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Abstract

For two given point sets, we present a very simple (almost trivial) algorithm to

translate one set so that the Hausdor� distance between the two sets is not larger

than a constant factor times the minimum Hausdor� distance which can be achieved

in this way. The algorithm just matches the so-called Steiner points of the two sets.

The focus of our paper is the general study of reference points (like the Steiner

point) and their properties with respect to shape matching.

For more general transformations than just translations, our method eliminates

several degrees of freedom from the problem and thus yields good matchings with

improved time bounds.

1 Introduction

This paper is motivated by a problem that is typical in application areas such as computer

vision or pattern recognition, namely, given two �gures A;B, to determine how much they

\resemble each other".

Here, a \�gure" will be a union of �nitely many points and line segments in R2 or

triangles in R3. Note that sets of curves in R2 andR3 or surfaces inR3 can be approximated

�This research was supported by the ESPRIT Basic Research Action Program No. 7141, Project
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yThat research was supported by the Jubil�aumsfond der �Osterreichischen Nationalbank.
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arbitrarily closely by these objects. As a measure for \resemblance" we will use the

Hausdor�-metric �H , which is a somehow natural distance measure and gives reasonable

results in practice (see [HKR]). It can be de�ned in arbitrary dimension d for the set Cd
of all compact subsets of Rd as follows:

De�nition 1 For A;B 2 Cd let

f�H(A;B) := max
a2A

min
b2B

ka� bk;

where k�k is the Euclidean norm. Then the Hausdor�-distance between A and B is de�ned

as

�H(A;B) := max
�f�H(A;B);f�H(B;A)

	
:

If A and B consist of n and m line segments, respectively, in the plane their Hausdor�-

distance �H(A;B) can be computed in time O
�
(n+m) log(n+m)

�
(cf. [ABB]). However,

it is more natural to assume that A and B are not �xed but can be moved by a translation,

by a rigid motion (translation and rotation) or even transformed by a similarity (scaling

and rigid motion) in order to match them as well as possible and then determine the

minimal Hausdor�-distance. So, in general, we have a set T of allowed transformations

and want to determine for given �gures A and B:

min
T2T

�H
�
A; T (B)

�
:

Note that, for similarities, it makes a di�erence if we exchange the sets A and B in this

problem.

This problem of �nding an optimal matching has been considered for the two-

dimensional case in several previous articles: In Alt, Behrends, and Bl�omer [ABB] an

algorithm of running time O
�
(nm) log(nm) log�(nm)

�
is found for the case that T is the

set of translations along one �xed direction; Agarwal, Sharir, and Toledo [AST] describe

an O
�
(nm)2 log3(nm)

�
algorithm for arbitrary translations (which can be improved to

O
�
(nm)2�(nm)

�
if A and B are �nite sets of points, see Huttenlocher and Kedem [HK])

and in Chew et al. [CGHKKK] an O
�
(nm)3 log2(nm)

�
algorithm for arbitrary rigid mo-

tions. The two latter algorithms use sophisticated and powerful tools like parametric

search and therefore do not seem to be applicable in practice.

Here, we follow a di�erent approach which was already used in [ABB]. We do not try to

�nd an optimal solution but an approximation to the optimal one by simpler algorithms.

More precisely, if the optimal matching transformation yields Hausdor�-distance � our

algorithms will �nd a transformation T such that

�H
�
A; T (B)

� � a�

for some constant a > 1.

We call such a solution an approximate matching with loss factor a.

The aim of this paper is to work out the general idea of using \reference points" for

approximation algorithms. We will then present a reference point that gives better bounds

than the one in [ABB] and can be applied to similarities and problems in three dimensions

as well.

A preliminary version of this paper appeared in [AAR].
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2 Reference Point Methods

Like in [ABB] approximation algorithms use suitable reference points , which we de�ne for

arbitrary dimension d as follows:

De�nition 2 Let T be a set of transformations on Rd. A mapping r: Cd ! R
d is called a

reference point with respect to T i�

(a) r is equivariant with respect to T , i.e., for all A;B 2 Cdand T 2 T we have

r
�
T (A)

�
= T

�
r(A)

�
and

(b) there exists some constant c � 0 such that if for all A;B 2 Cd,
kr(A)� r(B)k � c � �H(A;B):

In other words, r is a Lipschitz-continuous mapping between the metric spaces

(Cd; �H) and (Rd; k�k) with Lipschitz constant c. We call c the quality of the reference

point r.

Based on the existence of a reference point for T we obtain the following algorithms for

approximately optimal matchings where T is the set of translations, rigid motions, and

similarity transformations, respectively:

Algorithm T

1. Compute r(A) and r(B) and translate B by r(A) � r(B) (so that r(B) is

mapped onto r(A)). Let B0 be the image of B.

2. Output B0 as the approximately optimal solution (together with the Hausdor�-

distance �H(A;B0)).

Algorithm R

1. as in Algorithm T.

2. Find an optimal matching of A and B0 under rotations of B0 around r(A).

3. Output the solution B00 and the Hausdor�-distance �H(A;B00).

Algorithm S

1. as in Algorithm T.

2. determine the diameters d(A) and d(B) and scale B0 by � := d(A)=d(B)

around the center r(A).

3. as Step 2 in algorithm R with the scaled image of B0.

4. as Step 3 in algorithm R.

As the algorithms R and S are formulated, they look only for proper rigid motions and

similarities, respectively. Re
ections can be included by simply running the algorithm a

second time with a re
ected copy of A.

These algorithms are simpler than the ones for �nding the optimal solutions, since

after Step 1 the matchings are restricted to ones leaving the reference point invariant. In

d dimensions this eliminates d degrees of freedom. The qualities and running times of

these algorithms are as follows:
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Theorem 3 Suppose that a reference point of quality c for the sets of transformations T
in the Algorithms T, R, and S can be determined in linear time. In the case of similarity

transformations also assume that r(A) always lies within the convex hull conv(A).

(a) Algorithm T �nds an approximately optimal matching for translations with loss fac-

tor a = c + 1.

(b) Algorithm R �nds an approximately optimal matching for rigid motions with loss

factor a = c + 1.

(c) Algorithm S �nds an approximately optimal matching for similarity transformations

with loss factor a = c + 3.

In the plane, the running times for two sets of n and m points and line segments are

O
�
(n + m) log(n + m)

�
for Algorithm T and O

�
nm log(nm) log�(nm)

�
for Algorithms R

and S. In space, where A and B are sets of triangles, the running times become O(mn)

for Algorithm T and O
�
(nm)3H(n;m)

�
for Algorithms R and S. Here H(n;m) is the time

to compute the Hausdor� distance.

Notice that an upper bound of O((n2m + nm2)log3(nm)) for H(n;m) is known, see

Alt and Godau [AG].

For the proof of the theorem we need the following lemmas, which can be shown by

elementary geometrical considerations.

Lemma 4 Let B � Rd be a compact set with diameter d(B), and let p be a point in its

convex hull conv(B). Let �1; �2 be homotheties (scalings) with center p and ratios (scaling

factors) �1 and �2, respectively. Then

�H
�
�1(B); �2(B)

� � j(�1 � �2)d(B)j :

Lemma 5 If A;B � R
d are compact sets with diameters d(A) and d(B), respectively,

then

jd(A)� d(B)j � 2�H(A;B):

Proof: This follows from the fact that B is contained in the �-neighborhood of A and

vice versa.

Proof of Theorem 3: We prove only (c) which implicitly contains the proofs for

(a) and (b). Consider an optimal similarity transformation Sopt. It can be written as

Sopt = �opt �Topt, where Topt is a rigid motion and �opt is a homothety with ratio �opt. Let

� be the optimal Hausdor�-distance � = �H
�
A; Sopt(B)

�
. Then

kr(A)� r
�
Sopt(B)

�k � c�: (1)

Let t be the translation by r(A)�r�Sopt(B)
�
; then eS = t�Sopt is a similarity transformation

mapping r(B) onto r(A) and

�H
�
A; eS(B)

� � (c+ 1)�: (2)
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Write eS as eS = e� � eT , where eT is a rigid motion mapping r(B) onto r(A) and e� is a

homothety with center r(A) and ratio is �opt. Let � = d(A)=d(B) as in Algorithm S, �

the homothety with center r(A) and ratio �, and S = � � eT . Then

�H
�
A; S(B)

� � �H
�
A; eS(B)

�
+ �H

� eS(B); S(B)
�
: (3)

Now

�H
� eS(B); S(B)

�
= �H

�e�� eT (B)
�
; �

� eT (B)
��

� ��(�opt � �)d
� eT (B)

���, by Lemma 4

=
��(�opt � �)d(B)

�� =
���optd(B)� d(A)

��
=

��d�Sopt(B)
�� d(A)

��, since �opt was the ratio of Sopt

� 2 � �H
�
Sopt(B); A

�
= 2�, by Lemma 5: (4)

From (2), (3), and (4) we have

�H
�
A; S(B)

� � (c+ 3)� (5)

for some similarity transformation S composed of a rigid motion that maps r(B) onto

r(A) and a homothety with center r(A) and ratio �. Since Algorithm S �nds the optimum

among these similarity transformations the bound (5) holds for it, as well.

For the time bound we observe that Step 1 can be done in linear time. In order to

determine the diameters of A and B, we observe that they are equal to the diameters of

their convex hulls. So we �rst compute the convex hulls in time O(n logn + m logm). In

two dimensions then the diameters can be computed in linear time by rotating calipers,

in three dimensions in time O(n2 + m2) by considering the distances between all pairs of

vertices, edges, or faces.

Step 3, �nding the optimal matching under rotations, can be done in time

O
�
nm log(nm) log�(nm)

�
in the plane, as has been shown by Alt, Behrends, and Bl�omer

[ABB] using Davenport-Schinzel sequences. It explicitly computes the Hausdor�-distance,

so Step 4 is for free. In 3-space, we have rotations in R3 around a �xed center, which

is an optimal matching problem with 2 degrees of freedom. It can be solved in time

O
�
(nm)3H(n;m)

�
by methods of [ABB].

3 The Steiner Point

The previous section would be useless if it were not possible to �nd suitable reference

points. In [ABB] it was observed that in the two-dimensional case the point r(A) =

(xmax; ymax), where xmax and ymax are the maximal x- and y-coordinates of points in A, is

a reference point of quality
p

2 for translations.

For rigid motions the situation is not as easy. We will �rst list a few points that come

to mind but turn out not to be reference points. In fact, for arbitrary small � > 0, we can

construct �gures A� ; B� for which �H(A�; B�) � �, but kr(A�)� r(B�)k is not in O(�) or

does not even converge to 0 for � ! 0.
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point r(A) kr(A�)� r(B�)k
a) centroid of the vertices of the convex hull 
(1)

b) centroid of the convex hull 
(1)

c) center of the smallest enclosing circle 
(
p
�)

d) center of the smallest enclosing ellipse 
(1)

e) center of the smallest enclosing rectangle 
(1)

Counterexamples a), b), and c) are from Behrends [B]. Figure 1 shows possible sets

A�; B� for cases b) and d). The center of the smallest enclosing rectangle (case e)) is not

even well de�ned for rectangular triangles (see Figure 2). There are two possible smallest

enclosing rectangles whose centers are r1 = (a=2; b=2) and r2 = (a=2; b=2)� (ab2; a2b)
�

2(a2 + b2), respectively.

 δ  δ

1    1

 δ
 δ

A
B

Figure 1: r(A�) = (1=3; 0); r(B�) = (1=2; 0), where r is either the center of the smallest

enclosing ellipse or the centroid of the �gure. This can be seen by applying an a�ne

transformation which maps A� to an equilateral triangle or B� to a square.

2

1

(0,0)

(0,b)

(a,0)

(0,b)

(0,0) (a,0)

r

r

Figure 2: Two smallest enclosing rectangles.

Alt, Behrends, and Bl�omer [ABB] also gave a positive example of a reference point for

rigid motions in two dimensions: the centroid of the boundary of the convex hull. It was

shown that this reference point is of quality at most 4� + 4 � 16:57. Here, we will give a

reference point which works even for similarity transformations, is easy to compute, can

be generalized to higher dimensions, and whose quality is 4=� � 1:27.

First we observe that we can without loss of generality restrict our attention to convex

�gures. In fact, in [ABB] it was shown that for any two compact sets A;B:

�H
�
conv(A); conv(B)

� � �H(A;B):
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From that it follows easily that a reference point for the convex hull of a compact set A is

a reference point for A, as well.

Our candidate for a reference point is the so-called Steiner point , which has been

investigated intensively in the �eld of convex geometry [G,Sh,Sch].

De�nition 6 We denote by Bd the d-dimensional unit ball and by Sd�1 its boundary, the

(d� 1)-dimensional unit sphere in Rd.

Let A be a convex body (convex and compact subset) in Rd. The support function

hA:Rd! R of A is given by

hA(u) = max
a2A

ha;ui

(see Figure 3).

The Steiner point s(A) of A is de�ned as

s(A) =
d

Vol(Sd�1)

Z
Sd�1

hA(u)ud!(u)

where d!(u) is the surface element of Sd�1.

For a non-convex compact set A 2 Rd, we de�ne the support function and hence the

Steiner point in the same way. They coincide with the support function and the Steiner

point of the convex hull conv(A).

u

A
B

u uA
h ( )

u uh ( )B

Figure 3: The support functions hA(u), hB(u) of two convex bodies A;B.

Also in the �eld of functional analysis there is a series of articles concerned with

mappings that assign points to convex bodies (for a survey of the results see Przes lawski

and Yost [PY]). Let X be a Banach space and C(X) the set of closed, bounded, convex,

non-empty subsets of X . Then using the Hausdor� distance as a metric on C(X), a
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continuous mapping r: C(X) ! X is called a selector if r(A) 2 A for all A 2 C(X).

Michael's selection Theorem [M] states the existence of a selector for any Banach space.

Several authors raised the question whether there exist Lipschitz-continuous selectors and

showed that they do if X is �nite-dimensional. In this context Przes lawski rediscovered

the Steiner point [P].

The value of the Lipschitz constant of the Steiner point is well-known, see for example

Daugavet [D]. To keep our paper self-contained we include the elementary calculation

here.

Let

�d =
2dVol(Bd�1)

Vol(Sd�1)
:

Then by the formulas for surface and volume of d-dimensional spheres

�d =
2�(d=2 + 1)p
��(d=2 + 1=2)

�
s

d

2�
(6)

Altogether, we have, combining results from Gr�unbaum [G], Schneider [Sch], and Dau-

gavet [D]:

Theorem 7 The Steiner point is a reference point for similarity transformations in ar-

bitrary dimension d � 2. Its quality is �d, which for d = 2 is 4=�, for d = 3 it is 3=2, for

arbitrary d it lies between
p

2=�
p
d and

p
2=�

p
d+ 1.

Proof: The equivariance of the Steiner point under similarity transformations is well

known [G, Sch]. For the bound on the quality, we observe that for two convex bodies A

and B, khA(u)� hB(u)k � �H(A;B) =: � for any u 2 Sd�1 (see Figure 3).

Now let p = s(A)� s(B), and consider the inner product of p with an arbitrary unit

vector e. Without loss of generality we assume that e = (0; : : : ; 0; 1) is the unit vector in

the d-th coordinate direction.

hp; ei = hs(A)� s(B); ei
=

d

Vol(Sd�1)

Z
Sd�1

�
hA(u)� hB(u)

�hu; ei d!(u)

� d

Vol(Sd�1)
�
" Z
Sd�1

un�0

(+�)hu; ei d!(u) +

Z
Sd�1

un�0

(��)hu; ei d!(u)

#

= �d �
"

1

Vol(Sd�1)=2
�
Z

Sd�1

un�0

hu; ei d!(u)

#

The expression in brackets in the last line is nothing but the d-th coordinate of the cen-

ter of gravity of the upper unit half-sphere. If we compute the integral by projecting away

the d-th coordinate and integrate over (x1; x2; : : : ; xd�1) 2 Bd�1 � Rd�1, a straightforward

calculation gives that the surface element is transformed by

d!(u(x1; x2; : : : ; xd�1)) =
1

hu; eidx1dx2 � � �dxd�1:
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Thus the integral turns out to be just the volume of Bd�1, and we get the following bound

on hp; ei:

hp; ei � �d � Vol(Bd�1)

Vol(Sd�1)=2
= ��d

This last expression is a bound on the length of p since e was in fact an arbitrary unit

vector and therefore can be substituted by p=kpk. Considering the de�nition of �d the

values �(3=2) =
p
�=2, �(2) = 1, and �(5=2) = 3

p
�=4 give the claimed quality bounds

for d = 2 and d = 3. The quotient of the two �-functions in (6) is between
p
d=2 andp

(d+ 1)=2, and this gives the general bound.

From the proof of the upper bound one can see how to construct an example showing

that it cannot be improved: Sn�1 must be divided into two half-spheres, and hA(u)�hB(u)

will ideally always be equal to +� or ��, depending on the half-sphere in which u lies.

Figure 4 shows two two-dimensional point sets A� and B� . A� is just a circle of radius r,

A r

δ δ  δ
δ Bδ

Figure 4: ks(A�)� s(B�)k is close to 4=� � �.

and B� consists of a \distorted" circle and an additional point. If we allow to apply any

similarity to B� in order to minimize the Hausdor� distance from A�, the optimal position

is as shown in Figure 4, and the Hausdor� distance is �. The distance of the Steiner

point s(B�) from the center s(A�) of the circle can be calculated as 2=� �
p
r� arccos r��

r+�
,

which approaches 4=� � � as r goes to 1. If one lets the two Steiner points coincide, the

Hausdor� distance rises by this amount, showing that 1 + 4=� is indeed the loss factor of

Algorithm T. Since A� is rotation-symmetric, this holds also for Algorithm R. The above

construction generalizes easily to higher dimensions.

The following theorem is well-known [G,Sh].

Theorem 8 The Steiner point of a convex polytope is the weighted sum of its vertices,

where the weight of vertex v is that fraction of the surface of the unit sphere that lies

between the unit vectors normal to the hyperplanes meeting at v (the normalized exterior

angle at v). (For a two-dimensional example see Figure 5.)

For smooth convex bodies, the Steiner point can also be de�ned as the centroid of a non-

uniform mass distribution on the boundary, where the density is the (Gaussian) curvature.

Combining Theorems 3, 7, and 8 we get:
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v

φ

φ

Figure 5: The weight of vertex v of the polygon is �

2�
.

Theorem 9 Let A and B be sets of n and m line segments in d = 2 dimensions or n and

m triangles in d = 3 dimensions. Then approximately optimal matchings can be found for

A and B applying the corresponding algorithms of Section 2 as indicated in the following

table.

T running time loss factor

translations

d = 2 O
�
(n + m) log(n + m)

�
4=� + 1

d = 3 O(H(n;m)) 2:5

rigid motions

d = 2 O
�
nm log(nm) log�(nm)

�
4=� + 1

d = 3 O
�
(nm)3H(n;m)

�
2.5

similarities

d = 2 O
�
nm log(nm) log�(nm)

�
4=� + 3

d = 3 O
�
(nm)3H(n;m)

�
4.5

Proof: For the proof note that the Steiner point for a convex polygon or polytope can be

computed in linear time because of Theorem 8, after the convex hulls have been constructed

in O(n logn + m logm) time. The bound of O(H(n;m)) (cf. Theorem 3) for translations

in three dimensions comes from the �nal computation of the Hausdor� distance. Just

�nding the approximately optimal translation takes only O(n logn + m logm) time.

4 Lower Bounds

In this section we will prove lower bounds for the quality of reference points with respect

to the set of all translations. Of course, these bounds carry over to every set of trans-

formations T which includes all translations, i. e., to every interesting set for which we

proposed an algorithm in Section 2. We �rst show an easy lower bound for one dimension,

whose proof already gives the 
avor of the proof of our two-dimensional lower bound.
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Theorem 10 Reference point based matching for translations (Algorithm T ) cannot yield

a loss factor better than 2 in the worst case. This holds for arbitrary dimension d � 1.

Proof: To see this, consider the 1-dimensional sets of 2 or 3 points A1; A2; A3; A4; A5

shown in Figure 6. Clearly �H
�
Ai�1; Ai

�
= � for i = 2; 3; 4; 5. Suppose we have a reference

δA1

A2

A3

A4

A5

Figure 6: Sets A1; A2; A3; A4; A5.

point based matching algorithm and match A2 onto A1, A3 onto the new position A0
2 of

A2, A4 onto the new one A0
3 of A3, and A5 onto A0

4. Since all reference points are matched

onto each other and A1 and A5 are congruent A0
5 must coincide with A0

1 := A1. So for

some i, 1 � i � 4, the left endpoint of A0
i must lie not to the right of the left endpoint of

A0
i+1. It is easy to check that this implies �H

�
A0
i; A

0
i+1

� � 2�.

We may augment each set Ai in the above proof by a point which is at a large distance

M from its rightmost point. This prevents re
ections and scalings from possibly improving

the Hausdor� distance between Ai and Ai+1, and so the above lower bound remains true

even if re
ections and scalings are allowed.

Note that in one dimension, reference points with loss factor at most 2 exist. For

example, the left-most point, or the right-most point, or any �xed convex combination of

these two points will do. The Steiner point is just the midpoint between the two extremes.

Researchers in functional analysis also investigated lower bounds for Lipschitz con-

stants of selectors. For this purpose they considered the embeddings

R
d f
,! Kd g

,! C(Sd�1);

where Kd is the set of convex and compact subsets of Rd, C(Sd�1) the set of continuous

functions Sd�1 ! R, f(x) = fxg for all x 2 Rd, and g(A) = hA for all A 2 Kd.

These embeddings are compatible with the vector addition on Rd, the Minkowski sum

on Kd and the standard addition of functions in C(Sd�1). They are also compatible with

the Euclidean distance in Rd, the Hausdor� distance in Kd and the supremum norm in

C(Sd�1). Observe that Rd and C(Sd�1) are Banach spaces with these operations, whereas

Kd is not, since it is not a group with respect to Minkowski addition. Let r: Cd ! R
d be

a reference point with respect to translations. We may assume without loss of generality

that r(fxg) = x for all x 2 Rd. If this does not hold, we may select some arbitrary point

o and subtract the constant vector r(fog) � o from r. This clearly does not change the
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quality of r, and it does not violate the equivariance with respect to translations. By the

same equivariance property, r(fog) = o implies then that r(fxg) = x for all x 2 Rd. In

other words, we may regard r as a retract, i. e., a function, which, restricted to its range,

equals the identity. Linear retracts between Banach spaces are called projections . Ru-

tovitz [R] and Daugavet [D] investigated lower bounds on the Lipschitz constant (i. e. the

norm kPk = supx6=0 kP (x)k=kxk) of projections between Banach spaces. They (implicitly)

established a lower bound of �d for the Lipschitz constant of any projection C(Sd�1) ! R
d,

d � 2. Przes lawski and Yost [PY] could extend this lower bound from (linear) projections

to arbitrary retracts from Kd to Rd. Consequently, the lower bound holds also for re-

tracts r: Cd ! R
d, and therefore for reference points. So we can state (cf. Proposition 4.5

in [PY]):

Theorem 11 The quality of any reference point with respect to translations from Cd into

R
d, d � 2 cannot be better (i.e. smaller) than �d.

In this sense Theorem 7 shows that the Steiner point is an optimal reference point.

Rutovitz' proof implicitly shows that for any given projection P :C(Sd�1) ! R
d bad

examples can be constructed where the Lipschitz constant exceeds or gets arbitrarily close

to �d. However, the extension to retracts by Przes lawski and Yost [PY] uses the existence

of invariant means on abelian semigroups. This is based on the Hahn-Banach Theorem,

which, in turn, is based on (a weaker version of) the Axiom of Choice. Consequently, the

proof by Przes lawski and Yost is nonconstructive, i. e., it does not yield bad examples for

given retracts.

In contrast, we will present for the two-dimensional case a \universally bad" example

in the following theorem. However, the lower bound does not quite match the upper one.

q

q q

1

2 3
C

o

K

p

S T

∆

Figure 7: C;K, and �. The origin is marked by a cross.

In fact, we consider three point sets (see Figure 7): A circle C with center o and

radius 5; a keyhole-shaped �gure K with two circular arcs centered at p of radii 2 and 8

and opening angles of 5�=3 and �=3, respectively, and with three line segments forming an

upside-down Y inside; and �nally an equilateral triangle � = q1q2q3 with side length 10.

The dimensions given in the middle part of Figure 8 exhibit the position of the Y in

the keyhole K. The origin is at the points o, p, and q1, respectively.

For these three sets we have
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Figure 8: Optimal matchings of K with C and �.

Theorem 12 For any reference point r: C2! R
2 with respect to translations

either kr(K)� r(C)k �
q

4=3 �H(K;C)

or kr(K)� r(�)k �
q

4=3 �H(K;�):

To see this we �rst show:

Lemma 13 The optimal matchings between C and K and K and � are achieved by

superposing the origins, as shown in Figure 8, and we have �H(K;C) = 3 and �H(K;�) =

2.

Proof: Consider any placement of K such that the Hausdor� distance to C is not greater

than 3. Then K must lie within the 3-neighborhood of C, i.e. the set of all points having

distance � 3 to C, which is an annulus A with inner radius 2 and outer radius 8 (see

Figure 9).

Especially K must not intersect the inner hole H of A. So if K is not placed as in

Figure 8, the Y prevents H from lying inside the outer boundary of K. In particular, the

equilateral triangle pST cannot contain H . Since the triangle and H are convex there is

a straight line l separating them. So triangle pST must lie in the intersection of A with

a halfplane not containing H , consequently in a strip U of width 6. This is not possible

since the minimum width of triangle pST is its height which is slightly greater than 6.92.

Similarly, by considering the possible positions of K with respect to the 2-neighborhood

of �, it can be shown that the position between � and K given in Figure 8 is optimal.

Proof of Theorem 12: Let r: C2 ! R
2 be any reference point, LC = kr(C)�r(K)k �

�H(C;K), L� = kr(�)� r(K)k � �H(�; K), and c = maxfLC ; L�g.
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Figure 9: 3-neighborhood of C.

Let us �rst assume that the reference point r(C) of the circle is its center o. Since

�H(C;K) = 3, the reference point r(K) of K must lie in a circle of radius 3c around p.

Similarly, r(�) must lie in a circle of radius 2c around r(K), i.e., in a circle of radius 5c

around q1. If we turn K by 120� in both ways, we can conclude in a similar way that r(�)

must lie in circles of radius 5c around q2 and around q3. By equivariance with respect to

translations, the triangle � has only a single reference point regardless where it is placed,

and therefore the three circles must intersect, as shown in the right part of Figure 8. This

means that c must be at least
p

4=3 � 1:155.

If the reference point r(C) is not the center o, the only di�erence is that the centers

of the �nal three circles will be translated by the respective amount.

5 Open Problems

Our example in Theorem 12 proves a lower bound for the Lipschitz constant of a refer-

ence point in a completely elementary way, in contrast to the proof of Theorem 11 by

Przes lawski and Yost [PY], which uses rather deep analytical tools. On the other hand,

our bound of
p

4=3 � 1:155 is not as strong as the true lower bound of 4=� � 1:272.

Furthermore, we use non-convex point sets, whereas the lower bound holds even when

restricted to convex sets. It is thus challenging to �nd better constructions that either

give a better bound or that use convex sets only.

In an abstract graph-theoretic model of the problem, we could recently obtain a slightly

larger bound than
p

4=3, but as yet we have not been able to translate this into concrete

geometric examples.

We believe that our example of Figure 7 generalizes to three and higher dimensions, us-

ing a ball, a simplex, and some kind of higher-dimensional keyholes interpolating between

them, but the proof should certainly be more complicated.
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