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Abstract. A k-clustering of a given set of points in the plane is a partition of the
points into k subsets (“clusters”). For any fixed k, we can find a k-clustering which
minimizes any monotone function of the diameters or the radii of the clusters in
polynomial time. The algorithm is based on the fact that any two clusters in an
optimal solution can be separated by a line.
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1 Introduction

Problem statement. Let S be a set of n points in the plane. A partitioning of S into
k disjoint (possibly empty) sets C1, C2, . . . , Ck, is called a k-clustering, and the individual
sets Ci are called its clusters. In cluster analysis, the points represent properties (data) of
real-world objects, and the aim is to collect “similar” objects (points which are close to each
other) in the same cluster, and to put objects which are very “different” into different clusters.

Let W be some weight function that assigns a real weight to any finite set C of points in
the plane, like the diameter of C, the radius of C, or the perimeter or the area of its convex
hull. Further, let F be a k-ary symmetric function, assigning a real value to every k-tuple of
reals. (Examples for F are the sum or the maximum.)

The geometric k-clustering problem for W with respect to F is defined as follows.
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INSTANCE: A set S of n points in the plane; a rational number d.
QUESTION: Is there a k-clustering for S into k sets C1, C2, . . . , Ck

such that F(W (C1),W (C2), . . . ,W (Ck)) ≤ d?

Previous work and our result. If k is part of the input, this problem is in general NP-
complete. Supowit [18] has shown this result for W being the diameter and for F being
the maximum function; in other words, for k part of the input, minimizing the maximum
diameter in a k-clustering is NP-complete. The related problem of minimizing the maximum
radius, which in the area of location problems is also known as the k-center problem, is
also NP-complete (Megiddo and Supowit [14]). It is even NP-hard to find a solution whose
maximum radius (or maximum diameter) is within a factor of 1.82 (or 1.97, respectively)
of the optimum (Feder and Greene [9]). For fixed k, a polynomial algorithm for minimizing
the maximum radius has been given by Drezner [6]. NP-completeness can also be shown for
minimizing the maximum cluster area and for minimizing the sum of all cluster areas, as
follows from a result of Megiddo and Tamir [15] that it is NP-complete to decide whether a
set of points can be covered by a given number of lines. For more information, the interested
reader is referred to Brucker [5] and to Johnson’s NP-Completeness Column [13].

In this note we show that for every fixed k, the geometric k-clustering problem becomes
solvable in polynomial time, if W and F are as follows:

• W is the diameter or the radius;
• F is an arbitrary monotone increasing function.

Standard examples for monotone increasing functions F are the maximum, the sum,
or the sum of the squares of k non-negative arguments. The 2-clustering problem for the
maximum diameter has been treated by Asano, Bhattacharya, Keil, and Yao [1]. They gave
an O(n log n) algorithm for this problem. Monma and Suri [16] gave an O(n2) algorithm for
finding a 2-clustering with smallest sum of diameters.

Some further related results are discussed in the concluding section.

Overview of the paper. The key result that we will use is that for any given 2-clustering,
there is always a 2-clustering which is at least as good as the given one (as regards the
diameters or the radii of both clusters in each clustering) and in which the two clusters can
be separated by a line. For the case of radii, this is easy to see, whereas the proof for the
case of diameters is more elaborate. It is the subject of section 2. This theorem allows us to
limit the number of possible candidates for optimal solutions. From this, a polynomial-time
algorithm, which essentially tests all these candidates, follows in a quite straightforward way.
This algorithm is derived in section 3.

The problem of testing whether a 2-clustering with specified bounds on the two diameters
exists has been treated by Hershberger and Suri [11]. They gave an O(n log n)-time algorithm
which does not use the separability of the two clusters.

Our paper establishes the polynomial complexity status of a class of clustering problems,
and it gives some insight into the structure of optimal solutions. Our results hold in a quite
general setting. We are of course far from claiming that the algorithms that follow from our
paper are optimal, for any specific problem.
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1.1 Definitions, Notations, Elementary Facts

We now give some definitions and notations and we state some elementary geometric facts
that will be used in the paper. The convex hull of a point set A is denoted by conv(A),
the diameter (the maximum distance of two points in A) by diam(A). By the perimeter of
a point set A we mean the perimeter of it convex hull, i. e., the length of the boundary of
conv(A). The radius r(A) of a finite point set A is the radius of the smallest enclosing circle.
We can define the radius, the perimeter, and the diameter of the empty set as 0 or −∞, as we
like. Two sets are said to be linearly separable, if they can be strictly separated by a straight
line. It is well known that two sets are linearly separable if and only if their convex hulls are
disjoint. The Euclidean distance of two points p1 and p2 is denoted by d(p1, p2).

Proposition 1
(i) In a convex quadrangle abcd, the sum of the lengths of the diagonals is always larger

than the sum of two opposite sides: d(a, c) + d(b, d) > d(a, b) + d(c, d) and d(a, c) + d(b, d) >
d(a, d) + d(b, c).

(ii) In a triangle with an obtuse angle, the side lying opposite the obtuse angle is the
longest side in the triangle.

(iii) Let d be a positive real, let p1 and p2 be two points in the plane at distance less than
or equal to d. Let C1 and C2 be the circles with radius d centered at p1 and p2, let D denote
the points in the vertical stripe between p1 and p2. Then the part of the region C1 ∩ C2 ∩ D
that lies above the line through p1 and p2 has diameter ≤ d (cf. Figure 7).

Proof. We only prove (iii). Recall that the diameter of a convex figure is equal to the greatest
distance between two parallel supporting lines of the figure (see Preparata and Shamos [17,
Section 4.2.3]). One of two parallel supporting lines must touch the figure at p1 or p2. As all
points in the figure lie within the circles C1 and C2, the other supporting line is at distance
at most d. 2

2 Separability of Two Clusters in the Diameter Case

Our results about the case where the function W is the diameter are based on the follow-
ing theorem which shows how we can separate two intersecting clusters by a line without
increasing the diameters. This will imply that we can assume w. l. o. g. that all clusters in
an optimal solution are pairwise separable.

Theorem 2 Let A and B be two sets of points in the plane with diameters dA and dB. Then
there are two linearly separable sets A′ and B′ with diameters dA′ and dB′ such that dA′ ≤ dA,
dB′ ≤ dB and A′ ∪ B′ = A ∪ B.

Proof. The proof will proceed in several elementary steps and involve two intermediate
lemmas.

We may assume that conv(A) ∩ conv(B) 6= ∅, conv(A) 6⊆ conv (B), and conv(B) 6⊆
conv (A), as otherwise the statement is trivial. If conv (A) ∩ conv(B) consists only of a line
segment or a single point, we either set A′ = (A∪B)∩ conv(A) and B′ = (A∪B)− conv(A),
or we set A′ = (A∪B)− conv (B) and B′ = (A∪B)∩ conv (B). It is straightforward to check
that in at least one of these two cases the convex hulls conv (A′) and conv(B′) are disjoint,
and hence we are done.
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Otherwise, let 〈u1, u2, . . . , u2k〉 be the sequence of points where the boundaries of conv(A)
and conv(B) cross, in clockwise order. We write conv (A)− conv(B) and conv(B)− conv (A)
as two interlacing sequences of polygons 〈A1, A2, . . . , Ak〉 and 〈B1, B2, . . . , Bk〉, where Ai

touches Bi at u2i, and Ai touches Bi−1 at u2i−1 (see Figure 1). The polygons Ai and Bi have
the shape of half-moons: Their boundary consists of a convex and a concave chain. (The
boundaries of conv(A) and conv(B) may touch without crossing each other, or they may even
coincide on a small piece. Thus, a half-moon Ai or Bi may have degenerate parts where its
boundary “touches itself” or parts which are line segments, and the points uj may not be
defined uniquely. This, however, will not affect our arguments.)

We will separate the set A ∪ B into A′ and B′ by a line L through two points ui and uj,
whose choice will be described.
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Figure 1: Regions created by two intersecting convex polygons.

Without loss of generality, we may assume that dA ≥ dB . We call a pair (Ai, Bj) a bad
pair, if diam(Ai ∪ Bj) > dA. Bj is called a bad partner of Ai, and vice versa. The bad pairs
are those pairs of half-moons which must be separated by the line L in order to make both
diameters ≤ dA. A half-moon Ai or Bj is called a bad half-moon, if it appears in some bad
pair. First, we will prove an intermediate lemma about the relative positions of two bad
pairs. We say that two pairs (Ai, Bj) and (Ai′ , Bj′) with Ai 6= Ai′ and Bj 6= Bj′ cross if their
cyclic sequence is Ai, Ai′ , Bj , Bj′ or Ai, Bj′ , Bj , Ai′ . In other words, they cross if and only if
the two segments connecting a point in Ai to a point in Bj and a point in Ai′ to a point in Bj′

intersect, independent of the choice of these points. Such segments are called bad segments.

Lemma 3 Any two disjoint bad pairs cross.

Proof. Let us assume that there are two bad pairs (Ai, Bj) and (Ai′ , Bj′) with Ai 6= Ai′ and
Bj 6= Bj′ that do not cross. For each bad pair, we choose a bad line segment connecting
two points at distance > dA that lie in the bad half-moons belonging to the pair. Let us call
these points ai, bj , ai′ , and bj′ , respectively. The two possibilities for the relative positions of
these points (disregarding symmetric variations) are depicted in Figure 2. The bad segments
are represented by double lines, their endpoints are shown as black circles (points in A) and
white circles (points in B).

(a) The case shown on the left side of Figure 2 immediately leads to a contradiction: By
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Figure 2: Two impossible configurations of bad pairs.

Proposition 1.i, the sum of the diagonals in the convex quadrangle aibjai′bj′ is larger
than the sum of two opposite sides. Hence,

dA + dB ≥ d(ai, ai′) + d(bj , bj′) > d(ai, bj) + d(bj′ , ai′) > 2dA

must hold, a contradiction to the assumption dA ≥ dB .

(b) In the case shown on the right side of Figure 2, we observe that the convex quadrangle
aibjbj′ai′ must have an angle larger or equal to π/2. W. l. o. g., let this be the angle

at bj. Between the half-moons Bj and Bj′ , there lies at least one (not necessarily bad)
half-moon Am. Select an arbitrary point am ∈ Am. Then the angle 6 aibjam is obtuse,
and hence, by Proposition 1.ii,

d(ai, am) > d(ai, bj) > dA.

This is again a contradiction. 2

For stating our next lemma, we group adjacent bad half-moons from the same cluster (A
or B) together. Thus, we define a group of bad half-moons to be a maximal cyclic subsequence
of bad half-moons from one cluster. (Intervening half-moons of the other cluster must not be
bad.)

Lemma 4 All bad partners of the half-moons in a group belong to the same group.

Proof. Assume that two half-moons Ai and Ai′ belonging to the same group form bad pairs
(Ai, Bj) and (Ai′ , Bj′) with two half-moons Bj and Bj′ which are in different groups. (Ai and
Ai′ may be the same). Then there must be a bad half-moon Ai′′ between Bj and Bj′ . But
this half-moon cannot have a bad partner Bj′′ without forming two disjoint non-crossing bad
pairs with either (Ai, Bj) or (Ai′ , Bj′), contradicting Lemma 3. (cf. figure 3). 2

Now we know that the bad pairs give rise to a complete matching among the groups.
Since bad pairs must cross, there is an odd number of groups from each cluster, and they
must be completely interlacing, as shown in figure 4.

Now it will be easy to achieve our first goal in proving Theorem 2 — finding a line
that separates all bad pairs: As discussed previously, any such line ensures that dA′ ≤ dA

and dB′ ≤ dA. In addition, we also want to obtain the inequality dB′ ≤ dB . Therefore,
among the possible separating lines which cut all bad pairs we will select one which makes
the smaller part as small as possible, i. e., which cuts as unbalanced as possible.

In the rest of this section we will only discuss the case that there is more than one (i. e.,
at least three) group of bad half-moons of each cluster, as the other cases are analogous but
simpler.
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Figure 3: No place for bad partners of Ai′′ .

[ HAND-DRAWN FIGURE ]

Figure 4: The structure of bad pairs between groups of bad half-moons.

We construct our line L as follows: Let Ai be the last bad half-moon of a group (in
clockwise order), and let Bj′ be the last bad partner of Aj. Let Bj be the first bad half-moon
after Ai, and let Ai′ be the first bad partner of Bj (see Figure 5). We choose the separating
line L to go through the point u2j before Bj and the point u2j′+1 after Bj′ . We define B′ to
be the points in A ∪ B lying on the same side of L as Bj and Bj′ , and A′ as the remaining
points.

As discussed above, L cuts all bad pairs, and both diameters dA′ and dB′ are ≤ dA. It
remains to show that dB′ ≤ dB holds.

Let us first make a few observations about the half-moons Ai, Bj , Bj′ , and Ai′ . Since
Bj and Bj′ belong to different groups, (Ai, Bj) is no bad pair, and similarly, (Ai′ , Bj′) is no
bad pair. Moreover, the clockwise sequence of the four half-moons is Ai, Bj , Bj′ , Ai′ , and
they are all different. As Ai and Bj were neighbors in the clockwise ordered sequence, no
bad half-moon lies between Ai and Bj, and similarly, no bad half-moon lies between Bj′ and
Ai′ . We can select ai, bj , bj′, and ai′ in the four half-moons such that d(ai, bj′) > dA and
d(ai′ , bj) > dA.

Let L be drawn horizontally, with B′ above L, as in Figure 5. Consider two points
a, b ∈ B′. We have to show that d(a, b) ≤ dB . If a, b ∈ B then there is nothing to prove.
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Figure 5: How to find the separating line.
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Otherwise, we proceed in three steps: We first consider the case a ∈ A − B, b ∈ B − A, and
then the case a ∈ A − B, b ∈ A − B, and finally the case a ∈ A − B, b ∈ A ∩ B.

line L
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Figure 6: An impossible configuration.

(a) Assume that there were two points a ∈ Ak and b ∈ Bl in two (not necessarily bad)
half-moons belonging to B′ such that d(a, b) > dB holds. Consider first the case that a
comes before b in the clockwise ordering, see Figure 6. By Proposition 1.i, this would
imply

dA + dB ≥ d(a, ai′) + d(b, bj) > d(bj , ai′) + d(a, b) > dA + dB .

In the other case, when b comes before a, we have symmetrically

dA + dB ≥ d(a, ai) + d(b, bj′) > d(ai, bj′) + d(a, b) > dA + dB .

(b) We now consider the possibility that two points in (A−B)∩B′ might be more than dB

apart. Assume, some point a ∈ Ak in a half-moon belonging to B′ lies to the left of bj.
Then the angle 6 abjai′ is obtuse, and from Proposition 1.ii we get the contradiction

d(a, ai′) > d(bj , ai′) > dA.

The same holds, if a lies to the right of bj′ . From (a), applied to the point a together
with bj and bj′ , resp., we get that all points a in (A−B)∩B′ lie at distance ≤ dB from
bj and from bj′ . Moreover, they are all above the line through bj and bj′ (see Figure 7).
Hence, from Proposition 1.iii it follows that (A − B) ∩ B′ has diameter ≤ dB .

(c) Now assume there are two points a ∈ Ak and b ∈ A∩B such that d(a, b) > dB . We may
assume that b is a vertex of conv(A) ∩ conv (B) ∩ L+, where L+ denotes the halfplane
above L, since the distance from a is maximized at some vertex. The vertices of this
set belong to the boundary of some Bl or Al, and hence we can apply the analysis of
case (a) or case (b), resp.

Therefore, the diameter of B′ is ≤ dB , and the proof of Theorem 2 is complete. 2

Remark. A weaker version of Theorem 2 was stated in [1]. The proof relied on the erroneous
assumption that all bad half-moons Ai can be separated from all bad half-moons Bj by a
straight line. The set of six points in Figure 8 gives a counter-example to this assumption.
(The triangles ∆a1a2a3 and ∆b1b2b3 are equilateral and equal, and all six points lie on a
common circle.)
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Figure 7: (A − B) ∩ B′ is a subset of the shaded region.
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Figure 8: A counter-example.

Lemma 5 In the construction in Theorem 2,
perimeter (A) + perimeter (B) ≥ perimeter (A′) + perimeter (B′)

holds. If conv(A) ∩ conv (B) 6= ∅, then the inequality is strict.

Proof. If conv(A)∩conv(B) = ∅, we have A′ = A and B′ = B, and there is nothing to prove.
In the degenerate case where conv(A) ∩ conv (B) consists only of a line segment or a single
point, we have conv (A′) = conv(A) and conv(B′) ⊂

6= conv(B), or vice versa, and the claim
holds again. In the remaining case, where conv(A)∩conv(B) has non-empty interior, we have
to make a small calculation. We use the following notations (for an illustration, see Figure 9):
By Length(· · ·), we denote the perimeter of conv (A)∩ conv(B), the length of the dotted lines
in the figure. By Length(—), we denote perimeter (A)+perimeter (B)−Length(· · ·), the length
of the boundary of conv(A) ∪ conv(B) shown by the solid line in the figure. By Length(//),
we denote twice the length of the line segment that results from intersecting the separation
line L with conv(A), shown as a double line segment in the figure. Now it is easy to see that

perimeter (A′) + perimeter (B′) ≤ Length(—) + Length(//)
< Length(—) + Length(· · ·)
= perimeter (A) + perimeter (B)
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holds, since two curves of total length Length(—) + Length(//) enclose the two convex sets
conv(A) and conv(B). The second inequality is strict because conv(A) ∩ conv(B) has non-
empty interior. 2
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Figure 9: How to subdivide the perimeters.

3 The Polynomial Time Result

In this section, we extend Theorem 2 of the preceding section to more than two clusters,
and we also show the corresponding result for the case of radii. Finally, we will apply these
separability theorems to obtain a polynomial algorithm.

Theorem 6 Consider the optimal k-clustering problem for the diameter with a monotone
increasing function F . For every point set P in the plane, there is an optimal k-clustering
such that each pair of clusters is linearly separable.

Proof. Consider the optimal k-clustering for which the sum of the perimeters of all clusters
becomes minimal. Assume that there are two clusters which are not linearly separable.
Applying Theorem 2 and Lemma 5 to the two clusters, we get a k-clustering with smaller
sum of perimeters. As both affected diameters do not increase, the value of F does not
increase, too. 2

So far, we have only dealt with the diameter as the quality measure of a cluster. For the
radius, an analog of Theorem 6 can be shown directly.

Theorem 7 Consider the optimal k-clustering problem for the radius with a monotone in-
creasing function F . For every point set P in the plane, there is an optimal k-clustering such
that each pair of clusters is linearly separable.

Proof. Let a k-clustering with radii r(C1), . . . , r(Ck) be given. We shall show that there is a
decomposition of the plane into k convex polygonal cells R1, . . . , Rk such that the clustering
R1 ∩ P . . . , Rk ∩ P corresponding to this decomposition is at least as good as the given one,
i. e., r(Ri ∩ P ) ≤ r(Ci), for all i = 1, . . . , k.

We know that each cluster Ci is contained in a disk Di with radius ri = r(Ci) and center
Mi. Suppose that two disks D1 and D2 intersect. The most natural choice of a line separating
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the two clusters is the line L through the intersection points of the two circles. If we reassign
points in D1 ∩ D2 to the two clusters according to their position relative to L, we see that
the new clusters are still contained in their respective disks, and thus the new cluster radii
cannot become larger.

We would like to perform this reassignment of points for each pair of clusters. The line
L consists of the points x fulfilling the following equation

d(x,M1)2 − r2
1 = d(x,M2)2 − r2

2.

The expression d(x,M1)2 − r2
1 is called the power of the point x with respect to the disk D1.

Its sign indicates whether x is contained in D1. L is called the power line, radical axis, or
chordale of the two disks. It is defined for any pair of non-concentric disks. If we partition the
plane by assigning every point to the disk Di for which its power d(x,Mi)2 − r2

i is minimal,
we get the so-called power diagram (cf. Aurenhammer [2]; Imai, Iri, and Murota [12]; or
Edelsbrunner [7], section 13.6). It is known that the power diagram is a dissection of the
plane into (at most) k convex polygonal regions, very much like in the case of Voronoi
diagrams, which are a special case of power diagrams where all radii are equal.

Since for each point p ∈ P , d(x,Mi)2 − r2
i ≤ 0 for at least one i, the power is also ≤ 0 for

the disk belonging to the region to which p is assigned; in other words, p is contained in this
disk. Thus, the power diagram is the desired dissection. 2

Since a planar dissection into k convex polygonal regions has at most 3k − 6 edges (for
k ≥ 3), we will only have to specify a straight line for each of these edges in order to get a
possible candidate for an optimal clustering. Since the number of such choices is limited, this
will give our polynomial-time result.

We remark that, for the diameter, such a decomposition into convex regions need not
necessarily exist. We know that an optimal solution is specified by

(k
2

)
lines, one for each pair

of vertices. This is much larger than 3k− 6. However, the following reformulation of a result
of Edelsbrunner, Robison, and Shen [8, Lemmas 1 and 2] shows a somewhat weaker statement
than the above theorem, which is nevertheless completely sufficient for our purposes.

Lemma 8 Let R1, . . . , Rk be k convex, compact, and pairwise disjoint sets in the plane. Then
there is a planar graph G = (V,E) whose vertices are the k given sets, with the following
properties:

• For each edge {Ri, Rj} ∈ E, there is a line which cuts the plane into two open half-
planes Hij and Hji, such that Ri is contained in Hij and Rj is contained in Hji; i. e.,
this line strictly separates Ri from Rj.

• For each Ri:
Ri ⊆ R′

i :=
⋂

{Ri,Rj}∈E

Hij. (∗)

• The regions R′
i are disjoint. 2

In the proof of this statement one lets the regions Ri grow until they are maximal non-
overlapping convex cells. The planar graph G of the lemma is a kind of dual graph of the
resulting polygonal sets, having an edge for every pair of touching regions.

Now we can state our main result:
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Theorem 9 For any fixed k, the geometric k-clustering problem for the diameter or for the
radius with respect to some monotone increasing function F is solvable in O(n6k) time.

Proof. The convex hulls Ri = conv (Ci) of the clusters in a k-clustering are convex and
compact. By Theorem 6 or Theorem 7, resp., we may assume that they are pairwise disjoint.
Lemma 8 shows then that we can completely determine a solution as follows:

1. We have to choose a planar graph G = (V,E) with k vertices.

2. For each edge {i, j} ∈ E, we have to select a line and we have to specify which side of
this line is to contain Ci and which side should contain Cj .

3. Then, we determine for each point p ∈ P to which sets Hij it belongs, and we eval-
uate (∗). If each point happens to fall into exactly one cluster, we have a possible
candidate for an optimal solution.

Let us estimate the time to generate all possible candidates: There is only a fixed number
of non-isomorphic planar graphs with k vertices. The number of edges is at most 3k − 6,
for k ≥ 3. The number of different ways in which a set of n points can be separated by
a line into two sets (P1, P2) is n(n − 1) + 2. Thus, the number of possibilities of steps 1
and 2 is (n(n − 1) + 2)3k−6 = O(n6k−12). The check in step 3 takes O(n) time (for fixed k).
Finally, if we have found a clustering, we determine the diameters or the radii in O(n log n)
time or in O(n) time, resp., (see Preparata and Shamos [17, Sections 4.2.3 and 7.2.5]), and
we evaluate F . Clearly, the minimum over all values that we get is the solution to the k-
clustering problem. Thus, assuming that the evaluation of F takes reasonable time (not more
than, say O(k12)), we get the desired result. 2

Remark: In the case of radii, we would not need Lemma 8. As the graph G, we can take
the dual of the power diagram in the proof of Theorem 7.

4 Concluding Remarks

(1) A related separability result was known for the problem of minimizing the sum of the
variances of the clusters. The variance of a cluster is the sum of the squares of the distances
of all pairs of points in the cluster, divided by the number of points (cf. Bock [4, section 15,
pp. 162–176]).

Var(A) :=
∑

{ai,aj}⊆A

d(ai, aj)2/|A| =
∑

ai∈A

d(ai, ā)2,

where ā =
∑

ai∈A ai/|A| is the center of gravity of the cluster. Using the above expression
for the variance, it is straightforward to show that two clusters of an optimal clustering are
always separated by the bisecting line (or hyperplane) of the cluster centers. In fact, an
optimal clustering is induced by the Voronoi diagram of its cluster centers.

Similarly, for the problem where the sum of the squares of all distances between points
in the same cluster is to be minimized (without division by the cluster sizes), Boros and
Hammer [3] showed that two clusters in an optimal solution can always be separated by
circle (or a sphere, in higher dimensions).

In both of these cases the separability result is due to the special form of the objective
function.
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(2) Let us discuss how we would go about actually finding a 3-clustering which minimizes
the maximum diameter, using the results at hand. We know that one of the clusters is
separable from the rest of the points by two lines. If we take this cluster away (there are at
most (n(n−1)+2)2 = O(n4) ways to do this), we can solve the remaining 2-clustering problem
in O(n log n) time by the optimal algorithm of Asano, Bhattacharya, Keil, and Yao [1].
This yields a complexity of O(n5 log n) for 3-clusterings. Similarly, for 4-clusterings, we can
separate the problem into two 2-clusterings by 4 lines, yielding a complexity of O(n9 log n).

The above examples show that, already for k = 3 or k = 4, there is still ample space for
improvements.

(3) In contrast to Theorem 7 (separability of clusters when a function of the radii is
minimized), the corresponding theorems for the diameter case (Theorem 2 and Theorem 6)
do not generalize to higher dimensions, as is shown by the following example: Consider the
point set {A,B,C,A′, B′, C ′} in three-dimensional space, where A = (−1, 0, 0), B = (1, 0, 0),
C = (0,

√
3, 0), A′ = (−1, 0,−ε), B′ = (1, 0,−ε) and C ′ = (0, ε,

√
2 + ε), for some small

ε < 1/100. If the maximum cluster diameter is to be minimized, this point set has only one
optimal 2-clustering, C1 = {A,B,C} and C2 = {A′, B′, C ′}, having maximum diameter 2.
This 2-clustering is not linearly separable.

(4) The proof of Lemma 5 shows that separability of the clusters also holds when we
minimize the sum of the perimeters of the clusters, and hence our algorithm applies. We do
not know whether such a result holds for all monotone functions F for the case of perimeters.

(5) When we take the area of the convex hull as the quality measure, two clusters need
not be separable. This can be shown by simple examples where the points (almost) lie on two
lines. This is an indication that the area is not a good measure for the quality of a clustering.
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Notes added in proof:
By using Drezner’s ideas [6], the geometric k-clustering problem for the radius with respect
to an arbitrary monotone and symmetric function F can be solved by checking only O(n3k)
possibilitites, because the radius and the covering circle of each cluster are determined by at
most three points. This improves the bound of Theorem 9 for the case of radii and makes
the separability result of Theorem 7 uninteresting from the point of view of its algorithmic
implications.

The same construction as in the proof of Lemma 8 by Edelsbrunner et al. [8] (cf. the brief
remarks after Lemma 8) was already used by Fejes Tóth [10] in the theory of packing.
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