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Abstract

Grid peeling is the process of repeatedly removing the convex hull vertices of the grid
points that lie inside a given convex curve. It has been conjectured that, for a more and
more refined grid, grid peeling converges to a continuous process, the affine curve-shortening
flow, which deforms the curve based on the curvature.

We prove this conjecture for one class of curves, parabolas with a vertical axis, and we
determine the value of the constant factor in the formula that relates the two processes.

Contents

1 Introduction 2
1.1 History and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Peeling with random sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Homotopic curve shortening . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Equivariance under affine transformations . . . . . . . . . . . . . . . . . . 4

1.2 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The grid parabola 5
2.1 The horizontal period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Periodic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Grid peeling for parabolas 8
3.1 Evaluating the horizontal period Ht . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Distance between the grid parabola and the reference parabola . . . . . . . . . . 9
3.3 Comparison to true parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Refined grid peeling for parabolas, proof of Theorem 1 . . . . . . . . . . . . . . . 12

4 Proof of Theorem 2 about the period of the grid parabola 12

5 Future research 18

A Alternative expressions for the horizontal period Ht 20

B Proof of Lemma 4 about the points on the grid parabola 20

C Minimum-area convex lattice polygons and grid parabolas 23

∗The authors are listed by seniority. Authors’ addresses and affiliations: M. R. and G. R.: Freie Univer-
sität Berlin, m.rueber@web.de and rote@inf.fu-berlin.de. M. S.: ISTA (Institute of Science and Technology
Austria), Klosterneuburg, Austria, Morteza.Saghafian@ist.ac.at.

1

mailto:rote@inf.fu-berlin.de
mailto:Morteza.Saghafian@ist.ac.at


D Experiments with grid peeling for parabolas 23
D.1 Results of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.2 The average speed at the critical values of a . . . . . . . . . . . . . . . . . . . . . 27
D.3 The time period at the critical values of a . . . . . . . . . . . . . . . . . . . . . . 29
D.4 Deviation from the parabolic shape . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E Vertical difference between the grid parabola and the reference parabola 30

1 Introduction

In 2017, Eppstein, Har-Peled, and Nivasch [9] observed a remarkable connection between a
continuous deformation of a curve in the plane, the affine curve-shortening flow (ACSF), and a
discrete process, grid peeling.

In the affine curve-shortening flow, a smooth curve is deformed by moving every point toward
the direction in which the curve bends, at a speed of κ1/3 in the normal direction, where κ is the
curvature at that point at the current point of time, see Figure 1. The left part of Figure 2 shows
a few snapshots of this inward-growing process, starting from a semicircle. (The semicircle is
not a smooth curve, but the definition of the flow can be extended to cover piecewise smooth
curves.)

By contrast, grid peeling is a process that is discrete both in space and in time. Given a
convex curve, we start by finding the convex hull of all points of a uniform square grid inside
the curve. Then we iteratively remove the vertices of the convex hull, and take the convex hull
of the remaining grid points.

Figure 1: Left: The Affine Curve-Shortening Flow (ACSF). The velocity is indicated by arrows,
whose length is proportional to κ1/3. Right: A convex curve and the first three steps of grid
peeling.

Eppstein, Har-Peled, and Nivasch observed that, as the underlying grid is refined, grid peeling
approximates the ACSF process, as can be seen in Figure 2. More specifically, they conjectured
that, for a more and more refined grid of spacing 1/n, the m-th convex layer of a convex curve
converges to the ACSF after time T , if m is chosen as

m = ⌊cgTn4/3⌋ (1)

for an appropriate constant cg, which was experimentally determined to be approximately 1.6
[9, Conjecture 1].

We prove this conjecture for the special case when the curve is a parabola with vertical axis,
and we find the precise value of the constant cg:

cg = 3

√
π2

2ζ(3)
≈ 1.60120980542577, (2)
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Figure 2: ACSF (left) and grid peeling (right) of a semicircle of diameter 1. The left figure
shows 10 snapshots of ACSF with regular time increments; the right figure shows every 2714th
convex layer for a grid of spacing 1/5000. The increment 2714 corresponds to the conjectured
formula (1) with a value cg ≈ 1.587. (From [9, Figure 3], by permission from the authors.)

where

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

is the Riemann zeta function, with values ζ(2) = π2/6 ≈ 1.644934 and ζ(3) ≈ 1.2020569.

Theorem 1. For the parabola Π: y = ax2/2 + bx + c, the ACSF is a vertical translation with
velocity a1/3. Thus, at time T > 0, it becomes the parabola ΠT : y = ax2/2 + bx+ c+ Ta1/3.

If we apply grid peeling to Π with a grid of spacing 1/n for m = ⌊cgTn4/3⌋ steps, then, as
n→ ∞, the vertical distance between the resulting grid polygon and ΠT is bounded by

O

(
(Ta2/3 + a−2/3) log n

a

n1/3

)
.

For fixed T and a, this error bound goes to 0 as n→ ∞.
We can extend this theorem to any parabola whose axis has a rational slope a/b: A uni-

modular transformation with a suitable matrix ( a −b
u v ) of determinant 1 will leave the grid

unchanged and make the axis vertical, and then Theorem 1 can be applied.

1.1 History and background

The ACSF process was first studied in the 1990s in the area of computer vision and image
processing, by Alvarez, Guichard, Lions, and Morel [1] and by Sapiro and Tannenbaum [16].
One way to understand the ACSF is to regard it as a limit of affine erosions, as shown by
F. Cao [7, Theorem 6.22]. An affine erosion with parameter ε removes the union of all pieces
of area ε that can be cut off by a straight line. (In convex geometry, this is also called the wet
part ; it plays a role in estimating the area and the number of vertices of the convex hull of a
random sample of points [4, 3].) Repeating this process makes the shape rounder and rounder,
like a pebble rolling in water. Letting ε go to zero leads to the ACSF as the continuous limit.

The other process that we study is formed by the convex layers or onion layers of a point
set. They have their origin in computational geometry and statistics: The innermost convex
layer provides a robust estimate of the “center” of a distribution. The special case where the
point set is a grid was first investigated by Har-Peled and Lidický [10], who showed that the
n × n square grid has Θ(n4/3) convex layers. For a box in three and higher dimensions, the
asymptotic number of layers is not known, see for example [8] and the references given there.
See [2, 6, 7] for more background and references to the literature, both on the ACSF and on
grid peeling.

1.1.1 Peeling with random sets

More recently, Calder and Smart [6] investigated the related process where the grid is replaced
by a random point set. More precisely, the refined grid of spacing 1/n is replaced by a Poisson
point set of density 1/n2. In this setting, they could prove an analogous statement:
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There exists a constant cr ≈ 1.3 such that the m-th convex layer, for m = ⌊crTn4/3⌋,
approximates the ACSF at time T . Since the underlying process is random, this statement
requires some probabilistic qualification; see [6, Theorem 1.2] for the precise statement, which
is quite strong and general: It is valid in arbitrary dimension, and convergence holds (with
high probability) uniformly for all T . The density can be nonuniform, which corresponds to an
ACSF with a location-sensitive speed. There is no precise formula for the value of the random-
set peeling constant cr, not even a conjectured one. Since cr < cg, random-set peeling proceeds
faster than grid peeling at the same density.

1.1.2 Homotopic curve shortening

Avvakumov and Nivasch [2] extended peeling to nonconvex and even self-crossing curves, in-
troducing the concept of homotopic curve shortening. Both for grid peeling and for random-set
peeling, the observed relation with the ACSF process persists also in this setting.

1.1.3 Equivariance under affine transformations

It is easy to check that the ACSF is equivariant under area-preserving affine transformations, a
property that gave rise to the term “affine curve-shortening flow.” (Arbitrary affine transfor-
mations, which are not necessarily area-preserving, can be accommodated by scaling the time
parameter.) The relation between ACSF and grid peeling is the more surprising as grid peeling
does not have this property. Grid peeling is equivariant only under a special class of affine trans-
formations, namely those that also preserve the grid (unimodular transformations), a property
that we will often use. (Peeling with random sets, on the other hand, is clearly equivariant
under area-preserving affine transformations.)

1.2 Conics

As stated in Theorem 1, the ACSF for a parabola is just a translation at constant speed. This
special behavior is shared, to a certain extent, by the other types of conics: They are scaled
under ACSF but otherwise maintain their shape [17, Lemma 8]. More specifically,

• an ellipse (or a circle) shrinks toward the center, and eventually collapses to a point;

• a parabola is translated parallel to the axis;

• a hyperbola expands from its center.

Among the conics, parabolas appear most attractive for investigation, because they don’t even
need to be scaled. Also for the case of random-set peeling, the peeling of a parabola lies at
the core of the proof of Calder and Smart [6], forming what they call the cell problem. As
regards experiments, the downside of parabolas, as opposed to ellipses, is that a parabola is an
unbounded curve, and even the first step of grid peeling is not obvious to compute. However,
as we shall see, for parabolas with rational coefficients, we can make use of a certain periodicity
along the curve, which reduces grid peeling to a finite computation. Once the sequence of
peelings goes into a loop, one has a complete overview of the whole infinite grid peeling process.

Grid peeling has been investigated also for hyperbolas, in a sense. If one starts with the
upper-right quadrant R+×R+, the ACSF develops into positive branches of hyperbolas xy = c.
Eppstein, Har-Peled, and Nivasch [9, Theorem 5] investigated the convex layers of N × N and
proved that the m-th convex layer is sandwiched between two hyperbolas:

c1m
3/2 ≤ xy ≤ c2m

3/2, (3)

except that the lower bound does not hold within a strip of width O(
√
m log2m) around the

axes.
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The constants c1 and c2 are not computed explicitly, but some values can be worked out from
the proof. We add two side remarks regarding the exception near the axes that the theorem
makes. Firstly, some exception of this sort has to be made, because the m-th layer goes through
the points (m, 0) and (0,m), and no hyperbola xy = const can be squeezed below these points.
To give the hyperbola some chance in principle to squeeze under, we might peel the quadrant
of positive grid points, or equivalently, we allow the hyperbola to be centered at (−1,−1) (or
some other fixed point), but this would still not suffice for (3). Secondly, the claim [9, Theorem
5] is stated with an “exception strip” around the axes whose width is only O(

√
m); however,

there is a small gap in the proof [9, p. 315, right column]: In the proof of Lemma 18, when
applying Lemma 7 for the rectangle spanned by the points q/2 and q, an error term of the form
±O(N logN) from Lemma 7 is ignored. When the error term is taken into account, the proof
goes through with the larger margin of exception claimed above.

1.3 Overview

In Section 2, we define a family of specific curves, the so-called grid parabolas Pt. Grid peeling
reproduces them with a vertical shift after t steps (or t+1, depending on the parity). This is our
main technical result (Theorem 2), whose proof is postponed to Section 4. Based on Theorem 2,
we prove Theorem 1, our main theorem about grid peeling of parabolas, in Section 3. Sections A
and B analyze the quantities that arise in the construction of the grid parabola, using arguments
from elementary number theory. The final Section D reports computer experiments with grid
peeling for parabolas. These experiments were the source the discoveries expressed in Theorem 2
below, and its consequence, our main Theorem 1. We also describe some interesting phenomena
beyond those that are discussed and proved in the first part of the paper.

2 The grid parabola

Our object of investigation is a special infinite polygonal chain Pt, which depends on a positive
integer parameter t. It is defined as follows:

1. Let St be the set of all rational numbers s = a/b with 0 < b ≤ t. We call these elements
the slopes. We will always assume that the fractions a/b representing slopes are reduced.

2. For each slope s = a/b ∈ St, take the longest integer vector of the form(
x
y

)
= q

(
b
a

)
(q ∈ Z)

with 0 < x ≤ t. Let Vt denote the set of these vectors. Figure 3 shows Vt for t = 11.

3. Form the chain P = Pt by concatenating these vectors in order of increasing slope.

Figure 4 shows a section of the grid parabola P5.
We can make a few simple observations: It is clear that for every vector (x, y) ∈ Vt with a

positive slope, there is a corresponding vector (x,−y) ∈ Vt with negative slope. Thus, the curve
P is symmetric with respect to a vertical axis. The lowest points on P form a horizontal edge
of length t. We place the origin O of our coordinate system at the center of this edge, so that
the symmetry axis becomes the y-axis. When t is odd, this implies that the vertices of P have
half-integral x-coordinates. Nevertheless, we will refer to the points of the square unit grid on
which the vertices of P lie (as shown in Figure 4) as the grid.

Figure 5 applies a few grid peeling steps to the grid parabola P5. We can see that P5

reproduces itself after 5 iterations, translated up by 1 unit. From then on, the process repeats
ad infinitum. Our central technical result is that this is always the case.

Theorem 2. For odd t, the chain Pt repeats after t peeling steps, one unit higher.
For even t, the chain Pt repeats after t+ 1 peeling steps, one unit higher.
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t = 11

Figure 3: The set V11 of vectors (x, y) from which P11 is formed, shown as green dots. The
vector with slope s = 2/5 is highlighted. The points of V11 extend indefinitely to the top and to
the bottom. The picture shows the range −1 ≤ y ≤ 9.

Theorem 2 and the special construction of the grid parabola were suggested by experiments,
which are reported in Appendix D. In Appendix C we mention that our grid parabolas play a
role in the convex lattice n-gons of minimum area.

2.1 The horizontal period

While P is an infinite object, we will argue that it is sufficient to look at a finite section, because
this section “repeats periodically” in a certain sense.

We partition the vectors Vt = · · · ∪ V (−2)
t ∪ V (−1)

t ∪ V (0)
t ∪ V (1)

t ∪ V (2)
t ∪ · · · according to the

integral part of their slope into the sets

V
(i)
t := { (x, y) ∈ St | i < y

x ≤ i+ 1 }

for i ∈ Z. The vectors in V
(0)
t lead P from the origin to an edge with vector (t, t) of slope 1.

More precisely, in the way we have defined V
(0)
t , these vectors lead from the right endpoint of

the horizontal edge to the upper-right endpoint of the edge (t, t). However, we prefer to select
the midpoint of the edge (t, t), and we place a reference point Q at this point. We define the
horizontal period Ht as the horizontal distance between the origin O and Q.

Ht is the sum of the x-coordinates of the vectors in V
(0)
t . (Only half of the vector (t, t) ∈ V

(0)
t

contributes to Ht, but this is compensated by including half of the vector (t, 0) /∈ V
(0)
t .) The first

values of Ht are H1, H2, . . . = 1, 4, 11, 22, 43, 64, 107, 150, etc. In Section 3.1, we will evaluate
this quantity and see that Ht ≈ 0.24 t3 (Lemma 4).

We claim that the segment OQ has slope 1
2 , and therefore the y-coordinate of Q is Ht/2.

Proposition 1. 1. The segment OQ has slope 1
2 .

2. Ht is even if and only if t is even.

Proof. The set Vt is symmetric with respect to the shearing operation
(
x
y

)
↔

(
x

x−y

)
, which keeps

the “mirror line” y = x/2 fixed and inverts the orientation of every vertical line, see the inset
of Figure 4. Thus, every vector in Vt with slope > 1

2 can be matched with a vector with slope

< 1
2 , so that the sum of these two vectors has slope 1

2 . The set V
(0)
t is slightly asymmetric with

respect to this mirror operation because it contains the edge of slope 1 but not the corresponding
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V
(0)
5

V
(1)
5

V
(−1)
5

t = 5

Q = (Ht,
Ht

2 )

Ht = 43

Πt: y =
x2

2Ht
− γ

O

y = x
2

x

y

x

Figure 4: The grid parabola Pt for t = 5. The inset in the upper left corner shows some vectors
of the set V5, at a slightly enlarged scale. Πt is the reference parabola defined by y = x2

2Ht
. Here

it is shifted down by some offset γ.

edge of slope 0. This asymmetry is taken care of by including half of both edges in the vector
from O to Q. Thus, the slope between O and Q averages out to 1

2 .
To see statement 2, note that the vectors that are matched in a pair sum to a vector with

an even x-coordinate. The unmatched vectors in V
(0)
t are the vector of slope s = 1

2 , which has
an even x-coordinate, and the vector

(
t
t

)
, whose parity therefore decides the parity of Ht.

2.1.1 Periodic continuation

The mapping (x, y) 7→ (x, y+ ix) maps V
(0)
t to V

(i)
t ; hence it is sufficient to know V

(0)
t ; all other

sets V
(i)
t are copies of V

(0)
t where the slope of each vector is modified by an integer constant,

leaving the x-coordinate fixed. This means that the continuation of P beyond the arc from O to
Q is in some sense periodic: the same sequence of edges will appear again and again, only with
modified slopes. The mapping (x, y) 7→ (x +Ht, y +Ht/2 + x) maps O to Q, and it maps the
curve P to itself. The midpoints of the edges with integer slopes appear regularly at intervals
of length Ht. The midpoint of the edge with slope i is (iHt, i

2Ht/2). These points lie on a
parabola, which we call the reference parabola

Πt : y = x2/(2Ht),

and the polygonal chain Pt follows Πt with bounded local deviations. We summarize these
considerations in the following lemma, whose proof is straightforward.

Lemma 1. The affine transformation(
x

y

)
7→

(
x+Ht

y + x+Ht/2

)
maps the grid to itself, and in addition, it maps both Pt and the reference parabola Πt, or any
vertical translate of it, to itself.
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Figure 5: Consecutive peelings of P5. Since consecutive peelings share many vertices, it is not
easy to distinguish the curves. In the lower part, we have therefore vertically separated the
consecutive peelings. This has the effect that some grid points appear in several copies with
small vertical offsets, and horizontal grid lines get a curved appearance.

3 Grid peeling for parabolas

We start with the simple observation that grid peeling preserves inclusion:

Observation 1. Let U ⊆ U ′ ⊂ Z2 be two sets of grid points that are upward closed: (x, y) ∈
U =⇒ (x, y + 1) ∈ U . Let f denote one peeling step. Then f(U) ⊆ f(U ′).

Observation 1 implies that if C and D are two convex x-monotone curves that extend from
x = −∞ to x = +∞ (e.g. grid curve or an arbitrary smooth or piecewise smooth curve), and C
lies everywhere (weakly) below D, then this relation is maintained by grid peeling.

Lemma 2. P and Π advance at the same limiting speed.

Proof. As already argued, P approximates Π in a global sense, while locally, there might be
deviations. This implies that we can shift Π vertically down by some integer amount γ and
ensure that the shifted parabola, denoted by Π − γ, lies completely below P . Figure 4 shows
the parabola for γ = 8, but actually, γ = 1 should already be sufficient to push Π below P .

Now imagine that we start grid peeling simultaneously with P and with Π − γ, or more
precisely, with the convex hull of the grid points on or above Π− γ. Applying the monotonicity
property of Observation 1, we conclude that the evolution of Π − γ always remains below the
evolution of P . It can never overtake P , and in particular, the limiting speed of Π− γ, which is
the same as the limiting speed of Π, is at most the limiting speed of P .

We can push Π upward and start with a parabola Π+ γ′ that lies above P everywhere, and
argue in the same way that the evolution of P can never overtake the evolution of Π + γ′, and
thus, the limiting speed of Π is at least the limiting speed of P .
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3.1 Evaluating the horizontal period Ht

We have seen that Ht is the sum of the x-coordinates of the vectors in V
(0)
t . It is thus given by

the following expression:

Ht =
∑

(x,y)∈V (0)
t

x =
∑

0<y≤x≤t
gcd(x,y)=1

⌊
t

x

⌋
x

This sequence appears in the Online Encyclopedia of Integer Sequences [12, A174405]. It starts
with the values

H1, H2, . . . = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, 462, 619, 748, 895, 1066, 1339, . . .

The sequence has been investigated by Sándor and Kramer [18], who showed the following
asymptotic estimate:

Lemma 3.

Ht ∼
2ζ(3)

π2
t3 ≈ 0.243587656 t3

This can also be derived as a consequence of the more general Lemma 4, which is stated
below. Section A gives several alternative expressions for Ht.

3.2 Distance between the grid parabola and the reference parabola

We want to analyze the deviation between the grid parabola and the reference parabola. While
the reference parabola has an explicit expression, the grid parabola is given by a multistep
process, as described in Section 2. For getting from the origin to an arbitrary vertex of Pt, we
need to sum the vectors whose slope is at most some threshold α:

Uα
t :=

∑
0≤x≤t
0<y≤αx

gcd(x,y)=1

⌊
t

x

⌋(
x

y

)

More precisely, since the sum includes only vectors with y > 0, it measures the distance from
the right endpoint of the horizontal segment of Pt and not from the origin. Lemma 4, whose
proof will be given in Appendix B, gives an asymptotic expression for this sum:

Lemma 4. Let 0 ≤ α ≤ 1. Then

Uα
t =

2ζ(3)

π2

(
t3α+O(t2 log t)

t3α2/2 +O(t2 log t)

)
, and Ht =

2ζ(3)

π2
t3 +O(t2 log t).

The second expression is obtained from the first one by setting α = 1 and looking only at
the x-coordinate.

Proposition 2. The vertical distance between the grid parabola Pt and the reference parabola
Πt is bounded by O(t2 log t).

Proof. By the periodic behavior of Pt and Πt (Lemma 1), it suffices to look at the interval
0 ≤ x ≤ Ht. Pick a point x0 in this interval, see Figure 6. The corresponding point

(
x0

y0

)
on

Πt has y0 = x20/(2Ht), and the slope at this point is α := x0/Ht ≤ 1. As a first step, we find
the point

(
x1

y1

)
on Pt with the same slope α. We will show that it deviates from

(
x0

y0

)
by at most

O(t2 log t) in each coordinate: By construction the grid parabola contains the vertex(
x1
y1

)
=

(
t/2

0

)
+ Uα

t .

9

https://oeis.org/A174405


(
x0

y0

)
(
x1

y1

)
(
x0

ŷ

)
α

α

Πt

Pt

(
∆x
∆y

)

Figure 6: The vertical distance between Pt and Πt

The correction term t/2 accounts for the fact that Uα
t does not include the vector

(
t
0

)
and thus

measures the distance from the right endpoint of the horizontal segment of Pt and not from the
origin. Applying both parts of Lemma 4, we get(

x1
y1

)
=

(
t/2

0

)
+ Uα

t =
2ζ(3)t3

π2

(
α

α2/2

)
+

(
O(t2 log t)

O(t2 log t)

)
+

(
t/2

0

)
=

(
Ht +O(t2 log t)

)( α

α2/2

)
+

(
O(t2 log t)

O(t2 log t)

)
= Ht

(
α

α2/2

)
+

(
O(t2 log t)

O(t2 log t)

)
=

(
x0
y0

)
+

(
∆x

∆y

)
with ∆x,∆y = O(t2 log t). In the range 0 ≤ x ≤ Ht, the slope of Pt is bounded by 1. So when
we move from x1 to x0 = x1 +∆x on Pt, we arrive at a point (x0, ŷ) with |ŷ − y1| ≤ |∆x|, and
thus, the vertical distance |ŷ − y0| between Pt and Πt is at most |∆y|+ |∆x| = O(t2 log t).

Figure 20 in Appendix E shows the actual difference Pt −Πt for a few selected values of t.

3.3 Comparison to true parabolas

Let y = ax2/2 + bx + c. We are interested in the average (vertical) speed in which the curve
moves upwards. If we start grid peeling with a parabola y = ax2+ bx+ c for rational coefficients
a and b, we can show that, after some irregular “preperiod”, it will enter a periodic behavior:
After a certain number ∆m of steps, the same curve reappears, translated upward by ∆y. We
call ∆m the time period and ∆y the vertical period (to be distinguished from yet another period,
the horizontal period H, which was introduced at the beginning). The average (vertical) speed
is then ∆y/∆m. However, if a or b is irrational, we no longer have a periodic behavior. For a
more general curve, like y = ex, different parts of the curve will move at different speeds, and
a common average speed will not exist. For this reason, we define the lower and upper average
speed.

Definition 1 (average speed). Let C be the graph of a convex function on R. We denote by
C + γ the copy of C vertically translated by γ (upwards for γ > 0, downwards for γ < 0).

For another such curve D, we write C ≤ D if no point of C lies above D.
Let f (m) denote m steps of grid peeling.
The lower average speed v− = v−(C) is defined as follows:

v− = lim inf
m→∞

sup{ γ | C + γ ≤ f (m)(C) }
m
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Π: y = ax2 + bx + c

Figure 7: Upper and lower approximation of the parabola Π by “integer” parabolas

The upper average speed v+ = v+(C) is defined similarly:

v+ = lim sup
m→∞

inf{ γ | f (m)(C) ≤ C + γ }
m

If v− and v+ coincide, we call it simply the average speed v = v(C).

We have the obvious inequalities 0 ≤ v− ≤ v+ ≤ ∞. By approximating the parabola
y = ax2/2+ bx+ c from above and below by appropriate grid parabolas (see Figure 7), to which
we apply Theorem 2, we arrive at the following result:

Theorem 3. 1. If 1
Ht

< a < 1
Ht−1

and t is odd (or a > 1
H1

= 1), then v = 1/t.

2. If 1
Ht

< a < 1
Ht−1

and t is even, then 1
t+1 ≤ v− ≤ v+ ≤ 1

t−1 .

3. If a = 1
Ht

and t is odd, then 1
t+2 ≤ v− ≤ v+ ≤ 1

t .

4. If a = 1
Ht

and t is even, then 1
t+1 ≤ v− ≤ v+ ≤ 1

t−1 .

The experiments in Section D suggest that the first statement also holds for even t, and for
a = 1

2Ht
, v exists always and lies in the range 1

t+1 ≤ v ≤ 1
t .

Proposition 3. Let C be the graph of a convex function on R. The upper and lower average
speed is not changed by

• horizontal translation by an integer distance,

• or arbitrary vertical translation.

Proof. It is clear that a translation by an integer vector does not change anything.
Consider an arbitrary vertical translation C+γ. Then (1) The integer translates C0 = C+⌊γ⌋

and C1 = C + ⌊γ⌋ + 1 have the same upper and lower average speeds as C, (2) they maintain
a constant vertical distance of 1 during grid peeling, and (3) C + γ is sandwiched between C0

and C1, and it maintains this relation during grid peeling. It follows that the upper and lower
average speeds of C must agree with those of C1 and C2.

One might be tempted to believe that a small horizontal translation should also not change
the vertical speed. However, Section D.2 reports examples where translations cause the vertical
speed to change, see Figure 15.

11



3.4 Refined grid peeling for parabolas, proof of Theorem 1

We prove our main theorem, Theorem 1 about the relation between grid peeling and ACSF for
parabolas y = ax2/2 + bx+ c. We use (x, y) for the original coordinates, with a grid of spacing
1/n, and (x̂, ŷ) = (nx, xy) for the scaled coordinates, with a unit grid. The curvature at the
vertex of the parabola is a; thus the vertical speed of ACSF at this point (and thus everywhere,
by affine invariance) is a1/3.

At time T we have y = ax2/2+bx+c+Ta1/3, and ŷ = a
n x̂

2/2+bx̂+cn+Tna1/3. Determine
t such that 1

Ht
≤ a

n ≤ 1
Ht−1

. So a
n ≈ 1

Ht
and Lemma 4 implies

n

a
≈ Ht =

2ζ(3)t3

π2
· (1 +O(log t/t)) =

( t

cg

)3
· (1 +O(log t/t)),

which yields

t = cg 3

√
n

a
(
1 +O(log t/t)

) +O(1) = cg
3

√
n
a ·

(
1 +O(log t/t)

)
= Θ

(
3

√
n
a

)
.

Here, the O(1) term accounts for rounding t to an integer, and it also covers the uncertainty of
Theorem 3, where t is sometimes replaced by t − 1, t + 1, or t + 2. This additive error term is
absorbed in the multiplicative error term 1 + O(log t/t). By Theorem 3, the lower and upper
average speed is

v ≈ 1

t
=

1

cg
3

√
a
n ·

(
1 +O(log t/t)

)
After m = ⌊cgTn4/3⌋ steps, the vertical distance that the curve has moved up is therefore

mv +O(1) = Ta1/3n
(
1 +O(log t/t)

)
+O(1) = Ta1/3n

(
1 +O( 3

√
a
n log n

a )
)

The difference to the movement of Π, which is Tna1/3, is

O
(
Ta1/3n 3

√
a
n log n

a

)
= O(Ta2/3n2/3 log n

a ).

To this, we must add the distance between Pt and the reference parabola Πt from Proposition 2,
that is, O(t2 log t) = O((na )

2/3 log n
a ). Dividing by n, we conclude that the error term in terms

of the original y-coordinates is(
O(Ta2/3n2/3 log n

a ) +O((na )
2/3 log n

a )
)
/n = O

(
(Ta2/3 + a−2/3)/n1/3 log n

a

)
.

4 Proof of Theorem 2 about the period of the grid parabola

When we speak of the curve, we mean the grid parabola Pt after some iterations of peeling.
Let s = a/b ∈ St be a fixed slope. We consider the supporting line g with slope s, and we

study how it evolves during the peeling process, see Figure 8 for an illustration.

Definition 2. The strip of slope s is the vertical strip that bounds the segment of slope s in
Pt. It goes from x = Ls to x = Rs. We denote by ℓ = Rs − Ls the width of the strip.

The extended strip of slope s includes an additional margin of ⌊t/2⌋ on both sides. It goes
from L̄s = Ls − ⌊t/2⌋ to R̄s = Rs + ⌊t/2⌋.

We state some obvious properties of the peeling process:

Observation 2. Throughout the whole peeling process:

(i) The supporting line g intersects the curve in a line segment, which might degenerate to a
point.

12



bt/2c = 8 ` = 15 bt/2c = 8
LsL̄s Rs R̄s

Figure 8: 17 consecutive iterations of the development of slope s = 2/5 for t = 16, starting
with the curve Pt. The uppermost part shows the true situation. In the middle part, the
successive curves are separated for better visibility, as in Figure 5. In the lowest part, an affine
transformation has been applied to make the segment of interest horizontal; this allows the
different slopes to be distinguished more easily. The segment of slope s is highlighted in red on
each curve. The initial segment on P16 has horizontal length ℓ = ⌊165 ⌋ × 5 = 15. The region
between the dashed lines is the extended strip.
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(ii) If the segment contains k ≥ 1 grid points, its horizontal length is (k − 1)b.

(iii) At every peeling step, the two endpoints of this line segment or the single point is peeled.

(iv) As long as the segment contains at least 3 grid points, the supporting line does not change,
and the number k of grid points on the segment decreases by 2. In this case, we say that
the segment shrinks.

(v) If the segment contains only 1 or 2 grid points, the supporting line changes. We say that
there is a jump for slope s.

We use the following terminology: The left endpoint of slope s is the left endpoint of the
segment of slope s; in case the segment degenerates to a single point, it is that point. In other
words, it is the leftmost point where the supporting line of slope s touches the curve. The right
endpoint is defined analogously. We will only deal with horizontal offsets, lengths, positions,
and distances, and thus we will often omit the word horizontal.

In the following crucial lemma, Properties 1 and 2 predict what happens when a jump
occurs. In particular, Property 2 characterizes the possible locations of the vertices after a
jump. Property 3 describes the final position of the segment before the jump. This statement
allows us to predict when a jump occurs. Property 3 can be easily worked out, assuming that
the initial position after the previous jump satisfies Property 2. Properties 4 and 5 describe the
situation when two consecutive slopes are involved.

Lemma 5. The following properties hold throughout the peeling process:

1. (No grid line is skipped.) Whenever there is a jump, the supporting line g of slope s
advances to the next grid line with slope s.

2. (The filling property.) After the supporting line g has advanced, the curve will contain
precisely those grid points on g that lie within the extended strip of s. In other words, the
segment fills the extended strip as much as possible. (See Figure 8 and 9.)

3. (Jump position) A jump of slope s occurs if and only if the left endpoint of slope s lies in
the range

Ls + ⌊t/2⌋ − (b− 1), . . . , Ls + ⌊t/2⌋. (4)

A symmetric property holds for the right endpoint.

4. (There are no gaps.) For any two consecutive slopes s = a/b and s′ = a′/b′ from St,
with s < s′, the right endpoint of slope s coincides with the left endpoint of slope s′. In
particular, no edge has an intermediate slope between s and s′. This implies that only
slopes from the set St appear in the curves.

5. (Breakpoint position) The breakpoint between two consecutive slopes s, s′ is in the inter-
val between X − t/2 and X + t/2, where X = Rs = Ls′ is the boundary between the
corresponding strips. (See Figure 10.)

Properties 1–3, which were discovered experimentally, are strong enough to predict the be-
havior of the supporting segment of slope s during the peeling process in a purely local manner,
without looking at the whole curve. The proof that this is the evolution that actually takes place
amounts to checking whether these local characterizations fit together when considering differ-
ent slopes. In particular, we will look at two consecutive slopes (Properties 4 and 5). This will
involve checking some cases, but with the rigid structure provided by the strong properties 1–3,
one cannot really avoid to come up with the proof.
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` + 2bt/2c = 31

∆

r = 1

range for a jump

range for the left endpoint of slope s

b− 1

2bt/2c = 16

extended strip: range for the segments of slope s

b = 5

L̄s R̄s

b− 1

(range for a jump for the right endpoint of slope s)

Figure 9: The b = 5 grid lines from Figure 8. t = 16 = 3b+ 1 = qb+ r. The initial segment on
each line, immediately after the jump, is shown in red. The lines are considered according to the
offset ∆ of the leftmost grid point from the left edge of the extended strip. We have highlighted
the last remaining single point or pair of points before the jump occurs.

Proof. We will show inductively that the claimed properties are maintained as invariants for all
slopes throughout the peeling process.

We rely on the following properties of two consecutive slopes s = a
b and s′ = a′

b′ , which follow
from the definition of the slope set St (Section 2):

(I) The denominators b and b′ are bounded by b, b′ ≤ t, and their sum is b+ b′ > t.

(Otherwise, the vector
(
b
a

)
+
(
b′

a′

)
would give rise to a slope in St between s and s′.)

(II) The two vectors
(
b
a

)
and

(
b′

a′

)
form a lattice basis of the unit grid.

(Otherwise, they would span a parallelogram that contains interior points, and some of
these points would lead to vectors with an intermediate slope between s and s′ in St.)

As the basis for the induction, it can be seen without computation that the “original” segment
of slope s of Pt falls in the pattern of analysis leading to Property 3: Indeed, it lies centrally in
the extended strip. Thus, when extending it as much as possible within the extended strip and
starting the peeling process, the starting segment will appear during this process, by symmetry.
Also, the endpoints of consecutive segments match on Pt by construction, establishing Property 4
and Property 5 at the beginning.

For the induction step we consider two consecutive slopes s, s′ and make sure that no matter
if they make a jump or not, the properties of Lemma 5 hold. Thus we have four cases. In each
case we prove properties 1,2, 4, 5, and then assuming properties 1,2, 4, 5, we prove Property 3
all at once.

Case 1: s and s′ both shrink: We show that this is not possible. Assume that s, s′

both shrink. Since no jump occurs for s′, by Property 3 the rightmost possible position of the
left endpoint of s′ is Ls′ + ⌊t/2⌋ − b′. Symmetrically, the leftmost possible position of the right
endpoint of s is Rs − ⌊t/2⌋+ b, and therefore Rs − ⌊t/2⌋+ b ≤ Ls′ + ⌊t/2⌋ − b′. Since Ls′ = Rs,
it follows that −⌊t/2⌋+ b ≤ ⌊t/2⌋ − b′, or b+ b′ ≤ 2⌊t/2⌋ ≤ t, which contradicts (I).

Case 2: s jumps and s′ shrinks: We claim that the endpoint of the shrunken segment
for s′ arrives at the next grid line with slope s, and its position on this line matches the position
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Rs = X = Ls′

s′ = a′

b′ = 5
13s = a

b = 3
8

s makes a jump

bt/2c = 8
R̄sL̄s′

s′ makes a jump

bt/2c = 8

b′ − 1 = 12

b− 1 = 7

slope 2
5

slope 4
11

A

A+

U U ′

Figure 10: The transition between slope s = 3/8, with vector
(
16
6

)
∈ Vt, and s′ = 5/13, with

vector
(
13
5

)
∈ Vt, for t = 16. The figure is drawn after an affine transformation, following the

conventions of the lower part of Figure 8. The right endpoint of slope s always coincides with
the left endpoint of slope s′, and it varies in the interval between X − ⌊t/2⌋ and X + ⌊t/2⌋.

for the right endpoint of s predicted by Property 2. The left endpoint of s′ moves by the vector(
b′

a′

)
, and since

(
b′

a′

)
and

(
b
a

)
form a lattice basis (II), the supporting line of slope s will indeed

jump to the next grid line of slope s, establishing Property 1 in this case.
We claim that this new left endpoint of s′ is indeed the rightmost grid point on this line in

the extended strip for s (establishing Property 2). We show that it lies in the extended strip of
s, but the point after this point on the grid line of slope s is already outside the extended strip.

To show the former, consider the rightmost possible position for the left endpoint of s′ before
shrinking. It is Ls′+⌊t/2⌋−b′ by Property 3. After shrinking, it is Ls′+⌊t/2⌋ = Rs+⌊t/2⌋ = R̄s,
and thus it lies in the extended strip of s. To show the latter, consider the leftmost possible
position for the left endpoint of s′ before shrinking. It is L̄s′ = X − ⌊t/2⌋ by Property 3. After
shrinking, it is X − ⌊t/2⌋+ b′. The point after this point is at offset b, and X − ⌊t/2⌋+ b′ + b >
X − ⌊t/2⌋ + t ≥ X + ⌊t/2⌋ = R̄s, by (I), and thus this point is already outside the extended
strip.

Therefore, the new left endpoint of s′ coincides with the new right endpoint of s, establishing
Property 4 and Property 5 in this case.

Case 3: s shrinks and s′ jumps: The situation is symmetric to Case 2.
Case 4: s and s′ both jump: By Property 3 the position x of the breakpoint A =

(
x
y

)
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before the jump is in the interval

X + ⌊t/2⌋ − b′ < x < X − ⌊t/2⌋+ b (5)

Let U be the previous point on the grid line of slope s through A, and let U ′ be the next point on
the grid line of slope s′ through A. Construct the parallelogram UAU ′A+. Such a parallelogram
is shaded in Figure 10. We know that both supporting lines of slope s and s′ must advance at

least to the next grid line. Those two grid lines intersect at the fourth point A+ =
(
x+

y+

)
of this

parallelogram with x+ = x− b+ b′. We will show two things:

(a) The point A+ is not peeled until after the jump. Thus it will be the common right endpoint
of slope s and left endpoint of slope s′.

(b) It is indeed the rightmost grid point on the grid line of slope s in the extended strip of s.

(Symmetrically, it is the leftmost point on the grid line in the extended strip of s′.)

To prove (a), assume w.l.o.g. that b ≤ b′, so that the segment AU ′ lies below A+. We are
done if we show that this segment is part of the boundary when A is peeled. Assume otherwise.
Then A would be not only the left endpoint of slope s′, but also the right endpoint of slope s′

when it is peeled. According to Property 3, this means that x ≥ Rs′ −⌊t/2⌋. Let ℓs′ ≥ b′ denote
the length of the strip of slope s′. Then, with b ≤ b′ ≤ ℓs′ we get a contradiction to (5):

x ≥ Rs′ − ⌊t/2⌋ ≥ Rs′ − ℓs′ − ⌊t/2⌋+ b = X − ⌊t/2⌋+ b > x

To prove (b), note that A+ lies in the extended strip for s because x+ = x − b + b′ <
X−⌊t/2⌋+ b′ ≤ X−⌊t/2⌋+ t, by the right inequality of (5), and hence x+ ≤ X+ ⌊t/2⌋. On the
other hand, the next grid point on the line of slope s has x-coordinate x++b = x+b′ > X+⌊t/2⌋,
by the left inequality of (5), and this is outside the extended strip for s.

Now that we have established the first four invariants in all cases, we prove Property 3,
assuming Property 2 has been true so far.

Let t = qb + r, with 0 ≤ r < b. Then qb = ℓ is the (horizontal) length of the vector in Vt
that forms the segment of slope s on Pt. We have defined it as the width of the strip.

To illustrate Property 2, Figure 9 shows the possible cases how the segment of slope s can
lie on the grid line, immediately after a jump occurs, according to this property. On every grid
line, the grid points form an arithmetic progression with (horizontal) increment b. The different
grid lines are distinguished by the offset ∆ of the leftmost grid point from the left edge of the
extended strip. There are b possibilities, 0 ≤ ∆ < b.

For the sake of the following analysis, we have sorted the lines by ∆ in Figure 9. (This
is not the order in which they occur from bottom to top. The true order in this example is
∆ = 0, 2, 4, 1, 3, 0, . . ., see Figure 8.)

For simplicity, we focus on the case when t is even [and put the odd case into brackets].
Let us start with the case ∆ = 0 (the topmost line in Figure 9). In a strip of width t, we

can fit q segments of length b, with q+ 1 points, leaving a remainder of length r. The extended
strip has width t+ ℓ [t− 1+ ℓ]. Since the extra length ℓ is filled precisely by q segments, we can
fit q additional segments of length b, for a total of 2q+1 points. [For odd t, the last claim holds
only when r > 0.]

Since the number of points is odd, the last peeled segment on this line before the jump is a
singleton, after q steps and at distance qb = ℓ from the left boundary L̄s of the extended strip,
or distance ℓ− ⌊t/2⌋ from Ls.

We can increase ∆ up to r [r − 1] without changing the situation:

17



• For ∆ = 0, 1, . . . , r [∆ = 0, 1, . . . , r − 1], the number k of points is odd, and for the last
point that is peeled, the distance from Ls is in the range

ℓ− t/2, . . . , ℓ− t/2 + r [ℓ− ⌊t/2⌋, . . . , ℓ− ⌊t/2⌋+ r − 1].

Since ℓ+ r = t, this range simplifies to ℓ− ⌊t/2⌋, . . . , ⌊t/2⌋.

Starting from ∆ = r+1 [∆ = r], the situation changes. We have now an even number 2q of
points, and the last peeled segment is a proper segment with a pair of points. The left peeled
point is at distance ∆+ (q − 1)b = ∆+ ℓ− b from L̄s, or at an offset ∆+ ℓ− b− ⌊t/2⌋ from Ls

(This offset may be negative, in which case it denotes an offset to the left.)

• For ∆ = r + 1, . . . , b − 1 [∆ = r, . . . , b − 1], the number k of points is even, and for left
point of the last peeled pair, the distance from Ls is in the range

r + 1 + ℓ− b− t/2, . . . , b− 1 + ℓ− b− t/2 [r + ℓ− b− ⌊t/2⌋, . . . , b− 1 + ℓ− b− ⌊t/2⌋].

Since ℓ+ r = t, this range simplifies to ⌊t/2⌋ − b− 1, . . . , ℓ− ⌊t/2⌋ − 1.

Combining the ranges for two cases establishes Property 3, and this concludes the proof of
Lemma 5.

Proposition 4. The left endpoint of slope s is at distance at most ⌊t/2⌋ from Ls (on the left
or on the right), see Figure 9. Every position in this range occurs.

Proof. Property 3 describes b possibilities before a jump, one value for each of the b residue
classes modulo b, and Property 2 suggests b possibilities after a jump, namely ∆ = 0, 1, . . . , b−1.
Since for every ∆, the jump must occur at some point, the range (4) uniquely characterizes this
point.

By Property 3, the left endpoint of slope s can never deviate more than ⌊t/2⌋ from Ls to
the right, and by Property 2, it cannot deviate more than ⌊t/2⌋ from Ls to the left. Thus, the
left endpoint of slope s is at distance at most ⌊t/2⌋ from Ls. In fact, since there is a grid line of
slope s passing through every such point, and no grid line is skipped (Property 1), every point
in this range will be peeled once as the left endpoint of slope s.

There are 2⌊t/2⌋+ 1 different offsets at distance at most ⌊t/2⌋ from Ls, and exactly one of
them is always peeled. Therefore, after 2⌊t/2⌋ + 1 steps the same segment of slope s repeats,
one unit higher. This is true for any slope, so after 2⌊t/2⌋+ 1 steps the same chain repeats one
unit higher. It means the peeling process is periodic with period 2⌊t/2⌋+ 1, and this concludes
the proof of Theorem 2.

5 Future research

The obvious open problem is to prove the relation between grid peeling and the ACSF for
arbitrary convex curves. As a first challenge, one might try the case of a circle. The natural
approach is to leverage Theorem 1 by locally approximating the curve by parabolas.

Some of the phenomena that were revealed by the experiments described in Section D are
still awaiting an explanation.
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A Alternative expressions for the horizontal period Ht

The following long chain of equations and estimates, which we will discuss step by step, includes
several different expressions for the quantity Ht. We denote by P = { (i, j) ∈ Z×Z | gcd(i, j) =
1 } the set of primitive vectors.

Ht :=
∑

0<y≤x≤t
(x,y)∈P

⌊
t

x

⌋
x (6)

=
∑

1≤x≤t

∑
0<y≤x
(x,y)∈P

⌊
t

x

⌋
x =

∑
1≤x≤t

ϕ(x)

⌊
t

x

⌋
x (7)

=
∑

1≤j≤i≤t

i

gcd(i, j)
(8)

=
∑
1≤i≤t

∑
1≤j≤i

i

gcd(i, j)
(9)

=
∑
1≤i≤t

∑
d|i

dϕ(d) (10)

=
2ζ(3)

π2
t3 +O(t2 log t) (11)

∼ 2ζ(3)

π2
t3 (12)

After partitioning the double sum over x and y into two nested sums, the last expression in (7)
expresses the inner sum, in which the summation variable y does not appear in the summand, in
terms Euler’s totient function ϕ(x), the number of residue classes y modulo x that are relatively
prime to x.

The asymptotic expression (12) is due to Sándor and Kramer [18]. They define the function
that they investigate by the expression (9), using the notation ψ1(i) for the inner sum in (9),
and they establish equality between (9) and the last expression in (7) [18, §6, formula (13) with
α = 1. Formula (13′′′), which should apply here, has an obvious typo]. The expressions (8) and
(9) are obviously equivalent. We indicate why (8) is equal to (6), thus establishing equality of
all expressions (6–9):

In the sum (6), only primitive vectors appear, but every primitive vector (x, y) ∈ P is taken
with multiplicity ⌊t/x⌋. If we look at the multiples (i, j) = (kx, ky) of each primitive vector (x, y)
for k = 1, 2, . . . , ⌊t/x⌋, we get all integer vectors in the triangle 0 < j ≤ i ≤ t. In the sum (8),
each vector (i, j) contributes the x-coordinate of the primitive vector (x, y) = (i/k, j/k), since
k = gcd(x, y). Thus, in total, the vector (x, y) is taken ⌊t/x⌋ times in (8), and we get the same
sum.

Formula (10) follows from (9) by splitting the integers j = 1, . . . i according to the value of
i/ gcd(i, j) = d, cf. [18, §2, formula (1)].

The asymptotic expression (12) is given in [18, equation (23), p. 61]. A different proof,
using the Wiener-Ikehara Theorem, was sketched by Marko Riedel on Mathematics Stack Ex-
change [14]. The slightly stronger statement (11) with the explicit error term follows from
Lemma 4.

B Proof of Lemma 4 about the points on the grid parabola

The proof follows standard ideas; in particular, it uses an easy adaptation of the arguments that
were used for the special case α = 1 [18], as stated in Lemma 4. Following [18, p. 61], we reduce
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the computation of Uα
t to the estimation of the vector Rα(u), which is defined as follows for any

real parameter u:

Rα(u) :=
∑

1≤x≤u
0<y≤αx
(x,y)∈P

(
x

y

)
(13)

We start from the definition of Uα
t and regroup and reformulate sums:

Uα
t =

∑
1≤x≤t
0<y≤αx
(x,y)∈P

⌊
t

x

⌋(
x

y

)

=
∑

1≤x≤t
0<y≤αx
(x,y)∈P

∑
k≥1
xk≤t

(
x

y

)
=

∑
k≥1

∑
1≤x≤t
xk≤t

0<y≤αx
(x,y)∈P

(
x

y

)
=

∑
k≥1

∑
1≤x≤t/k
0<y≤αx
(x,y)∈P

x

=
∑
k≥1

Rα( tk ) (14)

For Rα(u), we will use the following asymptotic estimate, whose proof is given below:

Lemma 6. For 0 ≤ α ≤ 1,

Rα(u) =
2

π2

(
u3α+O(u2 log u)

u3α2/2 +O(u2 log u)

)
(15)

as u→ ∞.

Substitution of (15) in (14) gives our claimed asymptotic formula for Uα
t :

Uα
t =

∑
k≥1

Rα
(
t
k

)
=

∑
k≥1

2

π2k3

(
t3α

t3α2/2

)
+
∑
k≥1

(
O
(
t2

k2
log t

k

)
O
(
t2

k2
log t

k

))

=
2ζ(3)

π2

(
t3α

t3α2/2

)
+

(
O(t2 log t)

O(t2 log t)

)
Proof of Lemma 6. We mention that the special case α = 1 and the x-coordinate of R1(u) is
given (without the error bound) in Sándor and Kramer [18, p. 61, (20)]:∑

1≤y≤x≤u
(x,y)∈P

x =
∑

1≤x≤u

∑
1≤y≤x
(x,y)∈P

x =
∑

1≤x≤u

xϕ(x) ∼ 2u3

π2

There, this asymptotic expression is derived as an easy consequence of a general statement of
Radoux [13] about the sum

∑u
x=1 f(

x
u)ϕ(x) being asymptotically equal to 6u2/π2

∫ 1
z=0 zf(z) dz

for an arbitrary function f , provided that zf(z) is continuous. (The deeper reason behind this
statement is that the fraction of primitive vectors among the integer vectors in any sufficiently
large “well-behaved” region is 1/ζ(2). Examples of well-behaved regions for which this statement
holds are convex regions with a limit on the ratio between incircle and circumcircle, or dilates
of a fixed convex region.)

The following proof of Lemma 6 adapts the textbook derivation of the similar formula

∑
1≤y≤x≤u
(x,y)∈P

1 =

⌊u⌋∑
x=1

ϕ(x) =
u2

2ζ(2)
+O(u log u) ∼ 3u2

π2
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in [11, Theorem 330], a result that goes back to Mertens in 1874.
We use the notation Tα(u) for the sum (13) without the condition that (x, y) should be

primitive:

Tα(u) :=
∑

1≤x≤u
1≤y≤αx

(
x

y

)
(16)

=

⌊u⌋∑
x=1

(
x⌊αx⌋

⌊αx⌋(⌊αx⌋+ 1)/2

)
(17)

=

⌊u⌋∑
x=1

(
αx2 +O(x)

α2x2/2 +O(x)

)
(18)

=

(
α

α2/2

)(
⌊u⌋3

3
+

⌊u⌋2

2
+

⌊u⌋
6

)
+

(
O(u2)

O(u2)

)
(19)

=

(
α

α2/2

)
u3

3
+

(
O(u2)

O(u2)

)
(20)

We claim that the O(u2) error terms in (20) can be explicitly bounded by∥∥∥∥Tα(u)−
(

α

α2/2

)
u3

3

∥∥∥∥
∞

≤ E(u) :=

{
u3

3 for 0 ≤ u < 1
5u2

3 for u ≥ 1
(21)

The bound for the first case, u < 1, is trivial because Tα(u) =
(
0
0

)
in this case. For the second

case, u ≥ 1, we accumulate the error bounds for the successive steps of the above derivation.
The O(x) error term in the transition from (17) to (18) is bounded (in absolute value) by x in
the first coordinate and by αx/2 ≤ x in the second coordinate. Thus, we can bound each of the
O(u2) terms in (19) by u(u+ 1)/2 ≤ u(2u)/2 = u2.

The change in the factor between the term A(u) := ⌊u⌋3
3 + ⌊u⌋2

2 + ⌊u⌋
6 in (19) and the factor

u3/3 in (20) is bounded by 2u2/3, as can be checked by an easy computation:

A(u) = ⌊u⌋3
3 + ⌊u⌋2

2 + ⌊u⌋
6 ≤ u3

3 + u2

2 + u
6 ≤ u3

3 + u2

2 + u2

6

A(u) = ⌊u⌋3
3 + ⌊u⌋2

2 + ⌊u⌋
6 ≥ (u−1)3

3 + (u−1)2

2 + u−1
6 = u3

3 − u2

2 + u
6 ≥ u3

3 − u2

2 − u2

6 .

and therefore, |A(u)− u3

3 | ≤ 2u2

3 . Adding the two contributions together gives the claimed bound
of u2 + 2u2/3 = 5u2/3.

Comparing (13) with the sum (16), for which we have an explicit formula, we want to exclude
the vectors (x, y) that are not primitive, i.e., where both x and y are multiples of one of the
primes 2, 3, 5, 7, 11, . . .. By the inclusion-exclusion formula, we have to subtract the contribution
of those vectors that are divisible by 2, by 3, by 5, etc., add the vectors that are divisible by
two primes, subtract the vectors that are divisible by three primes, etc. The contribution of
the vectors that are divisible by n is nTα(un), as these vectors are all integer vectors from the
smaller region 0 < x ≤ u/n, 0 ≤ y ≤ αx, scaled by n. We obtain:

Rα(u) = Tα(u)−
(
2Tα(u2 ) + 3Tα(u3 ) + 5Tα(u5 ) + · · ·

)
+
(
2 · 3 · Tα( u

2·3) + 2 · 5 · Tα( u
2·5) + · · ·

)
−
(
2 · 3 · 5 · Tα( u

2·3·5) + · · ·
)
+ · · ·

=
∞∑
n=1

µ(n)nTα(un),
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In the last line, we have expressed the alternating sum in terms of the Möbius function

µ(n) =


+1, if n is the product of an even number of distinct primes,

−1, if n is the product of an odd number of distinct primes,

0, otherwise, i.e., if n is not square-free.

We now use the approximation (20) for Tα(un)

Rα(u) =
∞∑
n=1

µ(n)nTα(un) =
∞∑
n=1

µ(n)
u3

3n2

(
α

α2/2

)
+ E0 (22)

and bound the error E0 by (21):

∥E0∥∞ ≤
∞∑
n=1

∣∣µ(n)nE(un)
∣∣ ≤ ∞∑

n=1

nE(un)

≤
⌊u⌋∑
n=1

5u2

3n
+

∞∑
n=⌊u⌋+1

u3

3n2
=

5u2

3
·O(log u) +

u3

3
·O( 1u) = O(u2 log u)

The first term in (22) can be expressed in terms of the zeta-function using the well-known
relation [11, Theorem 287] (which also derives from the inclusion-exclusion formula)

∞∑
n=1

µ(n)

n2
=

(
1− 1

22

)(
1− 1

32

)(
1− 1

52

)(
1− 1

72

)
· · ·

=
1

1+ 1
22
+ 1

42
+ 1

82
+· · ·

· 1

1+ 1
32
+ 1

92
+ 1

272
+· · ·

· 1

1+ 1
52
+ 1

252
+ 1

1252
+· · ·

· · ·

=
1∑∞

n=1
1
n2

=
1

ζ(2)
=

6

π2
.

We obtain

Rα(u) =
∞∑
n=1

µ(n)
u3

3n2

(
α

α2/2

)
+ E0 =

6u3

3π2

(
α

α2/2

)
+ E0 =

2

π2

(
u3α+O(u2 log u)

u3α2/2 +O(u2 log u)

)
.

C Minimum-area convex lattice polygons and grid parabolas

Our grid parabolas Pt make their appearance in a different context: the convex lattice n-gons
of minimum area for a given number n of vertices, see Figure 11 for an example. Bárány and
Tokushige [5] showed that, as n increases, the smallest n-gon resembles a more and more oblong
ellipse-like shape, whose “axes” grow like n2 and n, respectively, see the schematic drawing
in Figure 12. It follows from their analysis (but it is not stated) that, after a unimodular
transformation, the optimal n-gons are composed of pieces of the grid parabolas P1, P2, . . . , Pm

with horizontal axes. There is a global finite bound m on the number pieces. There is strong
numerical evidence that m = 15, like shown in the picture, and thus, every such polygon consists
of (at most) 58 pieces, taken from the grid parabolas P1, P2, . . . , P15.

D Experiments with grid peeling for parabolas

Our work was initiated by experimentally exploring the grid peeling process for parabolas
Π: y = ax2 + bx, i.e., parabolas with a vertical axis. These experiments were carried out
in the M.Ed. thesis of Moritz Rüber [15], and we report some of the findings from this thesis.

23



area = 7307.5

107

90

Figure 11: The lattice 75-gon with smallest area, computed by a dynamic-programming ap-
proach, see [12, A070911] the Online Encyclopedia of Integer Sequences. The optimal 75-gon is
unique up to unimodular transformations.

P1 P2

P15P15

P3

Θ(n)

Θ(n2)

Figure 12: As n increases, the minimum-area lattice n-gon becomes more and more oblong.
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y = 1
20x

2

O

Q

Figure 13: An affine grid-preserving transformations maps the origin O to the point Q and it
maps the parabola to itself. The horizontal period H is 10 in this example.

We tried different rational values of a, sometimes in combination with various values of b, and
started the grid peeling process. We let the process run until it reached a curve that was a
translate of a previous curve, and the process became periodic. Then we could estimate the
average vertical speed as well as various other quantities.

In order to carry out these experiments, we needed to restrict the computations to a fi-
nite range, as mentioned in the introduction, and therefore we had to compute the horizontal
period H: The smallest horizontal translation that, in combination with a shearing operation,
maps both the parabola Π and the integer grid to itself. The following lemma, which is analogous
to Lemma 1 for the grid parabola, gives a formula for H:

Proposition 5. Consider the parabola

y =
aN
aD

x2 +
bN
bD
x+ c (23)

with reduced fractions aN
aD

and bN
bD

, and let H̄ := lcm(aD, bD).

The horizontal period H is either equal to H̄ or to H̄/2. In particular

(i) If aD ≡ 0 (mod 4), then H = lcm(aD/2, bD).

(ii) If aD ≡ 2 (mod 4) and bD ≡ 2 (mod 4), then H = lcm(aD/2, bD/2).

(iii) In all other cases, H = lcm(aD, bD).

Proof. See Figure 13 for an example. Since vertical lines should remain vertical and vertical
distances should remain unchanged, the affine transformation that we are looking for has the
form (

x
y

)
7→

(
x +H
zx + y + w

)
(24)

for suitable parameters H, z, w. Substituting the right-hand sides of (24) for x and y should
leave the parabola equation (23) unchanged. This leads to the following equations for z and w:

z = 2aN
aD
H (25)

w = aN
aD
H2 + bN

bD
H (26)
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The additional requirement is that (24) should map integer grid points to integer grid points.
This boils down to requiring that H, z, and w are integral.

Thus, the horizontal period that we are looking for is the smallest positive integer H for
which the two quantities z and w defined above are integers.

Obviously, the choice H = H̄ := lcm(aD, bD) makes both (25) and (26) integral. The
remainder of the proof, which is elementary but goes into case distinctions, only amounts to
checking whether some smaller value of H also does the job.

We start with an easy observation:
Observation A: If H and z are integers and z is even, then w is an integer iff H is a multiple

of bD.
This can be seen after rewriting the first term of (26), using (25) to express one factor H in

terms of z,
w = zH

2 + bN
bD
H (27)

If zH is even, then the first term zH
2 in (27) is an integer. Therefore, w is an integer iff the

second term is also an integer, which is the case iff H is a multiple of bD.
We make a case distinction based on the parity of aD:
Case 1: aD is even: Then, from (25), z = aN

aD/2H is an integer iff H is a multiple of aD/2.
Case 1.1: aD is a multiple of 4: Then H is even, and Observation A implies that w is an

integer iff H is a multiple of bD. Part (i) follows.
Case 1.2: aD ≡ 2 (mod 4). Then aN must be odd, because aN

aD
is reduced.

We distinguish two subcases, depending on the (unknown) value H.
Case 1.2.1: H is odd. In this case, z = aNH

aD/2 is also odd, and the first term zH
2 in (27) is

a half-integer (a non-integer multiple of 1/2). For w to be an integer, the second term bNH
bD

must also be a half-integer. This is only possible if the factor 2 is contained in the denominator
bD. Then bN must be odd, because bN

bD
is reduced. If bD were divisible by 4, then, since the

numerator bNH is odd, bNH
bD

could not be a half-integer. Hence the only remaining possibility is

bD ≡ 2 (mod 4). Then bNH
bD

is a half-integer iff bNH
bD/2 is an integer, which holds iff H is a multiple

of bD/2. The value lcm(aD/2, bD/2) = H̄/2 is odd, and therefore it is indeed the smallest viable
value of H in this case.

Case 1.2.2: H is even. Then H must be a multiple of lcm(2, aD/2) = aD. Observation A
implies that w is an integer iff H is also a multiple of bD. Thus H must be a multiple of
H̄ = lcm(aD, bD).

Summing up the two subcases, we see that the value H̄/2 for Case 1.2.1 is indeed the smallest
value of H when this case is possible, i.e., when bD ≡ 2 (mod 4). This establishes Part (ii) of the
Proposition. When Case 1.2.1 does not apply, the value H = H̄ is in accordance with Part (iii).

Case 2: aD is odd: Then z is an integer iff H is a multiple of aD, and z will be even. As
above, Observation A implies that w is an integer iff H is also a multiple of bD. The smallest
possible value H is H̄ = lcm(aD, bD), and this is in accordance with Part (iii).

D.1 Results of the experiments

Parabola y = ax2 + bx for various rational values a and b. We computed the convex hull of the
grid points above the parabola and started to peel. After some preperiod, the peeling process
will settle into a cyclic behavior: After a certain number ∆m of steps, the same curve reappears,
translated upward by ∆y. We call ∆m the time period and ∆y the vertical period. The average
(vertical) speed v is then ∆y/∆m. Figure 14 shows the average vertical speed depending on a
(for various values of b).

These experiments show a very clear picture. For almost all a, the average speed takes one
of the values 1, 12 ,

1
3 , . . ., and it does not depend on b. The sharp transitions between the values

occur at critical values of a, which we can recognize, with hindsight, as 1/(2Ht). In fact, this is
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Figure 14: The average vertical speed v of the parabola y = ax2 + bx versus the coefficient a
(for various values of b).

how the phenomenon described in Section 2 was discovered: The sequence of denominators of
the critical values 1

2 ,
1
8 ,

1
22 , etc., after clearing the common factor 2, appears in the O.E.I.S. [12,

A174405], where various formulas are given, including (9) and (10) in Section A. By trying
to find an interpretation of these formulas that would make sense in the context of a convex
curve, we were led to the discovery of the grid parabolas Pt. Experiments soon revealed their
remarkable behavior under grid peeling, as described in Theorem 2.

D.2 The average speed at the critical values of a

At the critical values a = 1
2Ht

, the average vertical speed varies between the consecutive fractions
1

t+1 and 1
t . Figure 15 shows the average vertical speed for the first four critical values a,

depending on b. We see a very regular, piecewise linear dependence on b, filling the range
between 1

t+1 and 1
t .

The horizontal periodicity of these graphs can be explained easily:

Proposition 6. The parabolas y = ax2 + bx and y = ax2 + b′x with b′ = b+ 2a have the same
average speed.

Proof. See Figure 16. The “shape” of the parabola depends only on a. Variation of b can be
interpreted as a translation, placing the vertex of the parabola to a different location. More
precisely, the vertex of y = ax2 + bx lies at the minimum of the function, x = − b

2a . Thus,
increasing b by 2a incurs an amount of horizontal translation that is integral. By Proposition 3,
the resulting parabola has then the same average speed.

We see that the graph consists of Ht repetitions of a sawtooth. Proposition 6 explains the
periodicity with period 1/Ht. It is also clear exchanging b with −b performs only a reflection at
the y-axis and thus has no effect on the average vertical speed. This mirror symmetry, together
with the periodicity with period 1/Ht implies that the whole graph is determined by the part
in the interval 0 ≤ b ≤ 1

2Ht
.

What remains is the remarkable fact that the average speed grows linearly in this interval.
We have no explanation for this phenomenon.

The acute observer may notice irregular gaps in the dotted lines of Figure 15. These gaps
are, however, only an artifact of the way how the values b were chosen: We took all reduced
fractions b = bN

bD
with 0 ≤ bN ≤ bD ≤ 50. Such a set leaves gaps around values with small

denominator like 1, 12 ,
1
3 ,

2
3 , etc., while it fills other intervals more densely. (In Figure 18 below,
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Figure 15: Average vertical speed for critical values a = 1
2Ht

for t = 1, 2, 3, 4, depending on b

(
0
0

)
y = ax2

y = ax2 + bx

b
2a

( −b/2a
−b2/4a

)
slope b

x

y

Figure 16: Changing the parameter b of the parabola y = ax2 + bx amounts to a translation.
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this choice of parameters is also the reason why the lower parts of the figure do not exhibit the
periodicity of Proposition 3, but rather show the data points arranged along various curves.)

D.3 The time period at the critical values of a

Note that an average speed like 0.4 = 2/5 (as for the parabola y = 1
8x

2+ 1
5x, for example) means

that we can no longer have a vertical period of 1: To get the fraction 2/5, the vertical period
∆y must be a multiple of 2, and the time period ∆m must be a multiple of 5. In this example,
the true periods are ∆y = 6 and ∆m = 15, see Figure 17. We can see that the curve reappears
already after 3 iterations, combined with a horizontal shift by 4 units. Some characteristic
pieces of the curves are marked in red in Figure 17 to highlight this repetition. Note that the
appearance as a translation is due to the special drawing style of Figure 17, which makes also
the horizontal period H appear as a translational symmetry. What appears as a translation is
actually an affine transformation.

The horizontal period is H = 20, and thus, after 20/4 = 5 shifts (and 5× 3 = 15 iterations),
the shifted curve coincides with the original curve, completing a cycle.

This pattern seems to hold for most examples: The curve returns after a “subperiod” of(
t+1
2

)
steps, shifted by a multiple of Ht, and all multiples of Ht modulo H appear as shifts.

Thus, the time period ∆m, under these assumptions, is equal to

∆m =

(
t+ 1

2

)
H

Ht
=
t(t+ 1)H

2Ht
, (28)

where the horizontal period H is given by Proposition 5. Figure 18 shows the time period ∆m
for the same set of parabolas as Figure 15, on a logarithmic scale.

For the cases when b is a multiple of a, where the vertical speed takes the “extreme” values
1

t+1 or 1
t , the time period is t + 1 or t respectively, with ∆y = 1. For all remaining cases

with one exception, the estimate (28) predicts the correct value. The exception is the parabola
y = 1

44x
2 + 1

5x and its symmetric twin y = 1
44x

2 + 4
5x with ∆m = 25, whereas (28) would give

∆m = 50. The reason behind this exceptional behavior is that the curve reappears already after
5 iterations (with a horizontal shift of 44) instead of

(
t+1
2

)
=

(
5
2

)
= 10 iterations. We suspect

that such exceptions will turn up more frequently when more values of b and higher values of t
are tested.

In any case, the experiments revealed interesting patterns in the grid peeling process for
parabolas (extending the results stated for grid parabolas in Theorem 2 and Lemma 5), The
precise structure of these patterns remains to be discovered and analyzed.

We tried to see whether the grid parabola Pt appears when peeling is started with an ap-
propriate parabola. To obtain the time period predicted by Theorem 2, as suggested by the
data of Figure 18, we tried the parabolas y = 1

2Ht
x2 + 1

2Ht
x + γ for odd t and y = 1

2Ht
x2 + γ

for even t, introducing some vertical shift γ. These parabolas have also the correct horizontal
period H = Ht by Proposition 5, using the fact that Ht is even iff t is even (Proposition 1.2).

We found that, although the average speed does not change with γ, the periodic cycle which
the process enters can change. For t ≤ 5, we always found Pt among one of the periodic cycles,
with an appropriate choice of γ.

If the piecewise linear dependence of the average speed that is shown by the experiments
holds for all values of b, this means that there must be parabolas with an irrational average
speed, namely when b is irrational. This would imply that the peeling process is necessarily
aperiodic (a statement that can of course not be confirmed experimentally).

D.4 Deviation from the parabolic shape

For a curve C that arises in the peeling process of Π we can compute the deviation from the
shape of the starting parabola Π as follows: We find the highest translate Π+γ that lies below C

29



H = 20

∆m = 15
∆y = 6

Figure 17: Grid peeling of the parabola Π: y = 1
8x

2 + 1
5x = 1

2Ht
x2 + 1

5x for t = 2, after the
periodic behavior has started. Each curve C is regarded as a function C(x) of x, and we draw
the function C(x)− (18x

2 + 1
5x) instead of C(x). Straight segments have turned into downward-

curving parabolic arcs. The original parabola Π would appear as a horizontal line. (This is the
same drawing convention that was used for the grid parabolas in Figure 20.)

and the lowest translate Π + γ′ that lies above C, such that C is contained in a parabolic tube
of (vertical) thickness γ′ − γ.

We looked at all parabolas y = ax2 + bx with rational coefficients a and b in the interval
0 ≤ a, b < 1, where the denominator of a ranges between 1 and 100, and the denominator of b
between 1 and 10. For each parabola, we observed the maximum tube thickness of all curves
arising during the periodic part of the peeling process. Figure 19 plots the maximum tube
thickness on a logarithmic scale and the parameter a. The dependence on b is not shown.

Most of the time, the tube thickness is near 1. Interestingly, it rises to high values when a
is close to one of the critical values 1

2Ht
, seemingly approaching a vertical asymptote. At the

critical values themselves, the tube thickness is, however, lower than usual.

E Vertical difference between the grid parabola and the refer-
ence parabola

For some selected values of t, we have computed the vertical difference Pt − Πt as a function
of x, and we show the result in Figure 20.

We observe that Pt is always above Πt, with the exception of the horizontal segment of length
t around the origin. We can clearly discern local minima near Ht/2, Ht/3 and Ht/4, and less
marked minima near other rational multiples of Ht.
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Figure 18: Time period at the critical values a, as a function of b. The orange point in the graph
for a = 1

44 shows where the value should be if formula (28) were true.
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Figure 19: The tube thickness versus the coefficient a, for various values of b.
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Figure 20: Vertical difference Pt − Πt for t = 10, 20, 40, 60, 80, 100. The horizontal axis ranges
from the origin to the point x = Ht/2, where both Pt and Πt have slope 1

2 . The boundaries of
this interval, marked by dashed lines, act as vertical mirrors for the function Pt−Πt. The curves
are vertically shifted so that they can be nested under each other, and the vertical scale is chosen
independently for each curve: The vertical double-headed arrows show the range between 0 and
the difference at x = Ht/2. The outlier value 40.5 for t = 80 is no mistake. The curve for t = 80
rises indeed to a higher maximum than for t = 100.
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