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Abstract

The special case of the Euclidean Traveling Salesman Prob-
lem, where the n given points lie on a small number (N) of
parallel lines in the plane, is solved by a dynamic programming
approach in time nN , for �xed N, i. e., in polynomial time. This
extends a result of Cutler (1980) for 3 lines. Such problems arise
for example in the fabrication of printed circuit boards, where
the distance traveled by a laser which drills holes in certain places
of the board should be minimized.

The parallelity condition can be relaxed to point sets which lie
on N \almost parallel" line segments. We give a characteriza-
tion of the allowed segment con�gurations by a set of forbidden
subcon�gurations.
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1. Introduction

The Planar Traveling Salesman Problem is to �nd a closed curve through n given points
in the plane (a tour) having shortest possible length. This problem is known to be NP-
complete (Papadimitriou [1977], Itai, Papadimitriou, and Szwarc�ter [1982], cf. also John-
son and Papadimitriou [1985]). Therefore it makes sense to look for classes of the problem
where solutions can be found in polynomial time. In the special case which we consider,
the points lie on a small number of parallel lines. We present a dynamic programming
algorithm for such problems. For a �xed number of lines, the algorithm is polynomial.
(The exponent of the polynomial time bound is the number of lines.) Such problems arise
in practical applications, for example, in the manufacturing of printed circuit boards and
related devices. Nevertheless, since the high running times are rather high, the algorithm
seems to be of theoretical interest only.

Our algorithm is an extension of an algorithm by Cutler [1980] for three parallel lines.
(For two lines, the problem is trivial.) Cutler also considered the Traveling Salesman Path

Problem. A similar but easier special case was considered by Ratli� and Rosenthal [1983]:
the problem of order-picking in a rectangular warehouse. These authors also used the
dynamic programming paradigm for their problem and obtained a linear-time algorithm.
Cornu�ejols, Fonlupt, and Naddef [1985] extend the result of Ratli� and Rosenthal to the
Steiner Traveling Salesman Problem for arbitrary undirected series-parallel graphs. In the
Steiner Traveling Salesman Problem, we look for a closed path which visits each of a given
subset of the vertices at least once. The algorithm takes linear time.

Another similar algorithm was given in Gilmore, Lawler, and Shmoys [1985], section 15,
for the Traveling Salesman Problem with limited bandwidth. That algorithm also has
linear running time (for �xed bandwidth).

Cutler's N-line Traveling Salesman Problem has recently been generalized in a di�erent
direction by De��neko, van Dal, and Rote [1994]. They considered the problem where the
given points lie on the boundary of a convex polygon and on one additional line segment
inside this polygon. Clearly, this class of problems contains the 3-line Traveling Salesman
Problem as a special case. Moreover, they improved the complexity from O(n3) to O(n2).y

Our condition that the lines are parallel can be relaxed, and the algorithm can be applied
to points on \almost parallel" lines, which still have the same combinatorial properties with
respect to shortest tours.

In the next section we state the exact condition which the lines must ful�ll in order that
our algorithm is applicable. A characterization of such sets of line segments by forbidden

y A common generalization of the N-line Traveling Salesman Problem and the convex-hull-
and-line Traveling Salesman Problem was considered by De��neko and Woeginger [1996]:
the convex-hull-and-k-line Traveling Salesman Problem, which has k parallel (or \almost
parallel", see the following paragraph) line segments inside the convex hull, whose carrying
lines intersect the convex hull in two common edges. The time bound is O(nk+2), which
corresponds to the time bound in this paper.
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sub-con�gurations is deferred to section 6, since it is somewhat peripheral to the main
course of the paper. In section 2 we continue by stating one simple but essential lemma
that follows from the conditions that we impose on the lines, and we discuss to what extent
these conditions are necessary for our algorithm. We also formulate the most elementary
facts about the Traveling Salesman Problem, and we de�ne the required notations. In
particular, we will de�ne what we mean by a partial solution.

In the third section we derive the main geometric lemma about optimal partial solu-
tions. In section 4, we then formulate a rather standard dynamic programming algorithm,
whose correctness is based on that lemma. Finally, in section 5, we analyze the time and
space complexity of the algorithm exactly. We can also deal with other metrics than the
Euclidean distance. This and other possible extensions and open problems are discussed
in the concluding section 7.

2. Elementary facts, de�nitions, and notations

A simple polygon is a polygon in which no two sides have a point in common except for
the common endpoint of two adjacent sides.

The following lemma is an immediate consequence of the triangle inequality:

Lemma 1. Unless all points lie on one line the optimal tour is a simple polygon having
the given points as vertices.

We consider the special case where the points lie on N lines, for a small number N � 2.
We shall assume in the rest of the paper thatN � 2, i. e., not all points lie on a straight line.
The algorithm we are going to present works for the case when the lines are parallel, but
also more generally when the points lie on N straight line segments ful�lling the following
condition:

� No segment is perpendicular to the x-axis.

� For every pair of segments which are not parallel: If we project the two
segments and the intersection of their carrying lines onto the x-axis, the
projection of the intersection lies always outside the projections of the two
segments, never on or between these projections (cf. �gure 1).

Of course, the x-axis can be an arbitrary line, but for de�niteness, we have chosen this
formulation.

This condition allows con�gurations of segments which are quite non-parallel, such as
the one shown in �gure 2a (the half-star) or �gure 2b (the zigzag). On the other hand,
the set of segments shown in �gure 3g (the 3-star) or 3e (the triangle) is forbidden. In
section 6 we will show that the allowable con�gurations of segments are precisely those
which do not contain a subcon�guration like the ones in �gure 3a{g).

This condition has several consequences:

i) The line carrying a segment does not intersect any other segment (cf. �gure 3b). In
particular the segments themselves do not intersect (cf. �gure 3a).

ii) It makes sense to speak of \left" and \right" with respect to points that lie on the
same segment.
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Figure 1.

Three line segments which ful�ll
the condition for allowed segments

iii) There is a linear ordering of the segments from top to bottom.

Henceforth we shall always assume that the lines are numbered from 1 to N from top
to bottom, and that the points on each line are numbered from left to right, from 1 to ni.

We are goint to exploit one main property that follows from these assumptions, which
we formulated in the following lemma. (The notation is already determined by the way
how we are going to use the lemma.)

Lemma 2. Let P be a simple polygon whose vertices are points of the given set. Let l

be the bottom-most line that contains a vertex of the polygon, and let k be the top-most

line that contains a vertex of the polygon (see �gure 4a.) Assume that P touches each of

the lines k and l in more than one point, and let Xk0 and B(k) denote the left-most and

right-most point of the polygon on line k, and similarly, de�ne the points Xl0 and B(l) on
line l. Then the cyclic sequence of these points around the polygon cannot be Xk0 , B(k),
Xl0 , B(l) (or the reverse order).

Proof: Assume that the cyclic order were as given above. Then the simple polygon P

together with parts of the lines k and l cound be extended to a planar embedding of the
complete bipartite graph K3;3, as shown in �gure 4b.z

We cannot relax the condition for allowed segment con�gurations, because then we would
not have the ordering of the lines from top to bottom and the consistent ordering of the
points from left to right, and it is not obvious how to even formulate an analog of the
above properties or of lemma 2.

z A di�erent proof of this lemma uses an argument of de Bruijn [1955] about sum of the
internal angles of P . (De Bruijn's original argument considered only parallel segments.)
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Figure 2. Allowed con�gurations

By a path on a set of points we mean an open polygonal line whose vertices are points
of the set.

The distance between two points X and Y is denoted by dist(X;Y ).

We are going to solve the Traveling Salesman Problem \from left to right", i. e., we
will consider partial solutions de�ned on subsets of points, and we want to extend these
solutions by adding more and more points on the right. The subsets of points which we
consider will now be de�ned.

Let (k1; : : : ; kN ) be an N-tuple of integers, 0 � ki � ni. P (k1; : : : ; kN ) is the set
consisting of the �rst ki points of every line. With respect to this sequence, the ki-th point
on line i (it exists only for ki > 0) is called the i-th boundary point, denoted by B(i). If
ki � 2, the (ki�1)-st point is denoted by B(i). Thus, P (k1; : : : ; kN ) contains the boundary
points and the points to their left.

When we look at a tour restricted to a subset P (k1; : : : ; kN ) of points, we will not get
a tour but rather a collection of paths. We want to extend such a partial tour by adding
points and edges on the right. Thus, we have to focus our interest on the interface between
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a) d) f)

g)e)

b)

c)

the triangle the 3-star

Figure 3. Forbidden con�gurations
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Figure 4a. The polygon P of lemma 2, and the self-intersection in lemma 3

the partial tour on P (k1; : : : ; kN ) and the rest of the tour. We shall see that we mainly
have to consider the situation near the boundary points, but we have to take care that we
don't add edges which connect two endpoints of the same path, forming a subtour which
cannot be extended to a complete tour. Thus, in order to know which edges can be added,
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Figure 4b. Extension of the simple polygon P to an embedding of K3;3

we have to classify the partial solutions according to the way how the paths connect the
boundary points.

Let S =
�
fi1; i01g; fi2; i02g; : : : ; fim; i0mg

	
be a collection of disjoint two-element subsets

of f1; : : : ;Ng.
For non-empty S we de�ne:

M(S; k1; : : : ; kN) =
the set of all collections T = fT1; : : : ; Tmg of m paths on the set P (k1; : : : ; kN),
where the j-th path extends between B(ij ) and B(i

0
j), for j = 1; : : : ;m, and every

point in P (k1; : : : ; kN ) is contained in a path.

In the case where some of the required B(ij ) (or B(i
0
j)) do not exist because kij = 0,

(or ki0j = 0) M(S; k1; : : : ; kN) is empty.

For S = ; we de�ne:
M(;;n1; : : : ; nN ) = the set of all tours through the given points.

M(;; 0; : : : ; 0) = the set consisting only of the \empty tour".

The length of T , denoted by length(T ), is the sum of the lengths of its paths.

The elements of the setsM(S; k1; : : : ; kN ) are called partial tours. We call a partial tour
cross-free if it consists only of paths that do not intersect themselves or each other or if
it is a tour which is a simple polygon or if it is the \empty tour". (A turn by 180� in a
path of T counts as self-intersection.) Lemma 1 could now be rephrased as saying that an
optimal tour is cross-free.

Figure 5a shows a cross-free element T of M(
�
f2; 4g; f3; 5g

	
; 3; 5; 4; 4; 4; 0). Figure 5b

shows that a set M(S; k1; : : : ; kN ) can contain no cross-free element at all. Thus, we do
not require the paths in a solution to be disjoint.

The notation S � fi1; j1g+ fi2; j2g is an abbreviation for
�
S n

�
fi1; j1g

	�
[
�
fi2; j2g

	
.



The N-line Traveling Salesman Problem | page 7

ss
ss
ss
ss

s
s
s
sline 1

line 2

line 3

line 4

ss
s

s
s s

line 1

line 2

line 3

line 4

line 5

line 6

s s s
s s s s

sss
s s s s s
s s s

s s
Figure 5a.

A cross-free partial solution of
M(
�
f2; 4g; f3; 5g

	
; 3; 5; 4; 4; 4; 0)

Figure 5b.

M(
�
f1; 3g; f2; 4g

	
; 2; 3; 3; 2)

contains no partial
solutions without crossings.

3. Properties of partial solutions

The following lemma states that an optimal partial tour in each setM(S; k1; : : : ; kN) must
contain some edge which is \close to the boundary" of the vertices in P (k1; : : : ; kN). This
will allow us to select the optimal partial tour in each set M(S; k1; : : : ; kN ) from a set of
few candidates which consist of a smaller optimal partial tour with an additional edge.

Lemma 3.

A) If T is a cross-free element of M(S; k1; : : : ; kN) and (k1; : : : ; kN) 6= (0; : : : ; 0) then T

contains one of the following edges:

(i) an edge (B(i); B(j)), for some i; j with 1 � i < j � N, and ki; kj > 0,
(a \boundary edge")

or

(ii) an edge (B(i); B(i)), for some i with 1 � i � N, where i is contained in a pair

of S.

B) A cross-free element of M(;;n1; : : : ; nN ) contains an edge (B(i); B(j)), where 1 �
i < j � N.

Example: The set of paths shown in �gure 5a contains a boundary edge between lines
1 and 2, and 3 edges of type (ii) on lines 3, 4, and 5.

Proof:

Since part B) is a special case of part A), we have to prove only the �rst part. We prove
it by contradiction, assuming that there is no edge of type (i) or (ii).

If i is contained in a pair of S the edge of T leaving B(i) must go to a di�erent line,
otherwise it would be of type (ii). If i is not contained in a pair of S and ki > 0 then there
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must be two edges in T incident with B(i), but only one of them can go to a point on the
same line, otherwise T would not be cross-free. Summarizing, we can say that for every
line i with ki > 0 there is an edge from the boundary point B(i) to some point Xi on some
other line f(i) 6= i with kf(i) > 0. Moreover, Xi is not a boundary point (Xi 6= B(f(i))
since we assumed that there is no boundary edge in T .

Now we construct the following polygonal trajectory, which consists alternately of two
types of edges (see �gure 6):

� of pieces of the N line segments (\segment edges"), and

� of edges of T (\across edges").

We choose some arbitrary i0 with ki0 > 0, and we start at the point Xi0 on line i1 :=
f(i0). Then we go to B(i1) along the line i1. Then we take the edge of T to Xi1 and set
i2 := f(i1). Then we go to B(i2), then to Xi2 on line i3 := f(i2), and so on.

tt

t

t t
tt

t t

t
t

t
t
t

line i3 := f(i2)

line i6

line i2 := f(i1)

B(i1)X0

line i1

Xi3 B(i4) line i4

line i5

line i7

Figure 6. The polygonal trajectory

Since there is only a �nite number of points the trajectory must intersect itself. Let Q
be the �rst point where this happens. We claim that the simple polygon P formed by the
trajectory between its �rst and second visit to Q consists alternately of pieces of segments
and pieces of edges of T . Since this is true by construction for the whole trajectory, we
just have to check the vicinity of Q: If the trajectory leaves Q for the �rst time along a
\segment edge" and enters Q for the second time along an \across edge", or vice versa,
the claim is true. Thus we only have to deal with the remaining two cases:
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� The trajectory leaves Q for the �rst time along an \across edge" (B(i);Xi) of T , and
it enters Q for the second time along another \across edge" (B(j);Xj ) of T . The only
possiblility how this could be consistent with the cross-free property of T is that Q is a
common endpoint of the two edges. Q cannot be Xi because the trajectory has to leave

Q via the edge (B(i);Xi), and similarly, Q cannot be B(j) because the trajectory enters

Q via the edge (B(j);Xj ). The only remaining possibility, Q = Xj = B(i), is excluded
because a point Xj is never a boundary point.

� The trajectory leaves Q for the �rst time along a \segment edge" (Xik ; B(ik+1)), and it
enters Q for the second time along a \segment edge" (Xil ; B(il+1)). Two di�erent line
segments never cross, and therefore the two edges must lie on the same line ik+1 = il+1.
In this case, the point Q, which equals Xik , is redundant as a vertex of P , and the claim
is again true.

Now we can apply lemma 2: Let k = f(k0) and l = f(l0) be the top-most and bottom-
most lines that are used by P (�gure 4a). As one traverses P in the direction of the
trajectory, one visits B(k) immediately after Xk0 and after a while Xl0 and immediately
afterwards B(l), and then after a while one returns to Xk0 . But this contradicts lemma 2.
(If Q lies on line k or on line l, Q might have to take the place of Xk0 or Xl0 in this
argument.)

When specialized to the case N = 3, lemma 3B is Cutler's \Triangle Theorem", and
lemma 3A corresponds to his \� Theorem" (Cutler [1980], section 4).

Lemma 4.

A) Let T be a shortest cross-free element of M(S; k1; : : : ; kN ) (S 6= ;). Then at least one

of the following four cases holds (see �gure 7):

(i) (For some i 6= j, T contains an edge (B(i); B(j)); ki; kj > 0:)

a) fi; jg 2 S:

length(T ) = dist(B(i); B(j)) + length(T 0),

where T 0 2M(S � fi; jg ; k1; : : : ; ki � 1; : : : ; kj � 1; : : : ; kN).

b) fi; qg 2 S for some q, and j is not contained in a pair of S:

length(T ) = dist(B(i); B(j)) + length(T 0),

where T 0 2M(S � fi; qg + fj; qg ; k1; : : : ; ki � 1; : : : ; kN ).

c) neither i nor j is contained in a pair of S:

length(T ) = dist(B(i); B(j)) + length(T 0),

where T 0 2M(S �fp; qg+ fi; pg+ fj; qg ; k1; : : : ; kN ) and fp; qg is some

arbitrary pair of S.

(ii) (For some i, T contains an edge (B(i); B(i)); ki � 2, and i occurs in S:)

d) length(T ) = dist(B(i); B(i)) + length(T 0),

where T 0 2M(S; k1; : : : ; ki � 1; : : : ; kN).



The N-line Traveling Salesman Problem | page 10

ss
ss
ss
ssa)

ss
ss
ss
ssb)

ss
ss
ss
ssc)

ss
ss
ss
ssd)

s
s
s
sp

i

j

q

i

j

q

i

j

i

Figure 7. The four possible cases of lemma 4

B) Let T be a shortest simple polygon in M(;;n1; : : : ; nN ). Then for some i < j, T

contains an edge (B(i); B(j)), and we have:

length(T ) = dist(B(i); B(j)) + length(T 0),

where T 0 2M(
�
fi; jg

	
;n1; : : : ; nN).

In all cases, T 0 is a cross-free element of the respective set.

Proof: The lemma follows by considering in each case the structure of the partial solution
T 0 which is obtained from T by removing the edge whose existence is implied by the
previous lemma. In case (i), the case that i and j are in di�erent pairs of S cannot occur.
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4. The algorithm

We can now set up a dynamic programming recursion corresponding to the equations in
lemma 4 in a straightforward way, involving variables d(S; k1; : : : ; kN ) corresponding to
the sets M(S; k1; : : : ; kN ).

The starting value of the recursion is d(;; 0; : : : ; 0) := 0.

Let S =
�
fi1; i01g ; fi2; i02g ; : : : ; fim; i0mg

	
and let l1; : : : ; lN�2m be the indices that do

not occur in a pair of S, in some �xed order. Then:

If S 6= ; and kij = 0 or ki0j = 0 for some 1 � j �m, then we set:

d(S; k1; : : : ; kN ) :=1:

Otherwise we set:

d(S; k1; : : : ; kN ) := min f�a;�b1;�b2;�c;�d1;�d2g ;

where

�a := min
�
dist(B(ij ); B(i

0
j)) + d(S�fij ; i0jg ; k1; : : : ; kij�1; : : : ; ki0j�1; : : : ; kN )

�� 1 � j � m
	

�b1 := min
�
dist(B(i0j); B(ls)) + d(S�fij ; i0jg+ fij ; lsg ; k1; : : : ; ki0j�1; : : : ; kN)

��
1 � j � m; 1 � s � N�2m

	
�b2 := min

�
dist(B(ij ); B(ls)) + d(S�fij ; i0jg+ fi0j ; lsg ; k1; : : : ; kij�1; : : : ; kN )

��
1 � j � m; 1 � s � N�2m

	
�c := min

�
dist(B(ls); B(lt)) + d(S�fij ; i0jg+ fij ; lsg+ fi0j ; ltg ; k1; : : : ; kN )

��
1 � s; t � N�2m; s 6= t; 1 � j �m

	
�d1 := min

�
dist(B(ij ); B(ij )) + d(S; k1; : : : ; kij�1; : : : ; kN )

�� 1 � j �m; kij � 2
	

�d2 := min
�
dist(B(i0j); B(i

0
j)) + d(S; k1; : : : ; ki0j�1; : : : ; kN)

�� 1 � j �m; ki0j � 2
	

(The minimum of an empty set is always taken to be1. This ensures that d(;; k1; : : : ; kN )
is 1 unless k = (0; : : : ; 0).)

Finally, as an exception to the above rule:

d(;;n1; : : : ; nN ) := min
�
dist(B(i); B(j)) + d(

�
fi; jg

	
;n1; : : : ; nN)

�� 1 � i < j � N
	
:

We have to establish some order in which these recursions can be computed. We could
for example compute the d(S; k1; : : : ; kN ) in increasing lexicographic order of (k1; : : : ; kN).
For equal (k1; : : : ; kN ), the values with larger cardinality of S are computed �rst. Another
possibility would be to compute them in increasing order of

P
ki � jSj, which is equal to

the number of edges in the elements of M(S; k1; : : : ; kN ).

Example: N = 5; (aij denotes the j-th point on line i):



The N-line Traveling Salesman Problem | page 12

d(
�
f1; 3g

	
; 1; 3; 5; 0; 7) = min

n
dist(a11; a35) + d(

�	
; 0; 3; 4; 0; 7); (a)

dist(a11; a23) + d(
�
f2; 3g

	
; 0; 3; 5; 0; 7); (b)

dist(a11; a57) + d(
�
f3; 5g

	
; 0; 3; 5; 0; 7); (b)

dist(a23; a35) + d(
�
f2; 3g

	
; 1; 3; 4; 0; 7); (b)

dist(a35; a57) + d(
�
f3; 5g

	
; 1; 3; 4; 0; 7); (b)

dist(a23; a57) + d(
�
f1; 2g ; f3; 5g

	
; 1; 3; 5; 0; 7); (c)

dist(a23; a57) + d(
�
f1; 5g ; f2; 3g

	
; 1; 3; 5; 0; 7); (c)

dist(a35; a34) + d(
�
f1; 3g

	
; 1; 3; 4; 0; 7)

o
(d)

The �rst line, corresponding to case (a), can be omitted in this case sinceM(;; 0; 4; 5; 0; 7)
is empty and d(;; 0; 4; 5; 0; 7) =1.

Lemma 5. If M(S; k1; : : : ; kN ) 6= ;, then:

length of the

shortest element in

M(S; k1; : : : ; kN )
� d(S; k1; : : : ; kN ) �

length of the shortest

cross-free element in

M(S; k1; : : : ; kN )

Proof:

The left inequality is true since d(S; k1; : : : ; kN ) is always the length of some element
fromM(S; k1; : : : ; kN), and the right inequality follows from lemma 4 by induction on the
recursion.

Since for M(;;n1; : : : ; nN ) the left and right sides of lemma 5 are equal (by lemma 1)
we get

Theorem 1. d(;;n1; : : : ; nN ) is the length of the shortest tour.

Remark: Some impossible cases could be excluded from the recursion. For example, if
jSj = 1 then case (a) need not be considered (like in the previous example) except at the
very beginning. However, this would not reduce the running time substantially except for
very small N .
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5. Complexity analysis

Let us now analyze the complexity of the algorithm, both as regards space and time. Let
PN denote the number of di�erent sets S, i. e., the number of sets of disjoint unordered
pairs of f1; : : : ;Ng. If we regard the pairs in such a set S as the cycles of a permutation,
it is easy to see that PN equals the number of permutations of N elements whose square
is the identity, or equivalently, which are equal to their own inverse.

The numbers PN can be computed by the recursion:

PN+1 = PN +NPN�1 (N � 1) (1)

from the start values P 0 = P 1 = 1. This recursion was given in Rothe [1800], p. 282. It
can be proved by splitting the PN+1 sets S into those where the element N + 1 is not
contained in a pair and into those where it forms a pair with one of the N other elements.
(The very same recursion, but with di�erent start values, occurs in Gilmore, Lawler, and
Shmoys [1985], p. 138, where it describes the number of equivalence classes of partial tours
for the bandwidth-constrained Traveling Salesman Problem.)

The following table shows the �rst few values of PN : (The meaning of the last column
will be explained later.)

N PN TIME0(N)

1 1 0
2 2 3
3 4 15
4 10 72
5 26 300
6 76 1;290
7 232 5;418
8 764 23;520
9 2;620 102;672
10 9;496 461;700
11 35;696 2;107;380
12 140;152 9;876;768
13 568;504 47;127;600

Chowla, Herstein, and Moore [1951] proved the following asymptotic expression for PN :

PN �
�
N

e

�N=2

e
p
N 1

4
p
4e
:

Very roughly, PN is
p
N ! . A more exact approximation with additional terms of higher

order was proved by Moser and Wyman [1955] (cf. also Knuth [1973], pp. 65{67).
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The storage requirement for the algorithm is now

PN �
NY
i=1

(ni + 1) :

Thus, for �xed N , the storage requirement is

O

 
NY
i=1

(ni + 1)

!
= O

 
NY
i=1

ni

!
= O

�
nN
�
;

if we denote the total number of points by n =
PN

i=1 ni.

If n is �xed then the maximum of the left side in the above equation is achieved for
ni = n=N ; thus, using the inequality ni + 1 � 2ni, the constant of the O-notation in the
expression O(nN ) is at most

� 2

N

�N
� PN =

� 2

N

�N�N
e

�N=2
e
p
N 1

4
p
4e

= O

�
1

(N=4)N=2
�

1

eN=2�
p
N

�
;

which decreases quite fast as N increases.

For analyzing the time complexity, let us now establish the complexity of one step of the
recursion: If S containsm pairs, then there are at mostm, 2m(N�2m), (N�2m)(N�2m�
1)m, and 2m terms corresponding to cases (a), (b), (c), and (d), respectively. Therefore,
the total number of terms which are necessary for computing d(S; k1; : : : ; kN) is the sum
of these four expressions, which is m(3 +N+N2) + m2(�4N� 2) + 4m3:

Let PN
m denote the number of sets S containing exactly m disjoint unordered pairs of

f1; : : : ;Ng. It is equal to the number of permutations withm cycles of length 2 and N�2m
cycles of length 1. Therefore, we have

PN
m =

N !

2mm! (N� 2m)!
; for 0 �m � N=2: (2)

Neglecting the boundary cases, the time complexity is thus

TIME(N) = TIME0(N) �

 
NY
i=1

(ni + 1)

!
;

where TIME0(N), the time for evaluating d(S; k1; : : : ; kN) for all sets S for some �xed
N-tuple (k1; : : : ; kN ), is given as follows:

TIME0(N) =
X
m

PN
m �

�
m(3 +N+N2) + m2(�4N� 2) + 4m3

�
: (3)
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(By observing that PN
m = 0 for m < 0 or m > N=2, we may simplify matters by letting

the summation index m vary over all integers.)

The terms involving the variable m in this sum can be eliminated by using the following
formulas, which follow directly from (2):

PN
m m =

N(N�1)
2

PN�2
m�1

PN
m m(m� 1) =

N(N�1)(N�2)(N�3)
4

PN�4
m�2

PN
m m(m� 1)(m � 2) =

N(N�1)(N�2)(N�3)(N�4)(N�5)
8

PN�6
m�3:

After this we can carry out the summation over m, using the identity PN =
P

m PN
m , and

express TIME0(N) in terms of N , PN�2, PN�3, : : : , and PN�6. Repeated application of
the recursion (1) leads then to the following short expression:

TIME0(N) =
N(N� 1)

2

�
PN + PN�2� :

(The calculation is carried out in detail in the original version of this technical report
Rote [1988].) The values of TIME0(N) are tabulated in the above table.

Thus, for �xed N , the time complexity is again

O

 
NY
i=1

(ni + 1)

!
= O

 
NY
i=1

ni

!
= O

�
nN
�
:

Arguing as in the case of the storage requirement, we �nd that the constant of the
O-notation in the expression O(nN ) is at most�

2

N

�N

�
�
N

2

��
PN + PN+2

�
= O

 �
2

N

�N

N2

�
N

e

�N=2

e
p
N

!

= O

�
1

(N=4)N=2�2
�

1

eN=2�
p
N

�
:

We summarize our results in the following

Theorem 2. The N-line Traveling Salesman Problem with n1, n2, : : : , nN points on

the lines 1, 2, : : : , N can be solved in space

O

 
PN �

NY
i=1

(ni + 1)

!

and time

O

 
PN �N2

NY
i=1

(ni + 1)

!
;

where the numbers PN are de�ned by the recursion (1). For �xed N, and for a total

number of n points, the space and time complexities are thus

O
�
nN
�
:
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6. Characterization of \quasi-parallel" line segments

In section 2, the following property was required of a set of line segments in order that our
algorithm could be applied:

No segment is perpendicular to the x-axis, and for any two segments which are not
parallel the projection of the intersection of the two lines carrying the segments
onto the x-axis lies always outside the projections of the two segments.

We call a set of line segments quasi-parallel, if they can be rotated in such a way that
this property is ful�lled, in other words, if an appropriate x-axis can be found. In this
section, we give a characterization of this property.

First we have to introduce some terminology:

By an orientation of a line we mean an assignment of the label \left" to one direction
of the line and the label \right" to the other direction. An oriented line is a line together
with an orientation. When we draw an oriented line the orientation will be indicated by
an arrow pointing in the \right" direction.

By an oriented segment we mean a segment a with an orientation of the line g(a) carrying
the segment.

When we project an oriented line on another line which is not perpendicular to it we
get a corresponding orientation of the second line in a natural way.

Now we call two oriented segments a and b oriented consistently if the intersection of
the carrying lines g(a) and g(b) either lies both on the left side of a on g(a) and on the left
side of b on g(b) or on the right side of a resp. b on both g(a) and g(b). (In case a and b

are parallel, the orientations have to be the same in order to be consistent.)

We can now rephrase the above de�nition of quasi-parallelness in the terminology just
introduced as follows:

There is an oriented line l (this line corresponds to the x-axis in the previous
formulation), not perpendicular to any segment, such that for the corresponding
orientations of the segments obtained by projection from the orientation of l, any
pair of non-parallel segments a and b is oriented consistently.

Theorem 3. Let a set of at least 3 segments be given, and let g0 be any �xed segment

of this set. Then the set of segments is quasi-parallel if and only if every subset of three

segments containing g0 is quasi-parallel.

Proof: First of all, it is clear that consequence (i) of section 2 holds, i. e., the line carrying
a segment does not intersect any other segment, and in particular, the segments themselves
do not intersect.

Now �x any orientation of g0. Then there is only one possible orientation of every other
segment which is consistent with the orientation of g0.

We have to show two things:

(a) There is an oriented line l such that the orientations thus constructed correspond
by projection to the orientation of l.
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(b) Every pair of non-parallel segments a and b (di�erent from g0) is also oriented
consistently.

For proving (b), let's assume that two segments a and b are not oriented consistently.
Then the orientation of b resulting from the orientation of g0 is di�erent from the orientation
of b resulting from the orientation of a resulting from the orientation of g0; thus, even for
the 3-set fg0; a; bg, it would be impossible to orient the segments consistently.

Now we still have to prove (a). For each segment the possible oriented directions of l
form an open half-circle (cf. �gure 8). We know that the half-circle belonging to g0 has
a non-empty intersection with every two other half-circles. We intersect the other half-
circles with the half-circle belonging to g0 and consider only the results, as parts of the
half-circle belonging to g0, or, equivalently, as intervals. We know that any two of these
intervals have a non-empty intersection. From this it follows, by Helly's Theorem, that
the intersection of all intervals is non-empty. Therefore there is a possible orientation of l
yielding the constructed orientations of the segments.
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the possible directions of l

given direction of a segment

Figure 8.

The possible directions of l for
a given direction of a segment

An O(N2)-algorithm for testing whether N line segments are quasi-parallel follows in a
straightforward manner. It is possible to reduce this time to O(N logN), but since this is
by far surpassed by the complexity of solving the problem, this is not so interesting.

By a simple case analysis, one can determine all con�gurations of three or fewer line
segments which are not quasi-parallel, and thus one obtains the following corollary:

Corollary. A set of segments is quasi-parallel if and only if it does not contain a subset

of segments which looks like one of the seven� types of con�gurations in �gure 3.

� In the original version of this paper I had only six types of con�gurations. I thank

Gerhard Woeginger for pointing out that the con�guration in �gure 3c was missing.
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7. Conclusion

From a higher standpoint our approach to the N-line Traveling Salesman Problem can
be viewed in the following way: A partial tour was de�ned to be a certain subset of the
edges of a tour. We have grouped the partial tours into equivalence classes with respect to
the edge sets which can be added to complete the tour: Two partial tours T1 and T2 are
equivalent if, for all sets T 0, T1 [ T 0 is a tour if and only if T2 [ T 0 is a tour. This allowed
us to forget all partial solutions except the best one in each equivalence class. With little
e�ort, we have now been able to compute the best partial solution in each equivalence
class in a systematic way.

Exactly the same paradigm has been followed by Ratli� and Rosenthal [1983] in their
solution of the order-picking problem, and by Gilmore, Lawler, and Shmoys [1985] for the
bandwidth-limited problem.

It is in principle not di�cult to extend this approach to the Taveling Salesman Path

problem, which requires to �nd a shortest, not necessarily closed curve containing the
given set of points. It is necessary to modify the notion of a partial solution and to
establish a corresponding analog of lemma 3.

Our algorithm also applies to Traveling Salesman Problems in the plane with other
metrics than the Euclidean distance, for example the L1 metric (Manhattan metric) and the
L1 metric (maximum metric). These metrics are important for the class of manufacturing
problems that were mentioned in the introduction. In fact, the only property of the
Euclidean distance that we have used is the triangle inequality, which was necessary for
the cross-free property of lemma 1. It is clear that there is always an optimal tour such
that the corresponding polygon is a simple polygon, for any symmetric distance function
that ful�lls the triangle inequality. Thus, the only thing in the algorithm that has to be
changed is the computation of dist(X;Y ).

A question which we have not pursued so far is the following: Can our results be applied
to construct heuristic algorithms in cases when there is no set of few parallel straight
lines containing the points? One might only require that the points lie in the vicinity
of the lines; or one might reduce the number of partial solutions by excluding \unlikely"
sets P (S; k1; : : : ; kN ), whose boundary points are distributed in a wide range between the
left-most and the right-most extremes, thus speeding up the algorithm.
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