
Isotonic Regression by Dynamic Programming
Günter Rote
Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
rote@inf.fu-berlin.de

https://orcid.org/0000-0002-0351-5945

Abstract
For a given sequence of numbers, we want to find a monotonically increasing sequence of the same
length that best approximates it in the sense of minimizing the weighted sum of absolute values
of the differences. A conceptually easy dynamic programming approach leads to an algorithm
with running time O(n logn). While other algorithms with the same running time are known, our
algorithm is very simple. The only auxiliary data structure that it requires is a priority queue.
The approach extends to other error measures.

2012 ACM Subject Classification Theory of computation→ Dynamic programming, Theory of
computation → Computational geometry, Mathematics of computing → Regression analysis

Keywords and phrases Convex functions, dynamic programming, convex hull, isotonic regression

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.1

1 Problem Statement: Weighted Isotonic L1 Regression

Weighted isotonic L1 regression (or weighted isotonic median regression) is the following
problem:

Approximate a given sequence of numbers a = (a1, . . . , an) with weights wi > 0 by an
increasing sequence

z1 ≤ z2 ≤ · · · ≤ zn, (1)

minimizing the weighted L1-error
n∑

i=1
wi · |zi − ai|. (2)

If the input sequence (a1, . . . , an) has decreasing sections, the optimum solution values zi

tend to cluster together in runs or level sets of equal values zj = zj+1 = · · · = zk, see Figure 1.
This common value z is the weighted median of the corresponding elements aj , aj+1, . . . , ak,
because this is the value that minimizes

∑k
i=j wi|z − ai|.

Isotonic regression has applications in many fields, including statistics and production
planning. The problem has been studied for a long time, see [2] for an early monograph, and
there is a large literature that treats many variations of the problem. In particular, there are
algorithms that solve the weighted L1 regression problem in O(n logn) time [1, 8]. These
algorithms will be reviewed in Section 11.

2 Our Algorithm

We present a new algorithm that is based on the dynamic programming method. Our
approach differs somewhat from standard use of this technique, as the intermediate objects
of our dynamic programming recursion are real functions, and thus infinite objects.

© Günter Rote;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 1; pp. 1:1–1:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rote@inf.fu-berlin.de
https://orcid.org/0000-0002-0351-5945
https://doi.org/10.4230/OASIcs.SOSA.2019.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 Isotonic Regression by Dynamic Programming

ai

i

ai

i

|zi

Figure 1 The original data sequence (a1, . . . , an) is shown on the left. The crosses on the right
form a monotone approximation (z1, . . . , zn). It contains two runs that are longer than a single
element.

This is not a revolutionary idea. Historically, the concept of dynamic programming and
Bellman’s optimality principle applies also to continuous processes such as rocket flight.
And while the notion of “dynamic programming” has made an independent career as an
algorithmic design principle in computer science, it continues to be used in optimal control
and in discrete as well as continuous optimization.

Computer scientists, on the other hand, tend to shun continuous and infinite structures.
They need not be afraid: The functions that arise in our problem turn out to be piecewise
linear functions, and they can be treated as peaceful discrete objects. In the programming
contest literature, this approach is known under the name “convexity dynamic programming”,
see Section 12.

With the proper choice of representation, our approach leads to a simple algorithm
with running time O(n logn). The most sophisticated data structure that is needed for an
efficient implementation is a standard priority queue. Other merits of our algorithm are
discussed in Section 11.1. Despite its simplicity, the algorithm would be mysterious without
the conceptual background of its design (see Algorithm 3).

3 The Dynamic Programming Setup

We consider the subproblems

fk(x) := min
{ k∑

i=1
wi · |zi − ai| : z1 ≤ z2 ≤ · · · ≤ zk = x

}
(3)

for k = 1, . . . , n and a real parameter x. We get the following straightforward dynamic
programming recursion, including k = 0 as the base case:

fk(x) := min{ fk−1(z) : z ≤ x }+ wk · |x− ak| (k = 1, . . . , n; x ∈ R)
f0(x) := 0 (x ∈ R)

(4)

The following sections develop the details of how to implement this recursion.

4 The Functions fk

I Lemma 1.
(a) Each function fk is a piecewise linear convex function, for 0 ≤ k ≤ n.
(b) The breakpoints are located at a subset of the points a1, a2, . . . , ak.
(c) The leftmost piece has slope −

∑k
i=1 wi. The rightmost piece has slope wk.

G. Rote 1:3

fk−1(x)

x

y

pk−1

gk−1(x)

Figure 2 Constructing gk−1 from fk−1.

Proof. These properties are easily established by induction. The base cases (k = 0 and
k = 1) are obvious. We denote by

gk−1(x) := min{ fk−1(z) : z ≤ x }

the intermediate function in the transition from fk−1 to fk.
Let k ≥ 2, and let us assume by induction that all properties of the lemma hold for fk−1.

The function fk−1 is first monotonically decreasing to a minimum and then monotonically
increasing. We denote by pk−1 the (not necessarily unique) position where the minimum
occurs. The optimum of fk−1(z) under the constraint z ≤ x depends on the position of x
relative to pk−1: If x ≤ pk−1 then z = x is the optimum choice, and gk−1(x) = fk−1(x). If
x ≥ pk−1 then the optimum choice is z = pk−1, and gk−1(x) = fk−1(pk−1), see Figure 2.

As a consequence of this, we get the following relation between the values z∗k−1 and z∗k in
the optimal solution:

z∗k−1 = min{z∗k, pk−1} (5)

This will be useful for recovering the optimal regression after its objective function value,
i.e., the regression error, has been obtained.

In summary, the function gk−1 has the same decreasing pieces as fk−1 but the increasing
pieces are replaced by a horizontal piece of constant value fk−1(pk−1).

Finally, to obtain fk, we add the piecewise linear function wk · |x− ak| to gk−1. It is now
easy to see that fk has the claimed properties of the lemma. J

5 Representing Piecewise Linear Functions

The most natural representation for a continuous piecewise linear function f would be a
sorted list of breakpoints xi with their function values f(xi), plus the slopes of the two
unbounded pieces on the left and on the right. However, looking back at the discussion of
the previous paragraph, the recursion (4) involves the addition of a piecewise linear function
to another. The natural representation would then require all slopes to be updated.

We therefore prefer to maintain slope differences rather than the slopes themselves. We
represent a piecewise linear function as a list of breakpoints, see Figure 3. Each breakpoint
has a position – the x-value where it is located – and a value – the slope difference between

SOSA 2019

1:4 Isotonic Regression by Dynamic Programming

x

y = f(x)

y = s′x+ t′

y = s′′x+ t′′

y = sx+ t

x0

Figure 3 A piecewise linear function with four breakpoints. There is a breakpoint at position x0

with value s′′ − s′.

the right and the left adjacent pieces. The breakpoints are naturally ordered by position, but
for the time being, we leave it unspecified whether we want to store them as a sorted list or in
some other data structure. The function is convex if all breakpoints have nonnegative values.

The breakpoint data determine the function f only up to addition of an arbitrary linear
function. We must specify two further parameters. Since the transition from fk−1 to gk−1
involves inspections and modifications at the right end of the function, it is most convenient
to take the slope s and the intercept t of the rightmost linear piece y = sx+ t.

This determines f uniquely: We proceed from right to left, and across each breakpoint,
the value of the breakpoint gives us the slope ŝ of next linear piece y = ŝx+ t̂, and continuity
of f allows us to fix the intercept t̂.

Two functions are added by combining the list of breakpoints and adding the (s, t)
parameters. If several breakpoints have the same position, they might be merged into one
breakpoint, adding their values. However, this would require equal breakpoints to be found,
and is not necessary; our algorithm will handle equal breakpoints just as well.

6 Carrying out the Recursion (4)

Recall from Section 4 that the function gk−1 has the same decreasing pieces as fk−1 but the
increasing pieces are replaced by a horizontal piece of constant value fk−1(pk−1) and slope 0.

Algorithm 1 performs this transformation. It removes the increasing pieces from the right
end of fk−1 one by one.

In representing the functions, we have to deal only with the slope s of the rightmost
piece; the intercept t is not needed. Since the leftmost slope is negative, by Lemma 1c, the
while-loop will terminate, and the list of breakpoints will never become empty. If fk−1 has a
horizontal piece, the algorithm will arbitrarily choose the leftmost minimum pk−1.

Finally, to obtain fk, we must add the function wk · |x− ak| to gk−1: This amounts to
creating an additional breakpoint of value 2wk at position ak, and adding wk to s.

G. Rote 1:5

Algorithm 1: Converting fk−1 to gk−1.
Input: List of breakpoints of fk−1 and rightmost slope s
Result: Updated list of breakpoints of gk−1 and rightmost slope s; position pk−1 of

the (leftmost) minimum of fk−1
Let B be the rightmost breakpoint;
while s−B.value ≥ 0 do // next-to-last piece is not decreasing

s := s−B.value; // remove the last piece
Delete B from the list of breakpoints;
Let B be the rightmost remaining breakpoint;

pk−1 := B.position; // pk−1 is the position of the minimum of fk−1.
B.value := B.value− s; // make the rightmost piece horizontal
s := 0;

7 The Weighted Regression Algorithm

We see that the algorithm only needs to access the rightmost breakpoint, and potentially
delete it. A new breakpoint is inserted for each new data point ak. This calls for a (max-
)priority queue for storing the breakpoints, using position as the key. We use the standard
priority queue operations insert, findmax (taking constant time), and deletemax.

Algorithm 2 shows the complete algorithm that we can now put together. The organization
is slightly different from the recursion (4): an iteration of the main loop starts from gk−1,
turns it into fk, and then into gk. We start with the function g0(x) = 0. The algorithm
records the minimum position pk for each function fk. In the last loop iteration, the minimum
of fn is found as part of the construction of gn.

Finally, the optimum solution values zi are computed in a simple loop according to (5),
starting with the minimum zn = pn of the function fn.

The variable s is always 0 at the beginning of the loop. Hence we can simplify the
program. Also, it is advantageous to switch to the negative variable s̄ ≡ −s, because this
turns all remaining subtractions into additions and makes these operations more transparent.
The final computation of the optimal zi values needs no change. The modified Algorithm 3
is shown below. Its inner loop can now be interpreted as follows: the variable s̄ is initialized
with the value −wk; it accumulates and deletes the values from the top of the queue until
the total value becomes positive.

Figure 4 shows the algorithm at work. The values in the queue Q are shown at selected
times as if it were an ordered list with the highest keys ai at the top. The first two iterations
are not very interesting: A breakpoint of value 2wk is inserted and, since it is at the top
of Q, it is immediately reduced to wk. The iteration k = 3 is shown in more detail: After
2w3 is inserted, s̄ starts at −w3. s̄ is combined with the value w2 at the top of the list, but
the result, w2 − w3, is still negative. So it is combined with 2w3 to give w3 + w2, which is
positive, and the iteration is completed.

8 Runtime Analysis

In total, n elements are inserted in the queue Q. Each iteration of the while-loop removes an
element from Q, and therefore the overall number of executions of the while-loop is bounded
by n. With a heap data structure for Q, each operation deletemax or insert can be carried
out in O(logn) time. The findmax operation takes only constant time. The priority queue is
not affected by the manipulation of the values, since it is ordered by position. Hence, the
overall running time is O(n logn).

SOSA 2019

1:6 Isotonic Regression by Dynamic Programming

Algorithm 2: Dynamic Programming Algorithm for weighted isotonic L1 regression.
Q := ∅; // priority queue of breakpoints ordered by the key position
s := 0;
for k := 1, . . . , n do

// We start from gk−1.
Q.insert(new breakpoint B with B.position := ak, B.value := 2wk);
s := s+ wk; // We have computed fk.
B := Q.findmax;
while s−B.value ≥ 0 do

s := s−B.value;
Q.deletemax;
B := Q.findmax;

pk := B.position; // record the position of the minimum
B.value := B.value− s;
s := 0; // We have computed gk.

// compute the optimal solution z1, . . . , zn:
zn := pn;
for k := n− 1, n− 2, . . . , 1 do

zk := min{zk+1, pk};

Algorithm 3: Dynamic Programming Algorithm for weighted isotonic L1 regression,
simplified version.
Q := ∅; // priority queue of breakpoints ordered by the key position
for k := 1, . . . , n do

Q.insert(new breakpoint B with B.position := ak, B.value := 2wk);
s̄ := −wk;
B := Q.findmax;
while s̄+B.value ≤ 0 do

s̄ := s̄+B.value;
Q.deletemax;
B := Q.findmax;

B.value := s̄+B.value;
pk := B.position; // record the position of the minimum

// The solution z1, . . . , zn is computed in the same way as in Algorithm 2.

I Theorem 2. Algorithm 3 (the Dynamic Programming Algorithm) solves the weighted
isotonic L1 regression problem in O(n logn) time and O(n) space.

9 Unweighted Regression

In the unweighted case (wi ≡ 1), some steps can be simplified: The variable s̄ is always −1
before the while-loop. Thus, it can be eliminated and the while-loop turned into an if-loop.
Breakpoints have value 1 or 2. Algorithm 4 shows the simplified version. It is possible to

G. Rote 1:7

w1 w1

2w3

w2

w1

w3+w2

w1

w2

(−w3)

w1

w4

w5

w3+w2

w1

w4+w5−w6

w3+w2

2w6

w1

w4+w5

+w6−w7

w3+w2

2w7

w1 = 5

w2 = 10

w4 = 8

w3 = 12

w6 = 15

w7 = 2

w5 = 8

a7

a1

a3

a2

a6

a4

a5

Q Q QQ Q Q Q

︸ ︷︷ ︸
1 6 72 3 4 5

i

w1

2w3

(w2−w3)

Q

k=1 k=2 k=5 k=6 k=7k=3

Figure 4 Running Algorithm 3 on an example.

Algorithm 4: Unweighted isotonic L1 regression by dynamic programming.
Q := ∅; // priority queue of breakpoints ordered by the key position
for k := 1, . . . , n do

Q.insert(new breakpoint B with B.position := ak, B.value := 2);
B := Q.findmax;
if B.value = 1 then

Q.deletemax;
B := Q.findmax;

else
B.value := 1;

pk := B.position;
// The solution z1, . . . , zn is computed in the same way as in Algorithm 2.

write an even simpler algorithm by eliminating the value attribute altogether: Instead of a
breakpoint of value 2, we insert two (unweighted) breakpoints at the same position. The
resulting main loop has no if-statements and needs only five lines.

10 Other Error Measures: Weighted Isotonic L2 Regression

Instead of the L1-error, one can consider other objective functions, where the absolute value
is replaced by a different convex function h:

n∑
i=1

wi · h(zi − ai). (6)

More generally, one can allow a separate error measure hi for each data point:

n∑
i=1

hi(zi). (7)

SOSA 2019

1:8 Isotonic Regression by Dynamic Programming

In this setting, there is no need for ai and wi, because these data can be incorporated in hi.
The most commonly considered case is the (squared) L2-error:

E2 =
n∑

i=1
wi · (zi − ai)2 (8)

It is straightforward to extend our approach to this objective function.

Exercises.
1. Show that the functions fk defined in analogy to (3) for the L2-case are piecewise quadratic

convex functions. Explore their further properties, in analogy to Lemma 1.
2. Design an appropriate efficient data structure for representing this class of functions.
3. Show how to solve the dynamic programming recursion in O(n) overall time, using only

a stack as a data structure.
4. Explain which properties of the objective function, h(z − a) = |z − a| versus h(z − a) =

(z − a)2, are responsible for the difference between the runtime of O(n logn) versus O(n).
5. Compare your algorithm to the Incremental PAV Algorithm of Stout [8, Fig. 7 in

connection with Fig. 5] and find out whether the two algorithms carry out essentially the
same calculations.

6. Adapt the algorithm to the L4 error, h(x) = x4.
7. Show that the algorithm can be extended to handle arbitrary piecewise polynomial

functions hi in (7), provided they are convex.
8. Prove that the solution is unique if the functions hi are strictly convex.
See Appendix A for answers.

11 Other Algorithms

The most popular approach for the isotonic regression problem is the algorithm Pool Adjacent
Violators (PAV), see for example [2] or [8]. This classical method, which has often been
rediscovered, starts by combining adjacent values that are not monotone (ai > ai+1) into
pairs, and it further combines runs into larger runs as long as the weighted medians of
adjacent groups are out of order. This algorithm extends to quite general settings like (7),
provided that the functions hi are convex.

Ahuja and Orlin [1] gave the first O(n logn) algorithm for weighted isotonic L1 regression.
It is based on the PAV principle but uses scaling for speedup. The core of this Scaling PAV
algorithm is a procedure to turn a solution for the data bai/2c into a solution for the original
data ai in linear time (assuming that the ai are integral). To get a running time that is
independent of the range of values, the algorithm replaces the given values ai by 1, . . . , n
while keeping their relative order fixed.

Stout [8] has given a direct implementation of the PAV approach. I will refer to his
algorithm as the Incremental PAV algorithm, because it adds the elements one at a time
and completes the necessary PAV updates before looking at the next element. It requires
mergeable trees (for example, AVL trees or 2-3-trees, see [5]), to achieve a running time of
O(n logn).

Another natural approach is to model the problem as a minimum-cost network flow
problem, see Figure 5. (I could not track down a specific source for this in the literature.)
The unknown approximation values zi are flow values along a path. Each inequality zi ≤ zi+1
becomes a flow conservation constraint, with an additional entering arc taking the slack.
Since flow is nonnegative, we have to assume that all ai ≥ 0, which is no loss of generality. In

G. Rote 1:9

. . .

s

t

∞ | 0∞ | 0∞ | 0∞ | 0

z1 z2 zn

∞ | w1 ∞ | w2 ∞ | wn

a1 | −w1 a2 | −w2 an | −wn

capacity | cost

Figure 5 Minimum-cost network flow from s to t.

order to model the piecewise linear costs, each flow zi is distributed over two parallel edges:
a cheaper edge with bounded capacity and a more expensive edge with unbounded capacity.
We denote by zi the combined flow of these two edges. Then the cost of a flow (z1, . . . , zn)
in this network is

c(z1, . . . , zn) =
n∑

i=1

[
−wi min{zi, ai}+ wi max{zi − ai, 0}

]
=

n∑
i=1

[
−wi(min{zi − ai, 0}+ ai) + wi max{zi − ai, 0}

]
=

n∑
i=1

[
wi max{ai − zi, 0}+ wi max{zi − ai, 0} − wiai

]
=

n∑
i=1

wi max{ai − zi, zi − ai} −
n∑

i=1
wiai,

which differs from the original approximation error (2) just by the constant
∑n

i=1 wiai.
This network is series-parallel, and hence the minimum-cost flow can be found in O(n logn)

time by an algorithm of Booth and Tarjan [4]. However, this algorithm also relies on
mergeable trees, and moreover, it needs O(n log∗ n) space to recover the optimum solution.
So this approach is not preferable to Stout’s algorithm. The algorithm follows the dynamic
programming paradigm, and thus, in spirit, it is closer to the algorithm of this paper. We
suspect that a closer study of the algorithm for the specialized network structure of Figure 5,
instead of applying it out of the box, might have led to the discovery of our Dynamic
Programming Algorithm.

Ahuja and Orlin [1] mistakenly credit [6] for an earlier O(n logn) time algorithm, but
that paper has only an algorithm with O(n log2 n) runtime.

11.1 Comparison
11.1.1 Simplicity
The Incremental PAV Algorithm of Stout [8] involves tree data structures (for example,
AVL trees or 2-3-trees) augmented with weight information, and needs the nonstandard
merging operation: two trees of size m and n with m ≤ n have to be merged in O(m log n

m) =
O(log

(
m+n

n

)
) time.

If might be instructive to compare the algorithms on the example of Figure 4. After item
6 is added, items 4–6 form a run z4 = z5 = z6. In the Incremental PAV Algorithm, the
three elements have been combined into a mergeable tree, in order to compute their weighted

SOSA 2019

1:10 Isotonic Regression by Dynamic Programming

median. Our Dynamic Programming Algorithm, by contrast, has somehow taken note of the
run by forming the sum w4 + w5 − w6. On the other hand, it still keeps 2w6 as a separate
item. Thus, it is probably difficult to explain one algorithm in terms of the other, and the
distinction between the two algorithms is more fundamental.

The Scaling PAV Algorithm of Ahuja and Orlin [1], on the other hand, needs no data
structures beyond arrays and linked lists. The algorithm itself, however, is not so simple.
Moreover, it requires an initial sort of the elements.

The Dynamic Programming Algorithm is very simple and requires just a priority queue,
in which each element is inserted once and retrieved at most once. Thus, the priority queue
has to perform the same insert operations and fewer deletemax operations than would be
required for heapsort; one might expect that the Dynamic Programming Algorithm is finished
while the Scaling PAV Algorithm is still busy in its sorting phase.

11.1.2 Incremental Computation (Prefix Regression)
The Dynamic Programming Algorithm processes data as they arrive, producing the solution
for the first k items after reading them. (To have the objective function value (2) always
ready, the algorithm must be extended to deal with the intercept t in addition to the slope s.
The most convenient way to do this is to maintain the value fk(pk).)

Stout [8] has called this problem the prefix isotonic regression problem: solving the
regression problem for all prefixes of the input. His Incremental PAV Algorithm solves this
problem readily in O(n logn) time. Stout [8, p. 295] notes that this is optimal because prefix
isotonic regression can be used for sorting. He uses it as a subroutine for the unimodal
regression problem. Our algorithm can also be used for this purpose.

Ahuja and Orlin’s Scaling PAV Algorithm is not suitable for incremental computation.

11.1.3 Numerical Precision
The common solution value zi = zi+1 = · · · = zk of each run is the weighted median. Thus,
any algorithm that solves the problem necessarily has to compare sums of the form

∑
i∈I wi

in order to compute weighted medians.
In our algorithm, the k-th iteration inserts a new entry of value 2wk into the queue. In

addition, the starting value s̄ = −wk is added with some entries from the top of the queue.
Everything that is calculated is built from the ground set of 2n elements 2wi and −wi by
adding subsets of these elements together in some hierarchical order. All results that are
ever computed are therefore of the form 2wi or of the form

∑n
i=1 eiwi, where ei ∈ {0, 1,−1},

and the values of the latter form are compared with 0.
The term +wi in these expressions is formed by adding 2wi and −wi. This incurs a slight

loss of precision of 1 bit in terms of weights, when compared with the calculations that any
algorithm must necessarily perform for solving the problem.

11.1.4 Data Sensitivity
Another question is how the algorithm responds to input sequences that are almost sorted.
This is a natural assumption in statistical applications, where the data “ought” to be
monotone but is distorted by noise.

The Incremental PAV method will have an advantage, since values ai that are in the
correct order with respect to their neighbors and are approximated by themselves (zi = ai)
will be looked at only once. Moreover, runs will usually be short, and in the O(logn) bound
on the tree operations, the parameter n can be replaced by the run length.

G. Rote 1:11

The Scaling PAV Algorithm of Ahuja and Orlin [1], on the other hand, is completely
insensitive to the data: in addition to sorting, it will always perform Θ(logn) linear-time
sweeps over the data.

The Dynamic Programming Algorithm might potentially benefit from almost sorted data.
At least in the case when the input comes in truly sorted order, the algorithm will never call
deletemax. To take advantage of almost sorted data, one would need a priority queue where
it is cheaper to retrieve (by findmax) and delete elements that have been inserted recently.

12 Convexity Dynamic Programming

One referee has pointed out that the technique that we advocate is known in the programming
contest literature under the name “convexity dp” (for “convexity dynamic programming”).
In fact, the unweighted problem (Section 9) has become quite a standard problem in pro-
gramming contests: It was used as problem SEQUENCE in the 2004 Balkan Olympiad for
Informatics1, and was even solved during the contest by one high school student, Filip Wolski,
with an O(n logn) solution. Numerous programs that use just a few lines of code and imple-
ment the algorithm of Section 9 can be seen at the Codeforces programming contest platform2.

Another problem of the same flavor, which can also be solved using convexity, has been
posed in 2009 under the name CCROSSX – Cross Mountain Climb Extreme3. Here, the
approximating sequence is not required to be increasing, but it is restricted to have a bounded
difference between successive elements: |zi − zi+1| ≤ d, for some given bound d.

We are grateful to the referee for the pointers to the programming contest community.

References

1 R. K. Ahuja and J. B. Orlin. A fast scaling algorithm for minimizing separable convex
functions subject to chain constraints. Operations Research, 49:784–789, 2001. doi:10.
1287/opre.49.5.784.10601.

2 R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference
under Order Restrictions. Wiley, 1972.

3 R. E. Barlow and H. D. Brunk. The Isotonic Regression Problem and its Dual. Journal
of the American Statistical Association, 67(337):140–147, 1972. doi:10.1080/01621459.
1972.10481216.

4 Heather Booth and Robert Endre Tarjan. Finding the minimum-cost maximum flow in a
series-parallel network. J. Algorithms, 15:416–446, 1993. doi:10.1006/jagm.1993.1048.

5 M. R. Brown and R. E. Tarjan. A fast merging algorithm. J. Assoc. Comp. Mach., 26:211–
226, 1979. doi:10.1145/322123.322127.

6 P. M. Pardalos, G. L. Xue, and Y. Li. Efficient computation of an isotonic median regression.
Applied Math. Letters, 8(2):67–70, March 1995. doi:10.1016/0893-9659(95)00013-G.

7 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer, 1985.

8 Quentin F. Stout. Unimodal regression via prefix isotonic regression. Comp. Stat. and Data
Anal., 53:289–297, 2008. doi:10.1016/j.csda.2008.08.005.

1 http://www.boi2004.lv/Uzd_diena1.pdf
2 https://codeforces.com/contest/13/status/C
3 https://www.spoj.com/problems/CCROSSX/

SOSA 2019

http://dx.doi.org/10.1287/opre.49.5.784.10601
http://dx.doi.org/10.1287/opre.49.5.784.10601
http://dx.doi.org/10.1080/01621459.1972.10481216
http://dx.doi.org/10.1080/01621459.1972.10481216
http://dx.doi.org/10.1006/jagm.1993.1048
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1016/0893-9659(95)00013-G
http://dx.doi.org/10.1016/j.csda.2008.08.005
http://www.boi2004.lv/Uzd_diena1.pdf
https://codeforces.com/contest/13/status/C
https://www.spoj.com/problems/CCROSSX/

1:12 Isotonic Regression by Dynamic Programming

A Weighted Isotonic L2 Regression

We state without proof the properties of the functions fk that arise for the L2 objective
function.

I Lemma 3.
(a) fk is a piecewise quadratic convex function.
(b) The derivative f ′k(x) is a piecewise linear increasing and concave function. In particular,

it is continuous.
(c) The leftmost piece of f ′k(x) has slope 2

∑k
i=1 wi. The rightmost piece has slope 2wk.

In contrast to the L1 case (Lemma 1), the breakpoints are not restricted to the points ai.
The transition from fk−1 to gk−1 requires the elimination of the increasing part at the

right rim. It is easier to carry this out at the level of the derivative: To go from f ′k−1 to
g′k−1, we eliminate the positive part and replace it by the constant 0 function, see Figure 6.
Afterwards, in order to produce f ′k, we increment gk−1 by the derivative of wk(x − ak)2,
which is the linear function 2wk(x− ak).

If we represent the quadratic pieces of the form bx2 − 2cx + d by triplets (b, c, d), we
can arrange things so that the algorithm performs almost the same calculations as the
Incremental PAV Algorithm of Stout [8, Fig. 7].

Like for the case of the L1 norm (Section 5), the necessity to add functions suggests that
we store differences (∆b,∆c,∆d) between successive pieces instead of the values themselves.
In fact, the differences ∆d of the constant terms are redundant, because two adjacent
quadratic pieces must touch at some point where they have a common tangent. In other
words, the graph of the difference function ∆b · x2 − 2∆c · x+ ∆d must touch the x-axis, and
therefore ∆d = ∆c2/∆b. The fact that ∆d is irrelevant is also evident from the fact that fk,
its derivative being f ′k (Figure 6), is determined by f ′k up to one parameter, the integration
constant. The di coefficients don’t show up in f ′k, and therefore their differences play no role
in determining fk.

When cutting away the positive branch of the function f ′k−1, the algorithm must decide
whether the rightmost piece, y = 2b1x− 2c1, should be completely eliminated, see Figure 6.
This is the case if its intersection X with the second piece y = 2b2x− 2c2 lies to the right of
the intersection with the x-axis. As shown in the illustration, this amounts to the comparison
∆c
∆b ≥

c1
b1
.

Now, the (b, c) and (∆b,∆c) values are initially created from the quadratic functions
wkx

2 − 2wkak + a2
k = bx2 − 2cx + d, and thus (b, c) = (wk, wkak) During the algorithm,

adjacent (∆b,∆c) values are pooled together, and they become expressions of the form
∆b =

∑k
i=j wi, ∆c =

∑k
i=j wiai. These are the same as the quantities sumw and sumwy that

are maintained in [8, Fig. 7]. The test ∆c
∆b ≥

c1
b1

is nothing but a comparison of weighted
averages. Thus, indeed, the core of the Dynamic Programming Algorithm performs the same
calculations as Stout’s Incremental PAV Algorithm.

There are, however, some slight differences.
(i) The Incremental PAV Algorithm updates the optimal solution value E2 directly in one

step, after all positive parts of f ′k have been eliminated. For this purpose, it maintains
the variables sumwy2 =

∑k
i=j wia

2
i . In our Algorithm 3, the update of the objective

function is not detailed, but it would be most natural to update it with each iteration
of the while-loop.

G. Rote 1:13

y = 2b1x− 2c1

y =
2b2

x−
2c2

−2c1

−2c2

f ′k−1(x)

g′k−1(x)

c1
b1

c2−c1
b2−b1 = ∆c

∆b

x

X

y

Figure 6 Transforming f ′k−1 into g′k−1.

(ii) Another difference is the determination of the optimal solution z. Stout’s Incremental
PAV Algorithm is straightforward: it simply sets each variable zi to the weighted
average of its run. The Dynamic Programming Algorithm, on the other hand, computes
the solution by the formula (5) and achieves the same result in an indirect way, see the
last part of Algorithm 2.

The reason why the L1-regression requires O(n logn) time and the L2-regression does not
(Question 4 in Section 10) is that the absolute value function in the L1 objective inserts
breakpoints of its own, whereas the L2 objective function is smooth, and breakpoints are
created only at the right end when replacing the increasing part of fk by a flat part.

A.1 Geometric Interpretation: Lower Envelope and Lower Convex Hull

If we look at the area below the graphs fk and gk, the algorithm can be interpreted
geometrically as an alternating succession of the following two operations.

Intersect the area with the negative halfplane.
Apply an affine transformation (in particular, a shearing transformation).

We can eliminate the affine transformations and carry out all intersection operations in the
original coordinate system. The problem reduces to an intersection of lower halfplanes, which
result from applying the appropriate shearing transformation to the negative halfplanes, as
shown in Figure 7.

I Theorem 4. The weighted isotonic L2 regression problem of minimizing (8) subject to the
monotonicity constraints (1) can be solved by constructing the lower envelope of n+ 1 lines
F0, F1, . . . , Fn, which are given by

Fk : y = 2
k∑

i=1
wiai −

(
2

k∑
i=1

wi

)
x.

If two lines Fj and Fk form adjacent edges on the lower envelope, then the optimum solution
has a run zj+1 = zj+2 = · · · = zk of values that are equal to the x-coordinate of the
intersection point between Fj and Fk.

SOSA 2019

1:14 Isotonic Regression by Dynamic Programming

F0

F1

F2

F3

F4

F5

F6 F7

Figure 7 The L2 isotonic regression problem as the lower envelope of lines. The approximation
error E2 equals the shaded area, with the dark shaded area counted twice.

Moreover, the approximation error E2 of the lines can be expressed as a weighted sum
of certain face areas in the line arrangement. For a face in the arrangement, we record a
sequence of n + 1 pluses and minuses, depending on whether the face lies above Fk (+)
or below Fk (−). For example, the face marked by a cross in Figure 7 has the sequence
+++++−++. If there are r runs of consecutive pluses, then the area of this face is counted
with multiplicity max{r − 1, 0}.

This is of course not the best way to compute the approximation error E2. It can easily
be computed in linear time by substituting the optimal solution into (8). The program of
Stout [8, Fig. 7] computes the approximation error incrementally in a more direct way.

The above formula arose by working out how the objective function changes when k is
incremented. It turns out that one has to add a certain integral, which, in terms of the
arrangement of the lines Fi, equals the area that lies (i) above Fk, (ii) below Fk−1, and (iii)
above the lower envelope of F0, F1, . . . , Fk−1. Figure 7 shows this area for k = 6 with a heavy
outline. (Bear in mind that the line Fk or Fk−1, respectively, corresponds to the x-axis in
the original setting of Figure 6.) Pursuing this further, one can show that the approximation
error can be expressed as the sum of at most n− 1 triangle areas. This can be translated
into the weighted sum of face areas that was given above.

Using a well-known geometric duality transform, the lower-envelope problem turns into
the problem of computing the lower convex hull (or greatest convex minorant) of a set of
points: The line y = ax+ b becomes the point (−a, b) and the point (u, v) becomes the line
y = ux+ v. This duality preserves incidences and above/below relations. After canceling the
factor 2 from the point coordinates, we arrive at the following result, see Figure 8.

G. Rote 1:15

L7

w7

(
w1

w1a1

) (
w2

w2a2

)P1

P2

P4 = Q4

P8 P9
P10

P5

P6

P7

P11
P14 = Q14

P13

P12

(
w3

w3a3

)

Q5
Q6 Q7

(
w1

w1z∗
1

)
P3 = Q3

P0 = Q0

Q1

(
w13

w13z∗
13

)Q13

Q2

Figure 8 The regression problem as a lower convex hull. Some points Qi on the lower hull are
marked, together with two selected vectors Qi−1Qi; z∗i denotes the convex hull solution.

I Theorem 5. Consider a polygonal chain P0P1 . . . Pn whose segments are given by the
vectors Pi − Pi−1 =

(
wi

wiai

)
.

The weighted isotonic L2 regression problem of minimizing (8) subject to the monotonicity
constraints (1) can be solved by constructing the lower convex hull of the chain P0P1 . . . Pn.

If PjPk is an edge of the lower convex hull, then the optimum solution has a run
zj+1 = zj+2 = · · · = zk of values that are equal to the slope of the edge PjPk.

This surprising connection between an isotonic regression problem and a basic com-
putational geometry problem has been known for a long time [2, Section 1.2, mentioning
earlier sources in Section 1.6], see also [7, Section 4.2.2]. Barlow and Brunk [3, Section
4.1, the taut-string solution], derived it as an instance of convex-programmining duality:
The polygon P0P1 . . . Pn is called the cumulative sum diagram. The set of lower envelopes
Q0 . . . Qn of P0 . . . Pn with endpoints Q0 = P0 and Qn = Pn forms a cone which is dual to
the cone of increasing functions (1). From this, Theorem 5 (and the stronger inequality (11)
below) follows by easy duality arguments [3, Theorem 2.1, in particular (2.4)]. A streamlined
self-contained proof of Theorem 5, which does not depend on this background, is contained
in the monograph of Barlow, Bartholomew, Bremner, and Brunk [2, Theorem 1.1]. We
reproduce this proof in Appendix C. It appears as a clever algebraic manipulation, exploiting
the fact that the optimum solution is unchanged (zi = zi+1) whenever the lower hull passes
below Pi, see the complementarity condition (12) in Appendix C.

Since the vertices Pi are given in sorted order, the lower convex hull can be computed
in linear time. The standard incremental algorithm for this task becomes the same as the
Dynamic Programming Algorithm or Stout’s Incremental PAV method for this case.

The approximation error E2 is not so easy to figure out in this representation. One might
be tempted to believe that it is area of the pockets between the polygonal chain and its
convex hull, but this is not true: This area depends locally only linearly on the data, while the
error function is quadratic. Here is an attempt at a geometric interpretation of the objective
function: Enclose each edge Pi−1Pi in a vertical parallelogram, with two sides parallel to the
convex hull edge under Pi−1 and Pi. Figure 8 shows a few of these parallelograms. If such a
parallelogram has horizontal width wi and vertical edges of length Li, it contributes L2

iwi to
the objective function. The objective function is the total contribution of all n edges. This is
of course not a deep statement; we just measure the squared deviation of each step ai from
the average of each run, i.e., zi.

SOSA 2019

1:16 Isotonic Regression by Dynamic Programming

Qj=Rj=Pj

Qj+1

Rj+1

Qk

Rk

Pk

(a)

Pj+1

Qj=Rj

Rj+1

Qk=Pk

Rk

(b)

Rj′

Pj′

Qj+1

Qj′

Figure 9 (a) Case 1. zj+1 < z∗j+1. (b) Case 2. zj+1 > z∗j+1. The segments whose slopes are
compared in the proof are highlighted.

B Direct Proof of Theorem 5

For completeness, and for comparison, we give an independent elementary proof of the
correspondence between isotonic L2 regression and the convex hull (Theorem 5). This
pedestrian proof does not assume any optimization background, and I hope it gives some
more direct geometric insight into the correspondence.

The only tool that we need is the elementary fact that the best L2-approximation by a
run of equal values zj = zj+1 = · · · = zk = z is the weighted average:

I Proposition 6. Let µ =
∑k

i=j wiai/
∑k

i=j wi be the weighted average of the sequence
aj , . . . , ak. Then

k∑
i=j

wi(z − ai)2 =
k∑

i=j

wi(µ− ai)2 +
k∑

i=j

wi(z − µ)2 (9)

In particular, if we regard the left-hand side of (9) as a function of z, it is a quadratic
function with a unique minimum at z = µ.

If we start the polygonal chain at P0 =
(0

0
)
, the coordinates of the points Pi =

(
Wi

Ai

)
are the partial sums Wk =

∑k
i=1 wi and the weighted partial sums Ak =

∑k
i=1 wiai, for

0 ≤ k ≤ n. The crucial observation is that the weighted average of a subsequence aj , . . . , ak,
which plays a prominent role in Proposition 6, shows up as the slope of the segment Pj−1Pk.

We denote the claimed optimal solution by z∗i , and we set Z∗k =
∑k

i=1 wiz
∗
i . Then the

points Qi =
(

Wi

Z∗
i

)
form the lower convex hull Q0Q1 . . . Qn: The vector Qi−Qi−1 =

(
wi

wiz∗
i

)
has

slope z∗i , and Qi is the point where the vertical line through Pi intersects the lower hull, see
Figure 8. Accordingly, Z∗i ≤ Ai for i = 0, . . . , n. The endpoints are fixed to Q0 = P0 =

(0
0
)

and Qn = Pn, and thus, Z∗0 = A0 = 0 and Z∗n = An.
For comparison, we consider an arbitrary increasing sequence zi. We define accordingly

Zk =
∑k

i=1 wizi and the points Ri =
(

Wi

Zi

)
, forming the polygonal chain R0R1 . . . Rn.

We will now show that a sequence (z1, . . . , zn) 6= (z∗1 , . . . , z∗n) cannot be optimal. The
idea is to identify a subsequence of equal consecutive values and to show that they can be
jointly modified to improve the objective function, while keeping the sequence increasing.

Let us suppose that the two sequence agree up to zj . We distinguish whether zj+1 is
smaller or larger than z∗j+1.

G. Rote 1:17

Case 1. zj+1 < z∗j+1, and accordingly, Rj+1 lies below Qj+1, see Figure 9a. Let us take
the maximum k ≤ n such that zj+1 = zj+2 = · · · = zk. In other words, Rk is the next
vertex after Rj . The slope of RjRj+1 . . . Rk is the common value z = zj+1 = · · · = zk.
Since Rj . . . Rk forms a straight line segment and Qj . . . Qk is convex, Qk must lie above
Rk, and therefore Pk must also lie above Rk. Qj is a vertex of the lower hull because
z∗j+1 > zj+1 ≥ zj = z∗j . Thus, Qj = Rj = Pj . The weighted average of aj+1, . . . , ak,
which is the slope of the segment PjPk, is therefore larger than z (the slope of Rj . . . Rk).
It follows from Proposition 6 that the objective function can be improved by increasing
the common value z of zj+1 = zj+2 = · · · = zk. By the maximal choice of k, some small
increase of z is always possible without violating the monotonicity of the sequence.

Case 2. zj+1 > z∗j+1, and accordingly, Rj+1 lies above Qj+1, see Figure 9b. Then Rj must
be a vertex of the convex chain R0 . . . Rn, because zj+1 > z∗j+1 ≥ z∗j = zj .
We choose the largest k ≤ n such that z∗j = z∗j+1 = · · · = z∗k. In other words, Qk is the
next vertex after Qj on the lower hull, and thus Qk = Pk. Now we choose the smallest
j′ ≥ 0 such that zj′+1 = zj′+2 = · · · = zk. In other words, we extend the segment Rk−1Rk

to the left until we hit the previous vertex Rj′ of the convex chain. Since Rj is a vertex,
as just observed, we have j′ ≥ j. Since Pj′ lies on or above the segment QjQk,

slope(Pj′Pk) = slope(Pj′Qk) ≤ slope(QjQk). (10)

On the other hand, RjRj+1 . . . Rk branches off upwards from the segment QjQk and
forms a convex chain with increasing slopes. Thus, the slope of Rj′Rk is strictly larger
than the slope of QjQk. With (10), we conclude that the slope of Rj′Rk (the common
value z := zj′+1 = zj′+2 = · · · = zk) is larger than the slope of the segment Pj′Pk (the
weighted average of aj′+1, . . . , ak). Proposition 6 implies that the objective function can
be improved by decreasing z. By the minimal choice of j′, some small decrease of z is
possible without violating the monotonicity of the sequence.

We have thus shown that a sequence different from (z∗1 , . . . , z∗n) cannot be optimal. From
here, there are two ways to conclude the proof of Theorem 5. (a) By observing that the
objective function E2 is continuous and goes to infinity when the argument (z1, . . . , zn)
becomes unbounded, we establish that an optimum solution exists. Since (z∗1 , . . . , z∗n) is the
only solution that is not excluded by our arguments, it must be the optimum solution.

(b) If a constructive proof is preferred, one can extend the above argument with little
additional effort to a procedure that transforms any solution R0 . . . Rn into the lower hull
Q0 . . . Qn in O(n) steps without increasing the approximation error. J

C The proof of Barlow, Bartholomew, Bremner, and Brunk (1972)

For the convenience of the reader, and for comparison, we reproduce the short and elegant
proof of Theorem 5 from Barlow, Bartholomew, Bremner, and Brunk [2, Theorem 1.1, pp. 12–
13], translated to our notation, with a few more details and and with a minor correction and
improvement. They proved the following inequality:

n∑
i=1

wi · (zi − ai)2 ≥
n∑

i=1
wi · (z∗i − ai)2 +

n∑
i=1

wi · (zi − z∗i)2 (11)

To establish the optimality of z∗, we would only need to compare the L2-errors of an
arbitrary increasing sequence z against z∗ (the first two sums). The inequality (11) gives a
stronger statement than needed for this, because of the additional quadratic term on the
right, which measures the deviation between z and z∗. With this term, uniqueness of the
optimal solution follows directly.

SOSA 2019

1:18 Isotonic Regression by Dynamic Programming

We use the setup with the polygons P0 . . . Pn and Q0 . . . Qn and their coordinates Pi =(
Wi

Ai

)
and Qi =

(
Wi

Z∗
i

)
, which were introduced in Appendix B for the first proof. We will

need one more observation: If the lower hull lies strictly below Pi, then the hull edge passes
straight through Qi. In other words:

Z∗i < Ai =⇒ z∗i = z∗i+1 (12)

Let us now go into the calculation: The inequality (11) has the form
∑

(ui + vi)2 ≥∑
u2

i +
∑
v2

i , and the difference between the left side and the right side is 2
∑
uivi. In our

case, this is

D = 2
n∑

i=1
wi(z∗i − ai)(zi − z∗i) = 2

n∑
i=1

(z∗i − zi)(wiai − wiz
∗
i).

We want to show that this is nonnegative. We apply the partial summation formula

n∑
i=1

gi(Hi −Hi−1) =
n−1∑
i=1

(gi − gi+1)Hi + gnHn − g1H0 (13)

with gi = z∗i − zi and Hi −Hi−1 = wiai − wiz
∗
i , and therefore Hi = Ai − Z∗i . In our case,

H0 = A0 = Z∗0 = 0, and Hn = 0 because Z∗n = An. Thus, the two boundary terms in (13)
vanish, and we get

D = 2
n−1∑
i=1

[
(z∗i − zi)− (z∗i+1 − zi+1)

]
(Ai − Z∗i)

= 2
n−1∑
i=1

(zi+1 − zi)(Ai − Z∗i)− 2
n−1∑
i=1

(z∗i+1 − z∗i)(Ai − Z∗i).

The first sum is nonnegative because zi+1 ≥ zi and Ai ≥ Z∗i . The second sum is 0 because
of the complementarity relation (12). J

	Problem Statement: Weighted Isotonic L_1 Regression
	Our Algorithm
	The Dynamic Programming Setup
	The Functions f_k
	Representing Piecewise Linear Functions
	Carrying out the Recursion (4)
	The Weighted Regression Algorithm
	Runtime Analysis
	Unweighted Regression
	Other Error Measures: Weighted Isotonic L_2 Regression
	Other Algorithms
	Comparison
	Simplicity
	Incremental Computation (Prefix Regression)
	Numerical Precision
	Data Sensitivity

	Convexity Dynamic Programming
	Weighted Isotonic L_2 Regression
	Geometric Interpretation: Lower Envelope and Lower Convex Hull

	Direct Proof of Theorem 5
	The proof of Barlow, Bartholomew, Bremner, and Brunk (1972)

