choice
for the �rst partition point. The situation is similar to the Fibonacci search algorithm for �nding a
minimum of a unimodal function, where the best search point is not the midpoint.

The proper setting for these questions would be the framework of informational complexity
(cf. the monographs of Traub, Wasilkowski, and Wo�zniakowski [1988], Novak [1988], or Traub and
Wo�zniakowski [1980]). Although optimization problems for convex functions have received a great
deal of attention (cf. Nemirovsky and Yudin [1983]), problems of approximating convex functions
have not been investigated in this context so far.

Acknowledgements

I thank Rainer E. Burkard and Horst Hamacher for the discussions initiating this work, and I thank
Emo Welzl for pointing out the possibility of duality between the maximum error rule and the chord
rule, which made it possible to eliminate one of two independent convergence proofs.

References

Yash P. Aneja and K. P. K. Nair [1979]

Bicriteria transportation problem, Management Science 25, 73{78.

Archimedes

Quadratura parabolae, in: J. L. Heiberg (ed.): Archimedis opera omnia, vol. II, B. G. Teubner, Leipzig

1913, pp. 261{315.

Vladimir Igorevi�c Arnol
0

d [1978]

Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, Berlin, Heidelberg.

Carl B. Boyer [1968]

A history of mathematics, Wiley.

Rainer E. Burkard, Horst Hamacher, and G�unter Rote [1992]

Sandwich approximation of univariate convex functions with an application to separable convex program-

ming, Naval Research Logistics 38, 911{924.

A. Cantoni [1971]

Optimal curve �tting with piecewise linear functions, IEEE Transactions on Computers C-20, 59{67.



G�unter Rote: The Sandwich Algorithm for Convex Approximation 20

Richard Cole and Chee Keng Yap [1987]

Shape from probing, J. Algorithms 8, 19{38.

Herbert Edelsbrunner [1987]

Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin etc.

Rudolf Fleischer, Kurt Mehlhorn, G�unter Rote, Emo Welzl, and Chee Yap [1990]

On simultaneous inner and outer approximation of shapes, in: Proceedings of the Sixth Annual Sym-

posium on Compututational Geometry, Berkeley, California, June 6-8, 1990, Association for Computing

Machinery, pp. 216{224.

Rudolf Fleischer, Kurt Mehlhorn, G�unter Rote, Emo Welzl, and Chee Yap [1992]

Simultaneous inner and outer approximation of shapes, Algorithmica 8, 365{389,

H. Freeman and R. Shapiro [1975], Determining the minimum-area encasing rectangle for an arbitrary closed

curve, Communications of the ACM 18, 409{413.

Bernd Fruhwirth [1991]

Approximation of convex functions and multicriteria linear programs, dissertation, Technische Universit�at

Graz, Institut f�ur Mathematik, August 1991.

Bernd Fruhwirth, Rainer E. Burkard, G�unter Rote [1989]

Approximation of convex curves with application to the bicriteria minimum cost 
ow problem, European

Journal of Operational Research 42, 326{338.

Peter M. Gruber [1983]

Approximation of convex bodies, in: Peter M. Gruber and J�org M. Wills (eds.): Convexity and its

applications, Birkh�auser, Basel, Boston 1983, pp. 131{162.

Peter M. Gruber [1991]

Asymptotic estimates for best and stepwise approximation of convex bodies I, manuscript, Technische

Universit�at Wien, Abteilung f�ur Analysis, submitted for publication.

Peter M. Gruber [1992]

Aspects of approximation of convex bodies, chapter 1.10 in: Peter M. Gruber and J�org M. Wills (eds.):

Handbook of Convex Geometry, vol. A, North-Holland, Amsterdam, New York, Oxford, Tokio 1992,

pp. 319{345.

Peter M. Gruber and Petar Kenderov [1982]

Approximation of convex bodies by polytopes, Rendiconti Circ. Mat. Palermo, Serie II, 31, 195{225.

Hiroshi Imai and Masao Iri [1986]

An optimal algorithm for approximating a piecewise linear function, J. Information Processing 9, 159{

162.

Hiroshi Imai and Masao Iri [1988]

Polygonal approximations of a curve | formulations and algorithms, in: Godfried T. Toussaint (ed.):

Computational morphology | a computational geometric approach to the analysis of form, North-

Holland, Amsterdam, New York 1988, pp. 71{86.

Do Ba Khang and Okitugu Fujiwara [1989]

A new algorithm to �nd all vertices of a polytope, Oper. Res. Lett. 8, 261{264.

Yoshisuke Kurozumi and Wayne A. Davis [1982]

Polygonal approximation by the minimax method, Computer Graphics and Image Processing 19, 248{

264.

John S. Lew and Donald A. Quarles [1989]

Optimal inscribed polygons in convex curves, Amer. Math. Monthly 96, 886{902.

George Martelli [1962]

Jemmy Twitcher | A Life of the Fourth Earl of Sandwich, 1718{1792, Jonathan Cape, London.

D. E. McClure and R. A. Vitale [1975]

Polygonal approximation of plane convex bodies, J. Math. Anal. Appl. 51, 326{358.

Josef S. M�uller [1992]

Step by step approximation of plane convex bodies, Archiv der Mathematik (Basel) 58, 606{610.



G�unter Rote: The Sandwich Algorithm for Convex Approximation 21

Arkadii Semenovi�c Nemirovsky and David Borisovi�c Yudin [1983]

Problem Complexity and Method E�ciency in Optimization, Wiley, Chichester, New York, Brisbane,

Toronto, Singapore.

Hartmut Noltemeier [1970]

Sensitivit�atsanalyse bei diskreten linearen Optimierungsproblemen, Lecture Notes in Operations Research
and Mathematical Systems 30, Springer-Verlag, Berlin, Heidelberg, New York.

Erich Novak [1988]

Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349,

Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.

Franco P. Preparata and Michael Ian Shamos [1985]

Computational Geometry: an Introduction, Springer-Verlag, New York.

Urs Ramer [1972]

An iterative procedure for the polygonal approximation of plane curves, Computer Graphics and Image
Processing 1, 244{256.

R. Tyrrell Rockafellar [1970]

Convex Analysis, Princeton University Press, Princeton.

G�unther Ruhe [1988]

Fl�usse in Netzwerken | Komplexit�at und Algorithmen, Dissertation B, Technische Hochschule Leipzig,

Sektion Mathematik und Informatik.

G�unther Ruhe [1991]

Algorithmic Aspects of Flows in Networks, Kluwer, Dordrecht.

G�unther Ruhe and Bernd Fruhwirth [1990]

"-optimality for bicriteria problems and its application to minimum cost 
ows, Computing 44, 21{34.

Steven S. Skiena [1989]

Problems in geometric probing, Algorithmica 4, 599{605.

Gy�orgy Sonnevend [1983]

An optimal sequential algorithm for the uniform approximation of convex functions on [0; 1]
2
, Appl.

Math. Optim. 10, 127{142.

Gy�orgy Sonnevend [1984]

Sequential algorithms of optimal order global error for the uniform recovery of functions with monotone

(r� 1) derivatives, Analysis Mathematica 10, 311{335.

J. F. Traub, G. W. Wasilkowski, and H. Wo�zniakowski [1988]

Information-Based Complexity, Academic Press.

J. F. Traub and H. Wo�zniakowski [1980]

A General Theory of Optimal Algorithms, Academic Press.

Dr. G�unter Rote
Technische Universit�at Graz
Institut f�ur Mathematik
Steyrergasse 30
A-8010 Graz, AUSTRIA

Electronic mail: rote@ftug.dnet.tu-graz.ac.at.


