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Abstract

We study the problem how to draw a planar graph such that every
vertex is incident to an angle greater than π. In general a straight-
line embedding cannot guarantee this property. We present algorithms
which construct such drawings with either tangent-continuous biarcs or
quadratic Bézier curves (parabolic arcs), even if the positions of the ver-
tices are predefined by a given plane straight-line embedding of the graph.
Moreover, the graph can be embedded with circular arcs if the vertices
can be placed arbitrarily. The topic is related to non-crossing drawings of
multigraphs and vertex labeling.

1 Introduction

According to Fáry’s theorem [5], every (simple) planar graph can be realized as
plane straight-line embedding in the Euclidean plane. There is a vast literature
dealing with the question of efficiently finding plane straight-line embeddings
that fulfill certain (optimality) criteria. De Fraysseix, Pach and Pollack [4] and
Schnyder [15] proved that every planar graph with n vertices can be drawn on
a grid of size (n − 1) × (n − 1). The famous Koebe-Andreev-Thurston circle
packing theorem [1, 7, 17] states that every planar graph can be embedded in
a way such that its vertices correspond to interior disjoint disks, which touch
if and only if the corresponding vertices are connected with an edge, see also
[10, 2].

If we relax the condition that the given planar graph has to be simple, Fáry’s
theorem does not hold. The reason is that straight-line embeddings are not well
defined for loops, or multiple edges between two vertices. However, one can ask
how to draw planar multigraphs with loops crossing-free, where of course these
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drawings require more complex edge shapes. Possible, but still rather simple
candidates for such edges are polygonal chains, circular arcs, bi-arcs or splines.

A natural question is wheter every planar multigraph can be drawn with
circular arcs. Drawing multiple edges as circular arcs is no problem: an edge in
a non-crossing straight-line drawing can be perturbed to any number of close-
by circular arcs. Loops, however, require more space: The only circular arc
between a vertex and itself is a full circle through this vertex; thus, an angle
of π incident to this vertex must be free of other emanating arcs. (This angle
is then sufficient for any number of parallel loops.) This natuarlly leads to
the question of pointed drawings of simple graphs without loops. In a pointed
drawing of a graph the incident edges of each vertex emanate within an open
half plane.

Another potential application comes from drawing vertex labels. If the edges
incident to a vertex point in all directions, it might be hard to place a label close
to its vertex. Thus it is good to have some angular space without emanating
edges.

Haas et al. [6] showed that a planar graph has a plane pointed drawing with
straight-lines if and only if it is minimally rigid or a subgraph of a minimally
rigid graph. A simple example of a graph that has no plane pointed embedding
is the complete graph with four vertices.

Most recently, pointed drawings on the sphere have been studied by Gaiane
Panina to construct virtual hyperbolic polytopes [12]. Drawings on the sphere
can be used to describe the combinatorial structure of the normal cone of virtual
polytopes. If such a drawing is furthermore pointed, the virtual polytope is
hyperbolic. The construction of hyberbolic virtual polytopes disproved A.D
Alexandrov’s uniqueness conjecture for convex bodies [11].

Definitions. Throughout this paper, let G = (V,E) be a simple planar graph
without loops, with finite vertex set V and finite set of edges E. In this paper
we consider several types of plane embeddings F(G), all with some type of
differentiable curves as edges.

For an embedding F(G) we denote the embedding of a vertex v ∈ V by
F(v), and the embedding of an edge e ∈ E by F(e). An embedding gives us a
cyclic order of arcs leaving a vertex. The angle between two consecutive arcs is
defined as the angle between the corresponding tangent rays.

For simplification, and as there is no risk of confusion, in the figures we will
denote embedded vertices just by v instead of F(v).

Definition 1 (Pointedness). A vertex in the embedding F(G) is called pointed
if it is incident to an angle greater than π. If all vertices of a drawing are pointed
we call the drawing pointed.

For the special case of straight-line embeddings, this definition is identical
to the classic definition of pointedness, see [13, 14, 16].

Variants of the Problem. There are various incarnations of the problem
how to draw a planar graph pointed. As mentioned before we can ask the
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Figure 1: Embedding with a non-pointed vertex v1 and a pointed vertex v2.

question for different kind of edge shapes. We study as natural edge shapes:
circular arcs, tangent continuous biarcs and quadratic Bézier curves. Moreover
the quality of the pointedness is an issue. For example, can we guarantee a free
angular space around each vertex bigger than a given fixed angle larger than π?
For this stronger pointedness criterion we define the term ε-pointedness.

Definition 2 (ε-Pointedness). Let ε > 0 be a real number. A vertex in the
embedding F(G) is called ε-pointed if it is incident to an angle greater than
2π − ε. We call a drawing ε-pointed if every vertex is ε-pointed.

We can propose a stronger version of the pointed embedding problem. Given
a planar straight-line embedding Fs(G). Can we draw a pointed drawing with a
certain family of edge shapes without moving the points. We call an embedding
with this property a pointed redrawing. The advantage of a pointed redrawing
algorithm is clear, we can profit form the planar embedding and guarantee
additional optimality criteria (i.e. place all vertices on a linear grid).

Results. In Section 2 we consider the problem of pointed redrawings. We show
that every planar straight-line embedding Fs(G) can be redrawn pointed and
plane with Bézier curves as well as with tangent continuous biarcs. We also
disprove that this is always possible by using circular arcs as edges.

Section 3 then deals with pointed drawings of (abstract) planar graphs. We
prove that every planar graph can be drawn ε-pointed with Bézier curves, for
arbitrary small epsilon. We show that by using biarcs as edges, every planar
graph can be drawn such that for all vertices v, all incident edges share a
common tangent at v. This is maybe one of the most beautiful results in this
paper from an aesthetical point of view. Further we prove that every graph
can be embedded pointed and plane with circular arcs as edges. For pointed
embeddings with biarcs, Bézier curves or polygonal chains of length two, we
give an explicit tight bound for the number of edges that cannot be drawn as
straight-lines.

We summarize the results presented in this paper in Table 1. Note that
essentially all obtained embeddings can easily be constructed.
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edge shape problem instance answer

circular arcs pointed drawing possible, Theorem 3.3
pointed redrawing not possible, Theorem 2.3

tangent continuous ε-pointed drawing possible, Theorem 3.2
biarcs pointed redrawing possible, Theorem 2.2
quadratic ε-pointed drawing possible, Theorem 3.1
Bézier curves pointed redrawing possible, Theorem 2.1

Table 1: Results presented in this paper.

2 Pointed Redrawings

We start with the redrawing problem setting. Throughout this section we con-
sider a plane straight-line embedding as input of our problem instance. Let this
embedding be Fs(G).

Theorem 2.1. There exists a pointed embedding Fq(G) with quadratic Bézier
curves as edges such that Fq(v) = Fs(v) for all v ∈ V . Moreover, for every
v ∈ V the cyclic order of the edges incident to v in Fs(G) is the same as in
Fq(G).

Proof. Without loss of generality assume that in Fs(G) no two vertices have
identical x-coordinates or y-coordinates. Assume further, that the vertices are
sorted by y-coordinates in increasing order.

We construct the embedding Fq(G) vertex by vertex from bottom to top. In
each step we fix the embedding Fq(e) of all edges e incident to the considered
vertex vi. Let hi be the horizontal line through Fs(vi). The basic idea is to
redraw the edges incident to vi such that they all emanate from Fq(vi) strictly
on one side of hi (which obviously guarantees pointedness). More precisely, for
all but the first vertex we guarantee as an invariant that all drawn incident
edges emanate below the according line hi. As we never change an already
drawn edge, every vertex remains pointed throughout the whole construction.

We start with adding the edges incident to v1 as straight-lines. Because
Fs(v1) lies on the convex hull of Fs(G), by this Fq(v1) is pointed (and all
edges are emanating from Fq(v1) above h1). Additionally, every edge Fq(v1vj)
emanates from Fq(vj) strictly below hj .

When processing a vertex vi, i ≥ 2, all edges incident to a vertex vj , j < i,
have already been drawn (during the processing of vj). One can observe that
these edges emanate from Fq(vi) strictly below the horizontal line hi through
Fq(vi).

Let e1, . . . ek be the edges incident to vi that are not embedded yet and
have posivive slope in Fs(G) (the edges “leaving” Fs(vi) towards up and right).
Assume further that these edges are sorted by slope. Thus the edge e1 is the
“rightmost edge” (the one with the smallest slope). We process these edges in
increasing order. Let e = vivl be the current edge we wish to add. Due to our
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invariant we have the space to place a temporary point pm below the line hi,
such that the triangle spanned by Fq(vi), pm and Fq(vl) does not contain any
vertex or part of an edge (see Figure 2). We use the triangle Fq(vi)pmFq(vl)
as control polygon for a Bézier curve b. Since the convex hull of the control
polygon is empty, b does not intersect any of the already embedded edges in
Fq(G). Furthermore the line Fq(vi)pm is a tangent of b at Fq(vi) and enters
Fq(vi) from below. Likewise, pmFq(vl) is a tangent of b at Fq(vl) and enters
Fq(vl) from below. Thus, by embedding the edge vivl with b, the vertices vi

and vl remain pointed in Fq(G) and the invariant still holds.

vl

vi
pm hi

Figure 2: Construction of a plane pointed embedding where the edges are
quadratic Bézier curves.

In this manner we embed all edges to the right of Fq(vi) and then apply a
similar procedure for the edges emanating to the left of Fq(vi). After processing
all vertices in this way, we end with a pointed embedding Fq(G).

The technique used in the proof of Theorem 2.1 can be modified to show a
similar statement for (tangent continuous) biarcs due to the following observa-
tion.

Lemma 2.1. Consider a triangle spanned by three points p1,p2 and p3. There
exists a tangent continuous biarc connecting p1 with p3 that lies completely inside
the triangle. Furthermore the biarc is tangent to p1p2 at one end and tangent
to p3p2 at the other end.

Proof. Assume that the segment p1p2 is shorter than p2p3. We place a point p̃
on the segment p2p3 such that the length of p2p̃ is equals to the length of p1p2.
(see Figure 3).

Let l1 be the line perpendicular to p1p2 through p1 and let l2 be the line
perpendicular to p3p2 through p̃. The quadrilateral spanned by the intersection
point of l1 and l2, p1, p2, and p̃ is a kite. Thus, there exists a circular arc passing
through p1 and p̃ with center l1 ∩ l2. Since the angles of the kite at p1 and p̃
equals π

2 , the arc is tangent to p1p2 at p1 and to p2p̃ at p̃. Let this arc be the
first part of our biarc. The second part is given by the straight-line segment
p̃p3 (a degenerate circular arc). The biarc is tangent continuous because the

5



circular arcs are tangent in the meeting point p̃. Thus, we are able to construct
a biarc within the control polygon with the desired properties.

p1

p3

p2

l1l2

p̃

Figure 3: Embedding of an edge as a tangent continuous biarc in a triangle.

Theorem 2.2. There exists a pointed embedding Fb(G) with tangent continuous
biarcs as edges such that Fb(v) = Fs(v) for all v ∈ V . Moreover, for every v ∈ V
the cyclic order of the edges incident to v in Fs(G) is the same as in Fb(G).

Proof. We re-use the construction principle from the proof of Theorem 2.1.
Of course, whenever we have chosen an appropriate empty triangle for an edge,
instead of a Bézier curve, we place a tangent continuous biarc (from Lemma 2.1)
inside it. Note that, because of the different type of curve, the triangles occuring
throughout the construction will in general be different from the ones for the
Bézier curves. Regardless of this, all arguments for correctness are still valid.

We conclude this section with a negative result on pointed redrawings.

Theorem 2.3. There exist planar graphs G = (V,E) with straight-line em-
beddings Fs(G), for which there are no pointed plane embeddings Fc(G) with
circular arcs as edges such that Fc(v) = Fs(v) for all v ∈ V .

Proof. Consider the embedded plane straight-line star graph Fs(G) shown in
Figure 4(a), and let one of the tips of the star be vt. This vertex is incident to the
degree 5 vertex vc in the center. In order to obtain a plane embedding Fc(G), any
circular arc that is used to draw the edge vtvc has to pass through the narrow
passage between Fs(v1) and Fs(v2). Thus the possible space for embedding
this edge is bounded by the intersection of the two (open) disks defined by the
circumcircles of Fs(vt)Fs(v1)Fs(vc), and Fs(vt)Fs(v2)Fs(vc) respectively (its
boundary is drawn with dotted lines).

Because of the symmetry of Fs(G), the described situation occurs for each
of the 5 edges incident to vc. In order to make Fc(vc) pointed, we have to find
valid embeddings (circular arcs) for two consecutive of such edges, such that
their tangents at Fc(vc) span an angle larger than π. But the angle α between
the outer tangents of two neighboured regions is smaller than π, as can be seen
from Figure 4(b). Thus, there is no way to obtain a plane embedding Fc(G)
where Fc(vc) is pointed.
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vt

vc

v1

v2

vc

α

(a) (b)

Figure 4: Star example of a plane embedding that can not be drawn pointed
with circular arcs as edges.

Larger examples can be constructed easily. As long as a straight-line em-
bedding similar to Figure 4(a) is contained inside another embedding, a pointed
redrawing with circular arcs is impossible. Moreover, by adding more tips to the
star, the largest possible angle free of emanating edges can be made arbitrary
small.

3 Pointed Drawings

3.1 Pointed Drawings with Bézier curves and Biarcs

In the last section we restricted ourselves to a predefined placement of the
points, determined by a given plane straight-line embedding. If the location of
the vertices can be chosen arbitrarily, we get the following easy consequence of
Theorem 2.1.

Theorem 3.1. For any ε > 0 and any planar graph G, there exists an embed-
ding Fq(G) with quadratic Bézier curves where all vertices are ε-pointed.

Proof. Consider an arbitrary straight-line embedding Fs(G). In the proof of
Theorem 2.1 we showed a construction for a pointed embedding F ′

q(G), in which
all vertices point either to the bottom or to the top. Thus, by squeezing the
embedding Fs(G) in direction of the x-axis, the large angle on every vertex
increases. This modification produces no crossings. Moreover, every trans-
formed quadratic Bézier curve stays a quadratic Bézier curve (with respect to
the squeezed control polygon).
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By similar arguments, it is possible to apply the construction in the proof
of Theorem 2.1 in combination with Lemma 2.1 to an arbitrary straight-line
embedding Fs(G), obtaining an ε-pointed embedding Fb(G) with biarcs. How-
ever, in this case the argumentation is more involved, because squeezing a biarc
does not result in a biarc. Thus, instead of deforming the already constructed
embedding, we consider vertical double-wedges centered at every vertex, with
wedge angle ε. We have to squeeze the original embedding in direction of the
x-axis until all straight-line edges lie within these double-wedges. Further we
have to modify our invariant. For all vertices, all embedded edges have now to
emanate within one (upper or lower) half of the ε-double-wedge. By applying
the original approach with the adopted invariant on the squeezed graph, we
obtain an ε-pointed drawing with biarcs.

A disadvantage of these drawings (as well as of drawings obtained from the
construction in the proof of Theorem 3.1) is the bad aspect ratio of its bounding
box. For this reason, in the following we present a completely different approach
for constructing a nicer pointed drawing with biarcs.

Theorem 3.2. Every planar graph G = (V,E) has a pointed embedding Fb(G)
with tangent-continuous biarcs as edges such that Fb(G) is ε-pointed for any
ε > 0. Moreover, for every vertex v all edges incident to v share a common
tangent at Fb(v) in Fb(G). The directions of these tangents can be specified
independently for each vertex.

Proof. According to the Koebe-Andreev-Thurston circle packing theorem [1, 7,
17], there exists a straight-line embedding Fs(G) such that the vertices of v ∈ V
are embedded as the center points of disjoint disks. Moreover, two such disks
touch if and only if the corresponding vertices are connected by an edge in G.

We start with such an embedding of the graph. To get our embedding
Fb(V ) of the vertices by placing every vertex v ∈ V on an arbitrary point of the
boundary of the disk corresponding to v in Fs(G), avoiding touching points of
the disks.

Now consider an edge vivj ∈ E. For the embedded vertex Fb(vi) let ti be
the tangent through Fb(vi) to its disk Di. Furthermore, let pij be the touching
point of the two adjacent disks Di and Dj and let tij be the tangent to Di and
Dj through pij (see Figure 5). We draw a circular arc Ci from Fb(vi) to pij

inside Di, the center of Ci being the crossing of ti and tij . Equivalently we draw
an arc Cj from Fb(vj) to pij inside Dj , with center tj ∩ tij . We observe that
both arcs meet in pij with the same tangent (orthogonal to tij). Therefore the
concatenation of Ci and Cj gives a tangent continuous biarc. We take CiCj as
embedding for vivj and apply this construction for all edges in E.

It is left to show that the constructed embedding is non-crossing. Clearly,
a crossing of two biarcs could only appear within a disk of the circle packing.
Consider all circular arcs emanating from the embedded vertex Fb(vi) as de-
picted in Figure 6. All corresponding circles have their centers on ti and are
passing through Fb(vi), which lies on ti too. Thus, all (and any two of) these
circles intersect only in Fb(vi), and the constructed embedding is plane.

8



vi

vj

tij

ti

tj

pij

Dj

Di

Cj
Ci

Figure 5: Construction of a tangent-continuous biarc from two touching disks
Di, Dj .

Di

vi ti

pi,k1

pi,k2

pi,k3

Figure 6: The situation at a vertex vi that shows that the biarcs do not intersect.

All biarcs emanating form an embedded vertex Fb(vi) have a tangent or-
thogonal to ti. We can determine this tangent by placing the vertex vi on Ci

appropriately.

The above proof leaves some freedom to place the vertices on the boundaries
of the related disks. If in the embedding Fs(G) no two disk centers have the
same x-coordinate, we can place each vertex on the bottommost point of the
boundary of its disk. We then obtain a drawing where all vertices are pointed
downwards, see Figure 7 for an example. By this, both arcs of the edges bend
in the same direction. (There are no S-shaped biarcs.)

Another possibility is to place each vertex vi ∈ V farthest away from any
touching point of its disk Di. In this way we can guarantee the radius of any
circular arc inside Di to be at least Ri · tan π

2ki
, where Ri is the radius of Di,

and ki ≥ 2 is the degree of vi.
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Figure 7: Pointed embedding with biarcs as edges, constructed from a circle
packing.

3.2 Pointed Drawings with Circular Arcs

We continue with pointed drawings with circular arcs.

Theorem 3.3. Every planar graph G has a pointed embedding with circular
arcs as edges in which all vertices are pointed in the same direction.

We prove the theorem by the following discussion. Let us assume that no
two vertices in the embedding will get the same y-coordinate. Our drawing uses
only special types of circular arcs and triangles:

Definition 3 (upper horizontally tangent arc). Let p1 and p2 be two points,
where p1 has the larger y-coordinate. We call a circular arc between p1, p2 upper
horizontally tangent (short uht-arc) if it passes through p1 and p2 and it has a
horizontal tangent at p1.

Definition 4 (upper horizontally tangent triangle). We call a drawing of
a triangle upper horizontally tangent (short uht-triangle) if all of its edges are
drawn as uht-arcs.

Notice that for any two points the uht-arc is uniquely defined. Hence, for
every point triple the uht-triangle is unique. We aim at constructing a drawing
that contains uht-triangles only. We first introduce a drawing that will be
“almost” pointed, this means that every vertex is incident to an angle equal
or larger than π. In the following we restrict the straight-line edges to an
absolute slope less or equal 1. This guarantees that the uht-arcs are x-monotone.
We observe by the following lemmata that under certain assumption the uht-
triangles behave nicely.
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Lemma 3.1. Consider the uht-arc µ between p1 and p2. Let h1 be the horizontal
line through p1. Assume further that the absolute slope of p1p2 is smaller than
1. Then the angle at p1 between h1 and µ is twice as large as the angle at p1

between the p1p2 and h1.

Proof. The situation stated in the lemma is depicted in Figure 8. Let α be the
angle at p1 between h1 and p1p2. This angle is the alternate angle to the angle
at p2 between h2 and p2p1. On the other hand, p1p2pt is an isosceles triangle
and hence the angle between p1p2 and p1pt is α as well. Thus, the angle between
µ and p1p2 equals 2α.

p1

p2pt

h1

h2α

α
α

Figure 8: Construction used in the proof of Lemma 3.1.

Lemma 3.2. Consider three points p1, p2, p3 sorted by their x-coordinate. If

(i) the absolute slope of the line segments p1p2, p2p3 and p1p3 is smaller than
1, and

(ii) p2 lies below the line through p1 and p3, or p2 has the highest y-coordinate,
then

p1, p2, p3 span a non-crossing uht-triangle that is oriented in the same way as
the straight triangle p1p2p3.

Proof. We prove the lemma by an easy case distinction. Let y1, y2, y3 be the y-
coordinates of p1, p2, p3. We denote with hi the horizontal line passing through
pi and with aij the uht-arc between pi and pj . Without loss of generality we
assume that y1 < y3. Depending on the relative location of y2 we obtain three
cases. (see Figure 9).
Case 1 (y2 < y1): a13 and a23 cannot intersect since they touch at p3. The
other pairs of arcs have either disjoint ranges of x-coordinates or y-coordinates,
and hence cannot intersect.
Case 2 (y1 < y2 < y3): Again, a23 and a13 do not intersect since they touch
at p3. The arcs a12 and a23 are separated by the vertical line through p2 and
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therefore do not intersect either. Since p2 lies below the line segment p1p3, p2

must lie below the arc a13. Due to Lemma 3.1 we know that the intersection
between the tangent of a12 and h1 is twice as large as the intersection angle
between p1p2 and p1p3. It follows that a12 lies below a13 immediately to the
right of p1. Therefore, a12 and a13 cannot have another intersection (except
p1), because otherwise, since a12 ends below a13, they would have at least two
additional intersection points, which is impossible. Thus, the orientation of the
straight triangle coincides with the orientation of the associated uht-triangle.
Case 3 (y3 < y2): The uht-arcs a23 and a12 do not intersect since they are
separated by a vertical line that passes through p2. Similarly, the arcs a23

and a13 are separated by h3. For the remaining pair of arcs a12 and a13 we
apply again Lemma 3.1 and observe that a12 leaves p1 “above” a13. Since a12

terminates above a13 (namely at p2), it follows similarly as in case 2 that a12

and a13 do not intersect.

p1 p2

p3

p1

p2

p3

p1

p2
p3

(case 1) (case 2) (case 3)

Figure 9: The three cases discussed in Lemma 3.2.

We continue by constructing a straight-line embedding that allows to sub-
stitute its triangles by uht-triangles. The basic idea goes back to the paper of
De Fraysseix, Pach and Pollack [4].

Theorem 3.4 ([4]). A plane triangulated graph has a straight-line embedding
on a (2n− 4)× (n− 2) grid.

By a slight extension of the inductive procedure which is used to prove
Theorem 3.4 we can prove the following

Theorem 3.5. A plane triangulated graph has a straight-line embedding on a
(4n− 9)× (2n− 4) grid, with the following additional properties:

(a) No edge is vertical.

(b) No edge is horizontal.

(c) In each triangle face, the vertex with the middle x-coordinate is either the
vertex with the highest y-coordinate, or it lies below the opposite edge.

Proof. We first review the incremental construction of [4], see Figure 10. It
inserts the vertices in a special (so-called canonical) order, such that the next
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Gk

pk+1

Gk

Gk

(a)

(b)

(c)

pk+1

pk+1

Figure 10: (a–b) The incremental step in the straight-line drawing algorithm
of de Fraysseix, Pach and Pollack [4], and (c) the modification that prevents
vertical edges.

vertex pk+1 that is inserted can be drawn on the outer face of the graph Gk

induced by the first k vertices. Thereby we maintain as invariant that the outer
boundary of the graph Gk (drawn so far) forms a chain of pieces of slope ±1,
resting on a horizontal basis (Figure 10(a)). The next vertex pk+1 to be drawn
is adjacent to a contiguous subsequence of vertices on the outer boundary. To
make space for the new edges incident to pk+1, the boundary of Gk is split into
three pieces, which are separated from each other by shifting them one unit
apart (Figure 10(b)). The middle piece contains all neighbors of pk+1 except
the first and the last one. It can be shown that the whole graph Gk (inside the
shaded area) can be shifted apart accordingly without creating crossings.

The newly created triangles always fulfill property (c), as can be checked
directly, and no horizontal edges are created (property (b)). The only horizontal
edge is the bottom base edge. This horizontal edge can easily be avoided by
starting the construction with a non-horizontal base triangle in the first step.

To prevent vertical edges, one can split the middle part into two pieces and
set them apart by two more units (Figure 10(c)). (Two units are necessary to
ensure that the left and right part are separated in total by an even offset; this
guarantees that the position of pk+1, which is defined by the requirement that
its leftmost and rightmost incident edges have slope +1 and −1 respectively,
gets integer coordinates.) Thus, the dimensions of the grid increase by 4 × 2
units for each new vertex. The initial drawing of the graph G3 with the first
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Figure 11: An example of a pointed drawing with circular arcs.

three vertices needs a 3× 2 grid.

The slopes of the edges in the drawing are less than 2n. By stretching the
x-axis by a factor of 2n, one obtains a drawing in which all edges have slopes in
the range between −1 and +1.

The straight-line embedding of Theorem 3.5 generates an embedding, which
fulfills the conditions of Lemma 3.2. Therefore, we apply this embedding algo-
rithm and substitute every straight triangle by the corresponding uht-triangle.
We observe hat around every vertex there is a number of edges that emanate in
the horizontal direction, plus a number of additional edges that point upward.
The latter type of edges have distinct tangent directions. Thus one can slightly
bend every edge upward and achieve a pointed drawing with circular arcs.

Due to Theorem 3.5 the points of the embedding fit on a O(n)×O(n2) grid.
An example of a pointed drawing with circular arcs that is constructed by our
method is shown in Figure 11.

3.3 Pointed Drawings with Combinatorial Pseudo-Triangu-
lations

A different way to find a pointed embedding utilizes the framework established
in [6]. We can transform the abstract graph G into a so-called combinatorial
pseudo-triangulation (defined in [9]) subdividing at most n− 3 edges.

Theorem 3.6. Every planar graph G with n vertices has a pointed embedding
with either quadratic Bézier curves, biarcs, or polygonal chains consisting of two
line segments, which uses at most n− 3 non-straight edges. Moreover, for each
inner vertex, one can arbitrarily choose a face in which it is pointed.

Proof. We assume that the graph G is a triangulation (otherwise we add edges
such that G becomes a triangulation and delete these edges after the embedding
process). In the first step of the proof we construct a combinatorial pseudo-
triangulation based on G. A combinatorial pseudo-triangulation is a combina-
torial embedding of G with an assignment of the tags large/small to the angles
of G. The outer face is determined as the face where every angle is large. Since
G is a triangulation the combinatorial embedding is therefore uniquely (up to
reflection). This defines the angles of G uniquely. The tag assignment to the
angles has to guarantee three conditions:(1) The outer face contains only large
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angles, (2) every vertex is incident to at most one large angle, and (3) every
interior face contains exactly three small angles. Due to [6, Section 5.2] we
can embed every combinatorial pseudo-triangulation such that every angle with
large tag is larger than π in the embedding and every angle with small tag is
smaller than π in the embedding. Furthermore, we can specify the affine shape
of every face.

We construct the combinatorial pseudo-triangulation incrementally. In the
beginning every angle of an interior face is gets the tag small (indicated by
a small disk) and every angle at the outer face gets the tag large (indicated
by a small circle). Clearly this assignment fulfills the three desired properties.
Now we add the large interior angles on prescribed faces one by one. Changing
a tag from small to large violates condition (3). This deficit can be repaired
by subdividing an incident edge of the enlarged angle and give the new vertex
the tags small (on the face where the deficit of small angles appears) and large
(on the opposite face). This procedure is depicted in Figure 12. Now all three
conditions hold and we continue.

Figure 12: How to add a large angle tag (at the leftmost vertex) while main-
taining a proper assignment of angle tags.

Notice that we add at most three large angle tags on every face. Thus we
can assume that every edge is subdivided at most once. This can be achieved
by subdividing always the edge that is left to the angle which gets the large
angle tag with respect to some planar map.

We apply the embedding algorithm to realize the combinatorial pseudo-
triangulation. Hereby, we prescribe the affine face shape such that it is guaran-
teed that in every interior face the vertices incident to a large angles can see each
other, and every vertex incident to a large angle sees its opposite corner. Notice
that the opposite corner is well-defined since all faces are pseudo-triangles. We
depict the possible face shapes in Figure 13. Any affine transformation does not
destroy the “visibility criteria” – otherwise the orientation of at a point triple
reverses, which is only possible if we reverse all orientations.

What we have obtained so far is a pointed embedding, where at most n −
3 edges are drawn as 2-chains (polygonal chains with 2 segments). We can
substitute the 2-chains by Bézier curves or biarcs by the following construction:
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Figure 13: Affine shapes used for the embedding.

We complete every 2-chain to a triangle. This triangle is used as control polygon
for the Bézier curves or the biarcs (see Lemma 2.1). Due to the affine shape
of the faces the control polygons do not intersect. After inserting the arcs we
remove the 2-chains and obtain the desired embedding.

In general it is not possible to draw a pointed embedding with a larger
number of straight-lines. In this sense, Theorem 3.6 is optimal. Let us remark
that it is also possible to prove Theorem 3.6 without combinatorial pseudo-
triangulations. This boils down to apply Tutte’s spring embedding [18, 19] (the
asymmetric case) for an augmented graph based on G. However, this approach
would only reprove a special version of the embedding defined in [6].

Let us demonstrate the construction used in the proof of Theorem 3.6 by
an example. Let G be the graph depicted in Figure 14(a). We want to obtain
a pointed drawing where every interior vertex realizes the large angle at the
central triangle. The appropriate combinatorial pseudo-triangulations (created
with the methods of the proof of Theorem 3.6) is shown in Figure 14(b).

(a) (b)

Figure 14: Construction of a combinatorial pseudo-triangulation as example.

We use the algorithm of [6] to embed the combinatorial pseudo-triangulation.
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The result can is depicted in Figure 15(a). The 2-chains in the embedding can
be completed to triangles. Using these triangles as control polygons for Bézier
curves leads to Figure 15(b).

(a) (b)

Figure 15: Pointed drawing with 2-chains (a) and biarcs (b) of the graph of
Figure 14.

4 Conclusion

We have shown that every plane straight-line embedding can be redrawn pointed
with identically embedded vertices, and either tangent-continuous biarcs or
quadratic Bézier curves as edges. We can even ensure that all edges emanate
from the vertices within an arbitrary small angle. These drawings are probably
not satisfactory from an aesthetic point of view. Our embedding with biarcs,
where all incident edges share a common tangent, is nicer and may be more
useful for applications. Still, the construction we use relies on circle packings,
which to compute is considered a hard problem, see for example [3, 8, 2] for al-
gorithmic proofs. So it is an interesting question whether Theorem 3.2 can also
be proven without using circle packings. Further, it remains open whether there
exist aesthetically nice embeddings also for Bézier curves, or even for circular
arcs.

The drawings with circular arcs that we construct (Theorem 3.3) result from
perturbation and are just “barely” pointed, and edges emanate from a vertex
almost in parallel directions. Also, the drawing fills a very oblong O(n2)×O(n)
shape.

It remains open whether there are pointed embeddings with circular arcs (or
with Bézier curves) that are aesthetically more pleasing.
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