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Abstract

We introduce the polytope of pointed pseudo-triangulations of a point set in
the plane, defined as the polytope of infinitesimal expansive motions of the
points subject to certain constraints on the increase of their distances. Its
1-skeleton is the graph whose vertices are the pointed pseudo-triangulations
of the point set and whose edges are flips of interior pseudo-triangulation
edges.

For points in convex position we obtain a new realization of the associahedron,
i.e., a geometric representation of the set of triangulations of an n-gon, or of
the set of binary trees on n vertices, or of many other combinatorial objects
that are counted by the Catalan numbers. By considering the 1-dimensional
version of the polytope of constrained expansive motions we obtain a second
distinct realization of the associahedron as a perturbation of the positive cell
in a Coxeter arrangement.

Our methods produce as a by-product a new proof that every simple polygon
or polygonal arc in the plane has expansive motions, a key step in the proofs
of the Carpenter’s Rule Theorem by Connelly, Demaine and Rote (2000) and
by Streinu (2000).

1 Introduction

Polytopes for combinatorial objects. Describing all instances of a com-
binatorial structure (e.g. trees or triangulations) as vertices of a polytope is
often a step towards giving efficient optimization algorithms on those struc-
tures. It also leads to quick prototypes of enumeration algorithms using
known vertex enumeration techniques and existing code [2, 9].

One particularly nice example is the associahedron, (see Figure 4 for an
example): the vertices of this polytope correspond to Catalan structures.
The Catalan structures refer to any of a great number of combinatorial ob-
jects which are counted by the Catalan numbers (see the extensive list in
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Stanley [24, ex. 6.19, p. 219]). Some of the most notable ones are the trian-
gulations of a convex polygon, binary trees, the ways of evaluating a product
of n factors when multiplication is not associative (hence the name associa-
hedron), and monotone lattice paths that go from one corner of a square to
the opposite corner without crossing the diagonal.

In this paper we describe a new polyhedron whose vertices correspond to
pointed pseudo-triangulations.

Pseudo-triangulations. Pseudo-triangulations, as well as the closely re-
lated geodesic triangulations of simple polygons, have been used in Computa-
tional Geometry in applications such as visibility [18, 19, 20, 23], ray shooting
[12], and kinetic data structures [1, 14]. The minimum or pointed pseudo-
triangulations introduced in Streinu [25] have applications to non-colliding
motion planning of planar robot arms. They also have very nice combinato-
rial and rigidity theoretic properties. The polytope we define in this paper
adds to the former, and is constructed exploiting the latter.

Expansive motions. An expansive motion on a set of points P is an in-
finitesimal motion of the points such that no distance between them decreases.

Expansive motions were instrumental in the first proof of the Carpenter’s
Rule Theorem by Connelly, Demaine and Rote [6]: Every simple polygon
or polygonal arc in the plane can be unfolded into convex position with-
out collisions. Streinu [25] built on this work, realizing the importance of
pseudo-triangulations in connection with expansive motions and studying
their rigidity properties. This paper provides a systematic study of expan-
sive motions in one and two dimensions. The expansive motions of a set
of n points in the plane form a polyhedral cone of dimension 2n − 3 (the
expansion cone). As by-products of our approach we get a new proof of
the existence of expansive motions for non-convex polygons and polygonal
arcs (Theorem 4.3) and a characterization of the extreme rays of the expan-
sion cone of a planar point set in general position, as equivalence classes of
pointed pseudo-triangulations with one convex hull edge removed, modulo
rigid subcomponents (Proposition 2.8).

Our tool is the introduction of constrained expansions as expansive mo-
tions with a special lower bound on the edge length increase. They form a
polyhedron obtained by translation of the facets of the expansion cone. Our
main result is the following (see a more precise statement as Theorem 3.1):

Theorem. Let P be a set of n points in general position in the plane, b of
them in the boundary of the convex hull. Then, there is a choice of constraints
which produces as constrained expansions of P a simple polyhedron of dimen-
sion 2n−3 with a unique maximal bounded face of dimension 2n−b−3 whose
vertices correspond to pointed pseudo-triangulations and edges correspond to
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flips between them.

The flips mentioned in the statement are a certain neighborhood structure
among pointed pseudo-triangulations (flips of interior edges). See the details
in Section 2.

Two appearances of the associahedron. For points in convex position,
pseudo-triangulations coincide with triangulations. We prove (Corollary 5.5)
that, in this case, our construction gives a polytope affinely equivalent to the
standard (n−3)-dimensional associahedron obtained as a secondary polytope
of the point set [28, Section 9.2]. Perhaps surprisingly, this shows that the
secondary polytope of n points in convex position in the plane (which lives in
R

n) can naturally be embedded as a face in a (2n−3)-dimensional unbounded
polyhedron.

The associahedron appears again as the analog of our construction for
points in one dimension (Section 5.3).

Rigidity. The connection of these results with rigidity theory is also worth
mentioning. Pointed pseudo-triangulations are special instances of infinitesi-
mally minimally rigid frameworks in dimension 2, whose combinatorial struc-
ture is well understood (see [13]). One-dimensional minimally rigid frame-
works are trees, another well understood combinatorial structure. Adding the
constraint of expansiveness is what leads to pointed pseudo-triangulations in
2d, and to the special non-crossing and alternating trees which appear in
Section 5.3.

Future perspectives. It is our hope that the insight into one- and two-
dimensional motions may eventually lead to generalizations to higher dimen-
sions. There is no satisfactory definition of an analog of pseudo-triangulations
in 3 dimensions. The 3-dimensional version of the robot arm motion plan-
ning problem, with potential applications to computational biology (protein
folding), is much more challenging.

Overview. In Section 2 we give the preliminary definitions and results.
Section 3 contains the main result, the construction of the polytope of pointed
pseudo-triangulations (ppt-polytope). Section 4 applies the main result to get
a new proof for the existence of expansive motions for non-convex polygons
and polygonal arcs in the plane. In Section 5 we present an alternative con-
struction of the ppt-polytope and two special cases leading to the associahe-
dron: points in convex position and the polytope of constrained expansions
in dimension 1. Section 6 attempts to put the results in 1 and 2 dimensions
into a broader perspective, with the aim of extending the results to higher
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dimensions and to point sets which are not in general position. We conclude
with some final comments in Section 7.

2 Preliminaries

Abbreviations and conventions. Throughout this paper we will assume
general position for our point sets, i.e. we assume that no d + 1 points in
R

d lie in the same hyperplane (unless otherwise specified). We abbreviate
“polytope of pointed pseudo-triangulations” as ppt-polytope, “one-degree-of-
freedom mechanism” as 1DOF mechanism and “pseudo-triangulation expan-
sive mechanism” as pte-mechanism.

For an ordered sequence of d + 1 points q0, . . . , qd ∈ R
d, det(q0, . . . , qd)

denotes the determinant of the (d+1)×(d+1) matrix with columns (q0, 1), . . . ,
(qd, 1). Equivalently, det(q0, . . . , qd) equals d! times the Euclidean volume of
the simplex with those d+1 vertices, with a sign depending on the orientation.

Pseudo-triangulations. A pseudo-triangle is a simple polygon with only
three convex vertices (called corners) joined by three inward convex polygonal
chains, see Figure 1a. In particular, every triangle is a pseudo-triangle. A
pseudo-triangulation is a partitioning of the convex hull of a point set P =
{p1, . . . , pn} into pseudo-triangles using P as vertex set.

Pseudo-triangulations are graphs embedded on P , i.e. graphs drawn in
the plane on the vertex set P and with straight-line segments as edges. We
will work with other graphs embedded in the plane. If edges intersect only
at their end-points, as is the case for pseudo-triangulations, the graphs will
be called non-crossing or plane graphs. A graph is pointed at a vertex v if
there is (locally) an angle at v strictly larger than π and containing no edges.
Under our general position assumption, convex-hull vertices are pointed for
any embedded graph, as are vertices of degree at most two. A graph is called
pointed if it is pointed at every vertex. Parts (b) and (c) of Figure 1 (including
the broken edges) show two pointed pseudo-triangulations of a certain point
set.

The following properties of pseudo-triangulations were initially proved for
the slightly different situation of pseudo-triangulations of convex objects by
Pocchiola and Vegter [18, 19]. For completeness, we sketch the easy proofs
(see also [3]).

Lemma 2.1. (Streinu [25]) Let P be a set of n points in general position
in the plane. Let G be a pointed and non-crossing graph on P .

(a) G has at most 2n− 3 edges, with equality if and only if it is a pseudo-
triangulation.
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(a) (b) (c) (d) (e)

p

Figure 1: (a) A pseudo-triangle. (b) A minimum, or pointed, pseudo-
triangulation. (c) The broken edge in (b) is flipped, and gives another pointed
pseudo-triangulation. (d) A schematic drawing of the flip operation. (e) The
two edges involved in a flip may share a common vertex p.

(b) If G is not a pseudo-triangulation, then edges can be added to it keeping
it non-crossing and pointed.

Proof. (a) If the graph G is not connected, we can analyze the components
separately. So let us assume that it is connected. Let e and f be the numbers
of edges and bounded faces in G. Let a+ and a− denote the number of angles
which are > π and < π, respectively. (By our general position assumption,
there are no angles equal to π.) Clearly, a+ + a− = 2e. Pointedness means
a+ = n and, since any bounded face has at least three convex vertices,
a− ≥ 3f with equality if and only if G is a pseudo-triangulation. The equation
2e ≥ n + 3f , together with Euler’s formula e = n + f − 1, implies e ≤ 2n− 3
(and f ≤ n− 2).

(b) The basic idea is that the addition of geodesic paths (i.e., paths which
have shortest length among those sufficiently close to them) between convex
vertices of a polygon keeps the graph pointed and non-crossing and, unless
the polygon is a pseudo-triangle, there is always some of these geodesic paths
going through its interior.

Streinu [25] proved the following additional properties of pointed pseudo-
triangulations, which we do not need for our results but which may interest
the reader:

• Every pseudo-triangulation on n points has at least 2n − 3 edges,
with equality if and only if it is pointed. Hence, pointed pseudo-
triangulations are the pseudo-triangulations with the minimum number
of edges. For this reason they are called minimum pseudo-triangulations
in [25]. In contrast with part (b) of Lemma 2.1, not every pseudo-
triangulation contains a pointed one. An example of this is a regular
pentagon with its central point, triangulated as a wheel. Hence, a min-
imal pseudo-triangulation is not always pointed.
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• The graph of any pointed pseudo-triangulation has the Laman property:
it has 2n− 3 edges and the subgraph induced on any k vertices has at
most 2k − 3 edges. This property characterizes generically minimally
rigid graphs in the plane ([15], see also [13]); that is, graphs which are
minimally rigid in almost all their embeddings in the plane.

• All pointed pseudo-triangulations can be obtained starting with a tri-
angle and adding vertices one by one and adding or adjusting edges,
in much the same way as the Henneberg construction of generically
minimally rigid graphs (cf. [13, page 113]), suitably modified to give
pointed pseudo-triangulations in intermediate steps (see the details in
[25]).

The other crucial properties of pointed pseudo-triangulations that we use
are that all interior edges can be flipped in a natural way (part (a) of the
following statement) and that the graph of flips between pointed pseudo-
triangulations of any point set is connected. Both results were known to
Pocchiola and Vegter for pseudo-triangulations of convex objects (see [18,
19]). Parts (b) and (c) of Figure 1 show a flip between pointed pseudo-
triangulations. An O(n2) bound on the diameter of the flip graph is proved
in [3].

Lemma 2.2. (Flips between pointed pseudo-triangulations) Let P be
a point set in general position in the plane.

(a) (Definition of Flips) When an interior edge (not on the convex hull)
is removed from a pointed pseudo-triangulation of P , there is a unique
way to put back another edge to obtain a different pointed pseudo-
triangulation.

(b) (Connectivity of the flip graph) The graph whose vertices are pointed
pseudo-triangulations and whose edges correspond to flips of interior
edges is connected.

Proof. [3, 25] (a) When we remove an interior edge from a pointed pseudo-
triangulation we get a planar and pointed graph with 2n−4 edges. The same
arguments of the proof of Lemma 2.1 imply now that a− = 3f + 1. Hence,
the new face created by the removal must be a pseudo-quadrilateral (that is,
a simple polygon with exactly four convex vertices).

In any pseudo-quadrilateral there are exactly two ways of inserting an
interior edge to divide it into pseudo-triangles, which can be obtained by the
shortest paths between opposite convex vertices of the pseudo-quadrilateral
(see the details in Lemma 2.1 of [26], and a schematic drawing in Figure 1d).
One of these two is the edge we have removed, so only the other one remains.
Note that the two interior edges of a pseudo-quadrilateral may be incident
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to the same vertex, see Figure 1e. This can only happen when the interior
angle at this vertex is bigger than π.

(b) Let p be a convex hull vertex in P . Pointed pseudo-triangulations
in which p is not incident to any interior edge are just pointed pseudo-
triangulations of P \ {p} together with the two tangent edges from p to the
convex hull of the rest. By induction, we assume all those pointed pseudo-
triangulations to be connected to each other. To show that all others are
also connected to those, just observe that if a pointed pseudo-triangulation
has an interior edge incident to p, then a flip on that edge inserts an edge
not incident to p. (The case of Figure 1e cannot happen for a hull vertex p.)
Hence the number of interior edges incident to p decreases.

Infinitesimal rigidity. In this paper we work mostly with points in di-
mensions d = 2 and d = 1. Occasionally we will use superscripts to denote
the components of the vectors pi = (p1

i , . . . , p
d
i ).

An infinitesimal motion on a point set P = {p1, . . . , pn} ∈ R
d is an assign-

ment of a velocity vector vi = (v1
i , . . . , vd

i ) to each point pi, i = 1, . . . , n. The
trivial infinitesimal motions are those which come from (infinitesimal) rigid
transformations of the whole ambient space. In R

2 these are the translations
(for which all the vi’s are equal vectors) and rotations with a certain center
p0 (for which each vi is perpendicular and proportional to the segment p0pi).
Trivial motions form a linear subspace of dimension

(

d+1
2

)

in the linear space
(Rd)n of all infinitesimal motions. Two infinitesimal motions whose difference
is a trivial motion will be considered equivalent, leading to a reduced space
of non-trivial infinitesimal motions of dimension dn −

(

d+1
2

)

. In particular,
this is n− 1 for d = 1 and 2n− 3 for d = 2. Rather than performing a formal
quotient of vector spaces we will “tie the framework down” by fixing

(

d+1
2

)

variables. E.g., for d = 1 we can choose:

v1 = 0 (1)

and for d = 2 (assuming w.l.o.g. that p2
2 6= p2

1):

v1
1 = v2

1 = v1
2 = 0 (2)

Here, p1 and p2 can be any two vertices. A different choice of normalizing
conditions only amounts to a linear transformation in the space of infinitesi-
mal motions.

In rigidity theory, a graph G = (P, E) embedded on P is customarily
called a framework and denoted by G(P ). We will use the term framework
when we want to emphasize its rigidity-theoretic properties (stresses, mo-
tions), but we will use the term graph when speaking about graph-theoretic
properties, even if graph is embedded on a set P . For a given framework
G = (P, E), an infinitesimal motion such that 〈pi − pj , vi − vj〉 = 0 for every
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edge ij ∈ E is called a flex of G. This condition states that the length of
the edge ij remains unchanged, to first order. The trivial motions are the
flexes of the complete graph, provided that the vertices span the whole space
R

d. A framework is infinitesimally rigid if it has no non-trivial flexes. It is
infinitesimally flexible or an infinitesimal mechanism otherwise.

Infinitesimal motions are to be distinguished from global motions, which
describe paths for each point throughout some time interval. In this paper
we are not concerned with global motions, nor their associated concept of
rigidity, weaker than infinitesimal rigidity ([7, Theorem 4.3.1] or [13, page
6]). Let us also insist that we distinguish between infinitesimal motions (of
the point set) and flexes (of the framework or embedded graph), while the
terms flex and infinitesimal motion are sometimes equivalent in the rigidity
theory literature.

The (infinitesimal) rigidity map MG(P ) : (Rd)n → R
E(G) is a linear map

associated with an embedded framework G(P ), P ⊂ R
d. It sends each in-

finitesimal motion (v1, . . . , vn) ∈ (Rd)n to the vector of infinitesimal edge
increases (〈pi − pj , vi − vj〉)ij∈E . When no confusion arises, it will be simply
denoted as M . The number 〈pi − pj , vi − vj〉 is called the strain on the edge
ij in the engineering literature. As usual, the image of M is denoted by
Im M = { f | f = Mv }. The matrix of M is called the rigidity matrix. In
this matrix, the row indexed by the edge ij ∈ E has 0 entries everywhere
except in the i-th and j-th group of d columns, where the entries are pi − pj

and pj − pi, respectively.

The kernel of M (after reducing R
dn to R

dn−(d+1
2 ) by forgetting trivial

motions) is the space of flexes of G(P ). In particular, a framework is in-
finitesimally rigid if and only if the kernel of its associated rigidity map M
is the subspace of trivial motions. In general, the dimension of the (reduced)
space of flexes is the degree of freedom (DOF) of the framework. A 1DOF
mechanism is a mechanism with one degree of freedom.

Finally, expansive (infinitesimal) motions v1, . . . , vn are those which si-
multaneously increase (perhaps not strictly) all distances: 〈pi−pj , vi−vj〉 ≥ 0
for every pair i, j of vertices. A mechanism is expansive if it has non-trivial
expansive flexes.

The following results of Streinu [25] can be obtained as a corollary of our
main result (see the proof after the statement of Theorem 3.1).

Proposition 2.3. (Rigidity of pointed pseudo-triangulations [25])

(a) Pointed pseudo-triangulations are minimally infinitesimally rigid (and
therefore rigid).

(b) The removal of a convex hull edge from a pointed pseudo-triangulation
yields a 1DOF expansive mechanism (called a pseudo-triangulation ex-
pansive mechanism or shortly a pte-mechanism).
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Part (a) is in accordance with the fact that the graph of any pointed
pseudo-triangulation has the Laman property, and hence is generically rigid
in the plane. It is a trivial consequence of (a) that the removal of an edge
creates a (not necessarily expansive) 1DOF mechanism. The expansiveness
of pte-mechanisms (part (b)) was proved in [25] using the Maxwell-Cremona
correspondence between self-stresses and 3-d liftings of planar frameworks, a
technique that was introduced in [6].

Self-stresses. A self-stress (or an equilibrium stress) on a framework G(P )
(see [27] or [6, Section 3.1]) is an assignment of scalars ωij to edges such
that ∀i ∈ P ,

∑

ij∈E ωij(pi − pj) = 0. That is, the self-stresses are the row
dependences of the rigidity matrix M . The proof of the following lemma is
then straightforward.

Lemma 2.4. Self-stresses form the orthogonal complement of the linear sub-

space Im M ⊂ R
(d

2). In other words, (ωij)ij∈E is a self-stress if and only
if for every infinitesimal motion (v1, . . . , vn) ∈ (Rd)n the following identity
holds:

∑

ij∈E

ωij〈pi − pj , vi − vj〉 = 0

As an example, the following result gives explicitly a stress for the com-
plete graph on any affinely dependent point set:

Lemma 2.5. Let
∑n

i=1 αipi = 0,
∑

αi = 0, be an affine dependence on
a point set P = {p1, . . . , pn}. Then, ωij = αiαj for every i, j defines a
self-stress of the complete graph G on P .

Proof. For any pi ∈ P we have:

∑

ij∈G

ωij(pi − pj) =

n
∑

j=1

αiαj(pi − pj) = αipi

n
∑

j=1

αj − αi

n
∑

j=1

αjpj = 0.

Let us analyze here the case of d+2 points P = {p1, . . . , pd+2} in general
position in R

d (this is the first non-trivial case, because no self-stress can
arise between affinely independent points). It can be easily checked that,
under these assumptions, removing any single edge from the complete graph
on P leaves a minimally infinitesimally rigid graph. This implies that the
complete graph has a unique self-stress (up to a scalar factor). This self-
stress is the one given in Lemma 2.5 for the unique affine dependence on P .
The coefficients of this dependence can be written as:

αi = (−1)i det([p1, . . . , pd+2]\{pi}).

(Recall that det(q0, . . . , qd) is d! times the signed volume of the simplex
spanned by the d + 1 points q0, . . . , qd ∈ R

d.)
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The special case d = 2, n = 4 will be extremely relevant to our purposes,
and it will be convenient to renormalize the unique self-stress as follows:

Lemma 2.6. The following gives a self-stresses for any four points p1, . . . , p4

in general position in the plane:

ωij :=
1

det(pi, pj , pk) det(pi, pj , pl)
(3)

where k and l are the two indices other than i and j.

Proof. Set αi = (−1)i det([p1, . . . , p4]\{pi}) in Lemma 2.5 and divide all the
ωij ’s of the resulting self-stress by the non-zero constant

− det(p1, p2, p3) det(p1, p2, p4) det(p1, p3, p4) det(p2, p3, p4).

The direct application of Lemma 2.5 would give as ωij a product of two
determinants, rather than the inverse of such a product. The reason why we
prefer the self-stress of Lemma 2.6 is because of the signs it produces. The
reader can easily check, considering the two cases of four points in convex
position and one point inside the triangle formed by the other three, that
with the choice of Lemma 2.6 boundary edges always receive positive stress
and interior edges negative stress. This uniformity is good for us because
in both cases pointed pseudo-triangulations are the graphs obtained deleting
from the complete graph any single interior edge.

The expansion cone. We are given a set of n points P = (p1, . . . , pn)
in R

d that are to move with (unknown) velocities vi ∈ R
d, i = 1, . . . , n. An

expansive motion is a motion in which no inter-point distance decreases. This
is described by the system of homogeneous linear inequalities:

〈pi − pj , vj − vi〉 ≥ 0, ∀ 1 ≤ i < j ≤ n (4)

and hence defines a polyhedral cone.

The only motions in the intersection of all facets of the cone are the trivial
motions. Thus, when we add normalizing equations like (1) or (2), we get a
pointed polyhedral cone containing the origin as a vertex. We call it the cone
of expansive motions or simply the expansion cone of P .

An extreme ray of the expansion cone is given by a maximal set of in-
equalities satisfied with equality by non-trivial motions. Each inequality cor-
responds to an edge of the point set, so that the ray corresponds to a graph
embedded in our point set. The cardinality of this set of edges is at least the
dimension of the cone minus 1, but may be much larger. Let’s analyze the
low dimensional cases.

For d = 1 the expansion cone is not very interesting. Let’s assume that
the points pi ∈ R are labeled in increasing order p1 < p2 < · · · < pn. Then:
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Proposition 2.7. The expansion cone in one dimension has n− 1 extreme
rays corresponding to the motions where p1, . . . , pi remain stationary and the
points pi+1, . . . , pn move away from them at uniform speed :

0 = v1 = v2 = · · · = vi < vi+1 = · · · = vn (5)

Proof. Note that the actual values of pi are immaterial in this case. The
expansion cone is given by the linear system vj ≥ vi, 1 ≤ i ≤ j ≤ n plus
the extra condition v1 = 0, and any maximal set of inequalities satisfied with
equality and yet not trivial is obviously given by (5).

The 2d case is more complex and requires additional terminology. 1DOF
mechanisms may contain rigid subcomponents (r-components, cf. [13]): max-
imal sets of some k vertices spanning a Laman subgraph on 2k − 3 edges.
The r-components of pte-mechanisms are themselves pseudo-triangulations
spanning convex subpolygons including all points in their interior. Adding
edges to complete each r-component to a complete subgraph yields a collapsed
pte-mechanism (see Figures 2 and 3).

Figure 2: A pte-mechanism with rigid sub-components (convex subpolygons)
drawn shaded, the corresponding collapsed pte-mechanism, and another pte-
mechanism that yields the same expansive motion.

Proposition 2.8. In dimension 2, the extreme rays of the expansion cone
correspond to the collapsed pte-mechanisms.

The proof will be given in Section 4.1, after we have determined the
extreme rays of a perturbed version of the polytope.

The polytope of constrained expansions. The construction we will give
in section 3 can roughly be interpreted as separating the pseudo-triangulations
contained in the same collapsed pte-mechanisms, to obtain a polyhedron
whose vertices correspond to distinct pseudo-triangulations. The original
expansion cone is highly degenerate: its extreme rays contain information
about all the bars whose length is unchanged by a motion of a 1DOF expan-
sive mechanism. We would like to perturb the constraints (4) to eliminate
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Figure 3: The collapsed pte-mechanisms corresponding to the 20 extreme
rays of the expansion cone for a planar point set of 5 points. The rigid
sub-components (complete subgraphs) are shaded.

these degeneracies and recover pure pseudo-triangulations. We do so by giv-
ing up homogeneity, i.e., by translating the facets of the expansion cone. Our
system will become:

〈vj − vi, pi − pj〉 ≥ fij , ∀1 ≤ i < j ≤ n (6)

for some numbers fij . In some cases we will change these inequalities to
equations for the edges on the convex hull of the given point set.

〈vj − vi, pi − pj〉 = fij , for the convex hull edges ij. (7)

Section 3 proves our main result, Theorem 3.1: For any point set in general
position in the plane and for some appropriate choices of the parameters fij ,
(6) defines a polyhedron whose vertices are in bijection with pointed pseudo-
triangulations and all lie in a unique maximal bounded face given by (7).
We call this face the “polytope of pointed pseudo-triangulations” or ppt-
polytope.

A similar thing in 1d is done in Section 5.3, with the surprising outcome
that the (unique) maximal bounded face of the polyhedron turns out to
be an associahedron with vertices corresponding to non-crossing alternating
trees (which are Catalan structures, as shown in [10]). The next paragraph
prepares the ground for this result.

The associahedron. The associahedron is a polytope which has a vertex
for every triangulation of a convex n-gon, and in which two vertices are
connected by an edge of the polytope if the two triangulations are connected
by an edge flip. Equivalently, various types of Catalan structures are reflected
in the associahedron. Fig. 4 shows an example.
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Figure 4: The three-dimensional associahedron. The vertices represent all
triangulations of a convex hexagon or all possible ways to insert parentheses
into the product a∗b∗c∗d∗e. Left: a symmetric representation, the secondary
polytope of a regular hexagon. Right: our representation, from Section 5.3.
Both pictures are orthogonal projections.

There is an easy geometric realization of this polytope associated with
each set P of n points in convex position in the plane, as a special case
of a secondary polytope (Gel′fand, Zelevinskǐı, and Kapranov [11], see also
Ziegler [28, Section 9.2]). Every triangulation is represented by a vector
(a1, . . . , an) of n component with the entry ai being simply the sum of the
areas of all triangles of the triangulation that are incident to the i-th vertex.
We will refer to this realization as the classical realization of the associahe-
dron. It depends on the location of the vertices of the convex n-gon, but all
polytopes that one gets in this way are combinatorially equivalent. Their face
lattice is the poset of polygonal subdivisions of the n-gon or, in the terminol-
ogy of the previous paragraphs, non-crossing and pointed graphs embedded
in P and containing the n convex hull edges. But observe that the word
“pointed” is superfluous for a graph with vertices in convex position. The
order structure in this poset is just inclusion of edge sets (in reverse order
since maximal graphs represent vertices).

Dantzig, Hoffman, and Hu [8, Section 2], and independently de Loera et
al. [17] in a more general setting, have given other representations of the set
of triangulations as the vertices of a 0-1-polytope in

(

n

3

)

variables correspond-
ing to the possible triangles of a triangulation (the universal polytope), or in
(

n

2

)

variables corresponding to the possible edges of a triangulation. These
realizations are in a sense most natural, but they have higher dimensions and
have more adjacencies between vertices than the associahedron. Every clas-
sical associahedron, however, arises as a projection of the universal polytope.
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The first published realization of an associahedron is due to Lee [16], but it
is not fully explicit. A few earlier and more complicated ad-hoc realizations
that were never published are mentioned in Ziegler [28, Section 0.10].

In this paper the associahedron appears in two forms. First, we will
show that for n points in convex position our polytope of pointed pseudo-
triangulations is affinely equivalent to the secondary polytope of the configu-
ration, which is a classical associahedron (Section 5.2). Second, as mentioned
before, our construction adapted to a one-dimensional point configuration
produces in a natural way an associahedron (Section 5.3). Notice that in
dimension 1 the coordinates pi can be eliminated from the constraints (6).
Only the order of points along the line matters. One can also look at the
whole arrangement of hyperplanes of the form

vj − vi = gij .

This arrangement, for various special values of g, has been the object of
extensive combinatorial studies. For g ≡ 0 it is the classical Coxeter or
reflection arrangement of type An. The case g ≡ 1 has been studied by
Postnikov and Stanley [22]. The expansion cone of a 1d point set is the
positive cell in the arrangement An, and our associahedron is a bounded face
of the polyhedron obtained by translating the facets of this cell.

A different realization of the associahedron based in the root system of
type An has recently appeared in [5]. It is interesting that these two new as-
sociahedra are not affinely equivalent to any classical associahedron obtained
as a secondary polytope, or to one another. Also, that we are trying to get
a simple polyhedron, in contrast to the above-mentioned choices of g which
lead to highly degenerate arrangements.

3 The Main Result: the Polytope of Pointed

Pseudo-Triangulations

In this section we prove our main result.

Theorem 3.1. For every set P = {p1, . . . , pn} of n ≥ 3 planar points in
general position, there is a choice of fij ’s for which equations (6) together with
the normalizing equations (2) define a simple polyhedron X̄f (P ) of dimension
2n− 3 with the following properties :

1. The face poset of the polyhedron equals the opposite of the poset of
pointed and non-crossing graphs on P , by the map sending each face
to the set of edges whose corresponding equations (6) are satisfied with
equality over that face. In particular:

(a) Vertices of the polyhedron are in 1-to-1 correspondence with pointed
pseudo-triangulations of P .
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(b) Bounded edges correspond to flips of interior edges in pseudo-
triangulations, i.e., to pseudo-triangulations with one interior edge
removed.

(c) Extreme rays correspond to pseudo-triangulations with one convex
hull edge removed.

2. The face Xf (P ) obtained by changing to equalities (7) those inequalities
from (6) which correspond to convex hull edges of P is bounded (hence
a polytope) and contains all vertices. In other words, it is the unique
maximal bounded face, and its 1-skeleton is the graph of flips among
pointed pseudo-triangulations.

The proof is a consequence of lemmas proved throughout this section.
Theorem 3.9 states that the choice fij := det(a, pi, pj) det(b, pi, pj) produces
the desired object, where a and b are any fixed points in the plane. In Section
5.1 we will derive a more canonical description of the polyhedron (and the
polytope) in question.

It turns out that the polyhedron X̄f (P ) is the most convenient object for
the proof. The properties of the polytope Xf (P ) (part 2 of the theorem) and
the extreme ray description of the expansion cone (Proposition 2.8), which
may be more interesting by themselves, are then easily derived.

Before going on, let us see that Theorem 3.1 implies Proposition 2.3.
Observe that a framework is minimally infinitesimally rigid if and only if
the hyperplanes 〈pi − pj , vi − vj〉 = 0 corresponding to its edges ij meet
transversally and at a single point, in the (2n − 3)-dimensional space given
by equations (2). Part 1.a of our theorem says that this happens for the
2n − 3 translated hyperplanes 〈pi − pj , vi − vj〉 = fij corresponding to any
pointed pseudo-triangulation, hence giving part (a) of Proposition 2.3. An
(infinitesimally) expansive 1DOF mechanism is one whose corresponding hy-
perplanes intersect in a line contained in the expansion cone. Part 1.c of the
theorem says that this happens for a pointed pseudo-triangulation with one
hull edge removed, giving part (b) of Proposition 2.3.

The polyhedron and the polytope of constrained expansions. The
solution set v ∈ (R2)

n
of the system of inequalities (6) together with the nor-

malizing equations (2) will be called the polyhedron of constrained expansions
X̄f (P ) for the set of points P and perturbation parameters (constraints) f .
We will frequently omit the point set P when it is clear from the context.
A solution v may satisfy some of the inequalities in (6) with equality: the
corresponding edges E(v) of G are said to be tight for that solution. In the
same way, for a face K of X̄f we call tight edges of K and denote E(K) the
edges whose equations are satisfied with equality over K (equivalently, over
a relative interior point of K). This is the correspondence that Theorem 3.1
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refers to: the edges E(K) of a face K form the pointed and non-crossing
graph corresponding to that face.

When f ≡ 0, we just get the expansion cone X̄0 itself (in this sense, our
notations X̄0 and X̄f are consistent.) This cone equals the recession cone of
X̄f , for any choice of f . (The recession cone of a polyhedron is the cone of
vectors parallel to infinite rays contained in the polyhedron.) We will first
establish a few properties of the expansion cone.

Lemma 3.2. (a) The expansion cone X̄0 is a pointed polyhedral cone of
full dimension 2n−3 in the subspace defined by the three equations (2).
(In this context, “pointed” means that the origin is a vertex of the cone.)

(b) Consider the set E(v) of tight edges for any feasible point v ∈ X̄0. If
E(v) contains

(i) two crossing edges,

(ii) a set of edges incident to a common vertex with no angle larger
than π (witnessing that E(v) is not pointed at this vertex ), or

(iii) a convex subpolygon,

then E(v) must contain the complete graph between the endpoints of all
involved edges. In case (iii), this complete graph also includes all points
inside the convex subpolygon.

Proof. (a) The dilation (scaling motion) vi := pi satisfies all inequalities (4)
strictly. By adding a suitable rigid motion, the three equations (2) can be
satisfied, too, without changing the status of the inequalities (4), and so we
get a relative interior point in the (2n− 3)-dimensional subspace (2).

If the cone were not pointed, it would contain two opposite vectors v and
−v. From this we would conclude that 〈vj − vi, pj − pi〉 = 0 for all i, j, and
hence v would be a flex of the complete graph on P . By the normalizing
equations (2), v must then be 0.

(b) We first consider (iii), which is the most involved case. Let v be an
expansive motion which preserves all edge lengths of some convex polygon.
First we see that v preserves all distances between polygon vertices: indeed,
if it preserves lengths of polygon edges but is not a trivial motion of the
polygon then the angle at some polygon vertex pi infinitesimally decreases,
because the sum of angles remains constant. But decreasing the angle at
pi while preserving the lengths of the two incident edges implies that the
distance between the two vertices adjacent to pi in the polygon decreases.
This is a contradiction.

By choosing p1 and p2 in (2) to be polygon vertices, the above implies
that the polygon remains stationary under v. Now no interior point pi can
move with respect to the polygon, without decreasing the distance to some



G. Rote, F. Santos, I. Streinu 17

polygon vertex: If vi 6= 0, there is at least one hull vertex pj in the half-plane
〈pi − pj , vi〉 < 0. The edge ij will then violate condition (4).

Case (ii) is similar: If the edges incident to a vertex pi do not move rigidly,
at least one angle between two neighboring edges must decrease, and, this
angle being less than π, this implies that the distance between the endpoints
of these edges decreases, a contradiction.

For case (i), we apply Lemma 2.4 to our given four-point set in convex
position, with the self-stress of Lemma 2.6, which is positive for the four hull
edges and negative for the two diagonals. This implies that this four-point
set can have no non-trivial expansive motion which is not strictly expansive
on at least one of the two diagonals.

As an immediate consequence of Lemma 3.2(a), we get:

Corollary 3.3. X̄f (P ) is a (2n−3)-dimensional unbounded polyhedron with
at least one vertex, for any choice of parameters f .

It is easy to derive part 2 of Theorem 3.1 from part 1. For every vertex
or bounded edge of X̄f (P ), the set E(v) contains all convex hull edges of P .
On the contrary, for any unbounded edge (ray) of X̄f (P ), the set E(v) misses
some convex hull edge of P . Hence, by setting to equalities the inequalities
corresponding to convex hull edges we get a face Xf (P ) of X̄f (P ) which
contains all vertices and bounded edges of X̄f (P ), but no unbounded edge.

In order to prove part 1, we first need to check that indeed Xf is a bounded
face, and hence a polytope which we call the polytope of constrained expan-
sions or pce-polytope for the set of points P and perturbation parameters f .

Lemma 3.4. For any choice of f , Xf (P ) is a bounded set.

Proof. Suppose that v0+tv is in Xf for all t ≥ 0. Then we must have v ∈ X0.
Hence, it suffices to show that X0 = 0, i.e. that the framework consisting of
all convex hull edges has no non-trivial expansive flexes. This is an immediate
consequence of Lemma 3.2b(iii).

Reducing the problem to four points. We call a choice of the constants

f = (fij) ∈ R
(n

2) valid if the corresponding polyhedron X̄f of constrained
expansions has the combinatorial structure claimed in Theorem 3.1.

Lemma 3.5. A choice of f ∈ R
(n

2) is valid if and only if the graph E(v) of
tight edges corresponding to any feasible point v ∈ X̄f (P ) is non-crossing and
pointed.

Proof. Necessity is trivial, by definition of being valid. To see sufficiency note
that, by Corollary 3.3, X̄f has dimension 2n− 3. Thus, any vertex v of the
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polyhedron is incident to at least 2n−3 faces E(v). If E(v) is non-crossing and
pointed, Lemma 2.1 implies that E(v) has exactly 2n− 3 incident faces and
is a pointed pseudo-triangulation. In particular, the polyhedron is simple.
Also, since the tight edges of faces incident to v are different subgraphs of
E(v), the poset of faces incident to the vertex v is the poset of all subgraphs
of the pointed pseudo-triangulation E(v).

It remains only to show that every pointed pseudo-triangulation actually
appears as a vertex, for which we use a somewhat indirect argument, based
on the fact that the flip graph is connected. This type of argument has also
been used by Carl Lee for the case of the associahedron in [16], where it is
attributed to Gil Kalai and Micha Perles.

Since the polytope is simple, every vertex v is incident to 2n− 3 edges of
X̄f . The sets of tight edges corresponding to them are the 2n−3 subgraphs of
E(v) obtained removing a single edge. We denote by Kij the polyhedral edge
corresponding to the removal of ij. By Lemma 3.4, if ij is interior then Kij is
bounded. Hence, it is incident to another vertex, which must correspond to a
pointed pseudo-triangulation that completes E(v)−{ij}. By Lemma 2.2(a),
this can only be the one obtained from E(v) by a flip at ij. Together with
the fact that the flip graph is connected (Lemma 2.2(b)) and that X̄f has at
least one vertex, this implies that all pointed pseudo-triangulations appear
as vertices of X̄f , and hence that all pointed and non-crossing graphs appear
as well.

Also, the extreme rays have the structure predicted in Theorem 3.1. For
a convex hull edge ij, Kij must be an unbounded edge because there is no
other pointed pseudo-triangulation that contains E(v)− {ij}.

We now conclude that valid perturbation vectors f ∈ R
(n

2) can be recog-
nized by looking at 4-point subsets only.

Lemma 3.6. A choice of f ∈ R
(n

2) is valid if and only if it is valid when
restricted to every four points of P .

Proof. By the previous Lemma, if f is not valid for P then there is a point
v of X̄f for which the graph E(v) is either non-pointed or crossing. In either
case, there is a subset of four points P ′ ⊆ P on which the induced subgraph
is non-pointed or crossing. Let v′ and f ′ denote v and f restricted to P ′.
Then, v′ is in X̄f ′(P

′) and the graph E(v′) is crossing or not pointed, hence
f ′ is not valid on P ′. Contradiction.

The case of four points.
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Theorem 3.7. A choice of perturbation parameters f ∈ R
(4
2) on four points

P = (p1, p2, p3, p4) forms a valid choice if and only if

∑

1≤i<j≤4

ωijfij > 0, (8)

where the ωij ’s are the unique self-stress on the four points, with signs chosen
as in Lemma 2.6.

For a set of four points P = (p1, p2, p3, p4), we denote by Gij the graph on
P whose only missing edge is ij. Recall that the choice of self-stress on four
points has the property that Gij is pointed and non-crossing (equivalently,
ij is interior) if and only if ωij is negative.

Since X̄f (P ) is five-dimensional, for every vertex v the set E(v) contains
at least five edges. Therefore E(v) is either the complete graph or one of
the graphs Gij . Theorem 3.7 is then a consequence of Lemma 3.5 and the
following statement.

Lemma 3.8. Let R :=
∑

1≤i<j≤4 ωijfij . For every edge kl, the following
properties are equivalent:

1. The graph Gkl appears as a vertex of Xf (P ).

2. R and ωkl have opposite signs.

Proof. The graph Gkl appears as a face if and only if the (unique, since Gkl

is rigid) motion with edge length increase fij for every edge ij other than kl
has edge length increase on kl greater than fkl. In this case, by rigidity of
Gkl, the face is actually a vertex. But, for this motion:

0 =
∑

1≤i<j≤4

ωij〈pj − pi, vj − vi〉 =
∑

1≤i<j≤4

ωijfij + ωkl(〈pk − pl, vk − vl〉 − fkl)

= R + ωkl(〈pk − pl, vk − vl〉 − fkl).

Hence, 〈pk − pl, vk − vl〉 > fkl is equivalent to R and ωkl having opposite
sign.

Observe that the previous lemma implicitly includes the statement that
the complete graph appears as a vertex if and only if R = 0. The only if
part of this is actually an easy consequence of Lemma 2.4. In this case Xf

degenerates to a single point.

To complete the proof of Theorem 3.1 we still need to show that valid
choices of perturbation parameters exist:
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Theorem 3.9. Let a and b be any two points in the plane. For any point
set P = {p1, . . . , pn} in general position in the plane, the following choice of
parameters f is valid:

fij = det(a, pi, pj) det(b, pi, pj) (9)

Proof. This follows from the following Lemma, taking into account Lemma 3.6
and Theorem 3.7.

Lemma 3.10. For any two points a and b and for any four points p1, . . . , p4

in general position in the plane, we have

∑

1≤i<j≤4

ωijfij = 1,

where fij is given by (9) and ωij are the self-stress of Lemma 2.6.

Proof. Let us consider the four points pi as fixed and regard R =
∑

ωijfij

as a function of a and b.

R(a, b) =
∑

1≤i<j≤4

det(a, pi, pj) det(b, pi, pj)ωij .

For fixed b, R(a, b) is clearly an affine function of a. We claim that R(pi, b) = 1
for each of the four points p1, . . . , p4, which implies that R(a, b) is constantly
equal to 1. To prove the claim, without loss of generality we take a = p1.
Now, R(p1, b) is an affine function of b. By a similar argument as before,
it suffices to show R(p1, b) = 1 for the three affinely independent points
b = p2, p3, p4. Without loss of generality we look only at R(p1, p2). Then,
fij = 0 for every i, j except f34 = det(p1, p3, p4) det(p2, p3, p4). Hence,

R(p1, p2) = ω34f34 =
det(p1, p3, p4) det(p2, p3, p4)

det(p3, p4, p1) det(p3, p4, p2)
= 1.

This proof is quite easy, but it does not provide much intuition why
this choice of f works. The first valid choice that we found by heuristic
considerations was the function

f ′ij = 1
2 ·

(

|pi|
2 + |pj |

2 + 〈pi, pj〉
)

· |pi − pj |
2. (10)

The intuition behind this is as follows. Looking back to Lemma 3.6, there
are two cases of four points: in convex position and as a triangle with a point
in the middle. In both cases we want to avoid the situation that all interior
edges (inside the convex hull) are tight, while the hull edges expand at least
at their prescribed rate fij . Thus, we want fij to be big for the “peripheral”
edges and small for the “central” edges. (This goal is in accordance with
Theorem 3.7, as our choice of ωij is positive on boundary edges and negative
on interior ones.)
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A function which has this property of being on average bigger on the
border of a region than in the middle is the convex function |x|2. When we
integrate |x|2 over the edge pipj and multiply the result by the edge length
(because fij is expressed in terms of the derivative of the squared edge length),
we get (10), up to a multiplicative constant.

The parameters f ′ij are valid. Indeed, it can be checked that
∑

ωijf
′
ij = 1

holds for all 4-tuples of points: setting a = b = 0 in the definition (9) of f ,
the difference

f ′ij − fij =: gij =
[

|pi|
2|pi|

2 + |pj |
2|pj |

2 − (|pi|
2 + |pj |

2)〈pi, pj〉
]

/2

satisfies
∑

i,j ωijgij = 0, which follows from Lemma 2.4 with vi = |pi|
2
pi/2.

Of course, the equation
∑

ωijf
′
ij = 1 can be trivially checked by expand-

ing the values of ωij and f ′ij with the help of a computer algebra package.
Attempts to find a more classical proof have lead to the function fij of (9).

4 Applications of the Main Result

4.1 The Expansion Cone

As mentioned in the previous section, the expansion cone is the recession
cone X̄0 of the pce-polyhedron X̄f , whose structure we know. The extreme
rays of X̄0 are precisely the extreme rays of X̄f , shifted to start at 0, but
parallel rays of X̄f give rise to only one ray of X̄0, of course.

Studying when this happens will allow us to give now a rather easy proof
of the characterization of the extreme rays of X̄0 (Proposition 2.8): We con-
clude from Theorem 3.1 that the extreme rays correspond to pointed pseudo-
triangulations with one hull edge removed, i.e., pte-mechanisms. Any convex
subpolygon in a pte-mechanism must be rigid in the mechanism, according to
Lemma 3.2b(iii). This corresponds to the fact that every convex subpolygon
of a pointed pseudo-triangulation contains a pointed pseudo-triangulation of
that polygon and the enclosed points, and is therefore rigid. We still have to
show that these r-components are the only subcomponents that move rigidly
in the (unique) flex v on a pte-mechanism G(P ).

Lemma 4.1. Let P ′ ⊂ P be a maximal subset that moves (infinitesimally)
rigidly by the unique flex v of the pte-mechanism G(P ).

(a) Then P ′ contains all points of P within its convex hull,

(b) G contains no edge which either crosses the boundary of the convex hull
of P ′ or gives a non-pointed graph together with the boundary of P ′, and

(c) G contains all boundary edges of the convex hull of P ′.
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Proof. (a) A subset P ′ ⊂ P moves rigidly if and only if E(v), considered in
X̄0, contains the complete subgraph spanned by P ′. Then part (a) follows
from Lemma 3.2b(iii).

(b) An edge ij ∈ G ⊆ E(v) in either of those two situations would, by
Lemma 3.2b(i) or (ii), imply that the complete graph on P ′ ∪ ij is part of
E(v). and hence i and j are rigidly connected to P ′. On the other hand,
either of the two conditions implies that one of i or j is not in P ′, violating
maximality of P ′ as a subset which moves rigidly.

(c) Assume that a hull edge ij of P ′ is missing in G. Let G′ be the
graph obtained adding ij to G. Since P ′ moves rigidly, G′ is still a 1DOF
mechanism. On the other hand, part (b) implies that G′ is still a pointed
and non-crossing graph. Since G had 2n − 4 edges, G′ has 2n − 3 edges
and, by Lemma 2.1, it is a pointed pseudo-triangulation. This is a contradic-
tion, because pointed pseudo-triangulations are infinitesimally rigid (Propo-
sition 2.3).

If follows from the last statement that the rigidly moving components
are precisely the convex subpolygons of the pte-mechanism, and two pte-
mechanisms yield the same motion (extreme ray) if and only if they lead to the
same collapsed pte-mechanism, thus concluding the proof of Proposition 2.8.

4.2 Strictly Expansive Motions and Unfoldings of Polygons

Lemma 4.2. Let G(P ) be a non-crossing and pointed framework in the plane.
Then, G(P ) has a non-trivial expansive flex if and only if it does not contain
all the convex hull edges. In this case, there is an expansive motion that is
strictly expansive on all the convex hull edges not in G.

Proof. If all the convex hull edges are in G, then Lemma 3.4 implies the
statement: the face of X̄f corresponding to G is bounded and, hence, it de-
generates to the origin in X̄0. If a certain convex hull edge ij is not in G,
then we extend G to a pointed pseudo-triangulation, according to Lemma 2.1.
Removing ij yields a pte-mechanism, whose expansive motion is strictly ex-
pansive on ij. Adding all such motions for the different missing hull edges
gives the stated motion.

This immediately gives the following theorem.

Theorem 4.3. Let G(P ) be a non-crossing non-convex plane polygon or a
plane polygonal arc that does not lie on a straight line. Then there is an
expansive motion that is strictly expansive on at least one edge.
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This statement has been crucial to show that every simple polygon in
the plane can be unfolded by a global motion into convex position and ev-
ery polygonal arc can be straightened, without collisions [6, 25]. The proof
given in those papers is based on several reduction steps between infinitesi-
mal motions, self-stresses, and polyhedral terrains. The above new proof is
completely independent, although not less indirect.

Actually, one can work a little harder in the proof of Lemma 4.2 and show
that any edge ij /∈ G that is not contained inside a convex subpolygon of G
can be chosen to be strictly expansive. (The proof constructs an appropri-
ate pte-mechanism by a flipping argument, applied to the minimal convex
subpolygon enclosing the chosen edge.) By adding several motions of G(P )
one can obtain an expansive motion that is strictly expansive on all eligible
edges, and hence, in Theorem 4.3, there is a motion that is strictly expansive
on all edges ij /∈ G. This is actually the statement that was proved in [6], in
a more general setting.

5 Other Constructions

In this section we present three related results: a different representation for
the ppt-polytope that is less dependent on some seemingly arbitrary choice
of parameters f , and the two constructions leading to the associahedron:
2-dimensional points in convex position and the one-dimensional expansion
polytope.

5.1 A redefinition of the ppt-polyhedron

Let P = {p1, . . . , pn} be a fixed point configuration in general position. As

before, with each possible choice of parameters f = (fij) ∈ R
(n

2) we associate
the polyhedron X̄f defined by the constraints (2) and (6), and the polytope
Xf obtained setting to equalities the inequalities corresponding to convex
hull edges. The case f ≡ 0 produces the expansion cone, with the polytope
degenerating to a point. The choice fij = det(0, pi, pj)

2, among others, pro-
duces our polytope of pointed pseudo-triangulations, according to Theorem
3.9. But the results of Section 3 imply that actually any other choice of fij ’s
would provide (combinatorially) the same polyhedron and polytope as long
as it satisfies inequality (8) for every four points pi1 , pi2 , pi3 and pi4 , where
the ωij ’s are the self-stress on the four points with sign chosen as in Lemma
2.6.

In this section we give a new construction for this polyhedron, with the
advantage that it does not depend on any choice of parameters. It has the
disadvantage, however, that it involves more variables: one for each of the
(

n

2

)

possible edges among the n points.
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The basic idea is to study the image of the previously defined ppt-polytope

under the rigidity map M : R
2n → R

(n

2) for the complete graph on P , using
the variables δij := 〈pi − pj , vi − vj〉. The following lemma is a stronger
version of Lemma 2.4.

Lemma 5.1. (Equivalence of parameters) Let δ = (δij) be a vector in

R
(n

2). Then, the following properties are equivalent :

(a) δ ∈ Im M

(b) For any four points pi1 , pi2 , pi3 and pi4 in P one has

∑

i<j∈{i1 ,i2,i3,i4}

ωijδij = 0

where the ωij ’s are a nonzero self-stress of the complete graph on those
four points.

Proof. The implication (a)⇒(b) follows directly from one direction of Lemma
2.4. Lemma 2.4 also gives (b)⇒(a) for each quadruple: if (a) holds, then for
each four points there is an infinitesimal motion (ai1 , ai2 , ai3 , ai4) whose image
by the rigidity map of the four points are the six relevant entries of δ. The
motion for a quadruple is not unique, but any two choices differ only by a
trivial motion of the quadruple.

To define a global motion (a1, . . . , an) of the whole configuration, let us
start by setting a1 = (0, 0) and a2 = (0, b), where b must be the unique num-
ber satisfying 〈p1 − p2, (0, b)〉 = δ12. (We assume without loss of generality
that p1 and p2 do not have the same y-coordinate.) The condition δ = M(a)
on the edges 1i and 2i then uniquely defines ai for every i 6= 1, 2, because
these two equations are linearly independent, the directions pi−p1 and pi−p2

being not parallel. To see that this global motion satisfies δ = M(a) also for
any other edge ij (i 6= 1, 2, j 6= 1, 2), it is sufficient to consider the quadru-
ple (p1, p2, pi, pj). By construction, the motion (a1, a2, ai, aj) satisfies the
condition δ = M(a) for five of the six edges in the quadruple. Assump-
tion (b) says that

∑

k,l∈{1,2,i,j} ωklδij = 0 which, by Lemma 2.4, implies that

δ restricted to (p1, p2, pi, pj) is the set of edge increases produced by some
motion v = (v1, v2, vi, vj). This motion can be normalized to v1 = (0, 0) and
v2 = (0, b) and then it must coincide with a by our uniqueness argument
above.

This, together that the observation that the kernel of M consists only of
trivial motions immediately gives the following lemma.

Lemma 5.2. For any f ∈ R
(n

2), the polyhedron X̄f is linearly isomorphic to
the one defined in

(

n

2

)

variables δij = δji by the following
(

n

4

)

equations and
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(

n

2

)

inequalities.

∑

i<j∈{i1 ,i2,i3,i4}
ωijδij = 0, ∀ i1, i2, i3, i4 ∈ {1, . . . , n},

δij ≥ fij , ∀ i, j ∈ {1, . . . , n}.

Moreover, setting to equalities the inequalities corresponding to convex hull
edges produces a polytope linearly isomorphic to Xf .

By making the change of variables dij = fij − δij and taking into account
that

∑

ωijfij = 1 for any four points, for the valid choices f of Theorem 3.9,
we conclude:

Theorem 5.3. For any given point set P = {p1, . . . , pn} in the plane in
general position, the following

(

n

4

)

equations and
(

n

2

)

inequalities define a

simple polyhedron in R
(n

2) linearly isomorphic to the polyhedron X̄f (P ) of
Theorem 3.1, with fij chosen as in Theorem 3.9.

•
∑

ωijdij = 1 for every quadruple, where the ωij ’s of each equation are
the self-stress on the corresponding quadruple stated in Lemma 2.6.

• dij ≤ 0 for every variable.

The maximal bounded face in the polyhedron is obtained setting to equalities
the inequalities corresponding to convex hull edges.

The
(

n

4

)

equations are highly redundant. It follows from the proof of

Lemma 5.1 that the
(

n−2
2

)

quadruples involving two fixed vertices are suf-

ficient. Subtracting this number from the number
(

n
2

)

of variables actually
gives the right dimension 2n− 3 of the polyhedron.

5.2 Convex position and the associahedron

Suppose now that our n points P = {p1, . . . , pn} are in (ordered) convex po-
sition. In this subsection all indices are regarded modulo n. In Section 2 we
noticed that the polytope of pointed pseudo-triangulations of P is combina-
torially the same thing as the secondary polytope, which for a convex n-gon
is an associahedron. We prove here that, in fact, the secondary polytope and
the ppt-polytope are affinely isomorphic.

The first problem we encounter is that so far we have only facet descrip-
tions for the ppt-polytope, while the secondary polytope is defined by the
coordinates of its vertices. We recall that the secondary polytope lives in R

n

and that the i-th coordinate of the vertex corresponding to a certain triangu-
lation T equals the total area of all triangles of T incident to pi. Denote this
area as AreaT (pi). For convenience we will work with a normalized definition
of area of a triangle with vertices p, q and r as being equal to | det(p, q, r)|. We
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also assume our points to be ordered counter-clockwise, so that det(pi, pj , pk)
is positive if and only if i, j and k appear in this order in the cyclic ordering
of {1, . . . , n}. In this way

AreaT (pi) :=

t−1
∑

l=1

det(pi, pjl
, pjl+1

)

where {pj1 , . . . , pjt
} is the ordered sequence of vertices adjacent to pi in T .

Our first task is to compute the coordinates of the vertices of the ppt-
polytope. Notice that by definition the coordinates corresponding to edges of
T are zero, since the inequalities corresponding to the edges of T are satisfied
with equality. It will turn out that we do not need all the coordinates, but
only those corresponding to almost-convex-hull edges pi−1pi+1.

Lemma 5.4. Let T be a triangulation of P . Then, in the ppt-polytope of
Theorem 5.3, the coordinate di−1,i+1 corresponding to an almost-convex-hull
edge equals

di−1,i+1 = − det(pi−1, pi, pi+1) (AreaT (pi)− det(pi−1, pi, pi+1)) .

Proof. Let pj1 , . . . , pjt
be the ordered sequence of vertices adjacent to pi in

T , with pj1 = pi+1 and pjt
= pi−1. We will prove by induction on k = 2, . . . , t

that the coordinate dj1jk
of the ppt-polytope vertex corresponding to T equals

dj1jk
= − det(pi, pj1 , pjk

) Area(pj1 , . . . , pjk
)

where Area(pj1 , . . . , pjk
) denotes the area of the polygon with vertices pj1 , . . . ,

pjk
, in that order. This reduces to the formula in the statement for k = t.

The base case k = 2 is trivial: since j1j2 is an edge in the triangulation,
we have dj1j2 = 0. To compute dj1jk

for k > 2 we consider the quadruple
pi, pj1 , pjk−1

, pjk
. The only non-zero d’s on this quadruple are dj1jk−1

and
dj1jk

. (For k = 3, dj1jk−1
is also zero.) Hence, the equation

∑

ωαβdαβ = 1
for this quadruple reduces to

dj1jk
ωj1jk

+ dj1jk−1
ωj1jk−1

= 1.

From this we infer the stated value for dj1jk
from the known values of the

other quantities:

ωj1jk
=

1

det(pi, pj1 , pjk
) det(pj1 , pjk−1

, pjk
)
,

ωj1jk−1
=

−1

det(pi, pj1 , pjk−1
) det(pj1 , pjk−1

, pjk
)
, and

dj1jk−1
= − det(pi, pj1 , pjk−1

) Area(pj1 , . . . , pjk−1
).

(The last equation is the inductive hypothesis.)
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This Lemma immediately implies the following:

Corollary 5.5. (a) The affine map

ai = −
di−1,i+1

det(pi−1, pi, pi+1)
+ det(pi−1, pi, pi+1)

gives the coordinates (a1, . . . , an) of a triangulation in the secondary
polytope in terms of its coordinates (dij)ij∈(n

2)
in the ppt-polytope of

Theorem 5.3.

(b) The substitution dij = fij −〈pi − pj , vi − vj〉 in the above formula gives
an affine map R

2n → R
n sending the ppt-polytope of Theorem 3.1 to

the secondary polytope, whenever the fij ’s are a valid choice satisfying

∑

1≤i<j≤4

ωijfij = 1

for every quadruple, such as the choices in Theorem 3.9.

Observe that Corollary 5.5 implies that, for points in convex position, we
can consider the ppt-polytope of Theorem 5.3 as lying in the n-dimensional
space given by the coordinates di−1,i+1. For the polyhedron, we additionally
need the coordinates di,i+1. (These are zero on the polytope, but not on the
polyhedron.)

5.3 The 1-Dimensional Case: the Associahedron Again

By considering 1-dimensional expansive motions, in this section we will re-
cover the associahedron via a different route. The analogy of this construction
to the 2-dimensional case will become even more apparent in Section 6.

The polytope of constrained expansions in dimension 1. In the 1-
dimensional case we will rewrite constraints (6) in the form

vj − vi ≥ gij , ∀i < j. (11)

One set of inequalities is equivalent to the other under the change of constants
gij(pj − pi) = fij , for any i < j. This reformulation explicitly shows that
the solution set does not depend on the point set P = {p1, . . . , pn} that
we choose. We denote this solution set X̄g , to mimic the notation of the
2-dimensional case.

It is easy to see that the polyhedron X̄g is full-dimensional and it contains
no lines if we add the normalization equation v1 = 0. Hence, after normaliza-
tion, it has dimension n−1 and contains some vertex. For any vertex v or for
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any feasible point v ∈ X̄g, we may look at the set E(v) of tight inequalities
at v:

E(v) := { ij | 1 ≤ i < j ≤ n, vj − vi = gij }

We regard E(v) as the set of edges of a graph on the vertices {1, . . . , n}.

One may get various polyhedra by choosing different numbers gij in (11).
We choose them with the following properties.

gil + gjk > gik + gjl, ∀1 ≤ i < j ≤ k < l ≤ n. (12)

For j = k we use this with the interpretation gjj = 0, so we require

gil > gik + gkl, ∀1 ≤ i < k < l ≤ n. (13)

One way to satisfy these conditions is to select

gij := h(tj − ti), ∀i < j (14)

for an arbitrary strictly convex function h with h(0) = 0 and arbitrary real
numbers t1 < · · · < tn. The simplest choice is h(t) = t2 and ti = i, yielding
gij = (i− j)2.

Two edges ij and jk with i < j < k are called transitive edges, and edges
ik and jl with i < j < k < l are called crossing edges.

Lemma 5.6. If g satisfies (12–13) and v ∈ X̄g, then E(v) cannot contain
transitive or crossing edges.

Proof. If we have two transitive edges ij, jk ∈ E(v) this means that vj −vi =
gij and vk − vj = gjk. This gives vk − vi = gij + gjk < gik, by (13), and
thus v cannot be in X̄g because it violates (6). The other statement follows
similarly.

Non-crossing alternating trees. A graph without transitive edges is
called an alternating or intransitive graph: every path in an alternating graph
changes continually between up and down.

Lemma 5.7. A graph on the vertex set {1, . . . , n} without transitive or cross-
ing edges cannot contain a cycle.

Proof. Assume that C is a cycle without transitive edges. Let i and m be the
lowest and the highest-numbered vertex of a cycle C, and let ik be an edge
of C incident to i, but different from im. The next vertex on the cycle after
k must be between i and k; continuing the cycle, we must eventually reach
m, so there must be an edge jl which jumps over k, and we have a pair ik,
jl of crossing edges.
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Since the polyhedron is (n − 1)-dimensional, the set E(v) of a vertex v
must contain at least n − 1 edges. We have just seen that it is acyclic, and
hence it must be a tree and contain exactly n− 1 edges. So we get:

Proposition 5.8. X̄g is a simple polyhedron. The tight inequalities for each
vertex correspond to non-crossing alternating trees.

We will see below that X̄g contains in fact all non-crossing alternating
trees as vertices.

A new realization of the associahedron. Let’s look at the combinato-
rial properties of these trees. Alternating trees have been studied in com-
binatorics in several papers, see for example [21, 22] or [24, Exercise 5.41,
pp. 90–92] and the references given there. Non-crossing alternating trees were
studied only by Gelfand, Graev, and Postnikov, under the name of “standard
trees”. They proved the following fact [10, Theorem 6.4].

Proposition 5.9. The non-crossing alternating trees non n + 1 points are
in one-to-one correspondence with the binary trees on n vertices, and hence
their number is the n-th Catalan number

(

2n
n

)

/(n + 1).

The bijection given in [10] to prove this fact is that the vertices of the
binary tree correspond to the edges of the alternating tree. It is easy to see
that every non-crossing alternating tree must contain the edge 1n. Removing
this edge splits the tree into two parts; they correspond to the two subtrees
of the root in the binary tree. The two parts are handled recursively. Even
simpler is the bijection to bracketings (ways to insert n−1 pairs of parentheses
in a string of n letters). Just change edge ij by a parenthesis enclosing the
i-th and j-th letter.

(((a((bc)(de))) (f(g(((((hi)j)k)l)m))))((no)(p(qr)))) ←→ ((a((bc)(de)))((f(g(((((hi)j)k)l)m))) ((no)(p(qr)))))

Figure 5: The bijection between binary trees (up), non-crossing alternating
trees (middle) and bracketings (bottom). The flipping operation in each case
is shown, and the elements affected by the flip are highlighted.
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Figure 5 gives an example of these correspondences, including the cor-
respondence of the respective flipping operations: If we remove any edge
e 6= 1n from a non-crossing alternating tree T , there is precisely one other
non-crossing alternating tree T ′ which shares the edges T −{e} with T . This
exchange operation corresponds under the above bijection to a tree rotation
of the binary tree, and to a single application of the associative law (remove
a pair of interior parentheses and insert another one in the only possible way)
in a bracketing.

Observe that still we don’t know that all the non-crossing and alternating
trees appear as vertices of Xg. But this is easy to prove: since Xg is simple
of dimension d− 2, its graph is regular of degree d− 2. And it is a subgraph
of the graph of rotations between binary trees, which is also (d − 2)-regular
and connected. Hence, the two graphs coincide.

If we now look at faces of X̄g , rather than vertices, the tight edges for
each of them form a non-crossing alternating forest. Such a forest G is an
expansive mechanism if and only if the edge 1n is not in G: If that edge is
present, p1 and pn are fixed and any other pi must approach one of the two.
If the edge 1n is not present, then let i be the maximum index for which
1i is present. Then the motion v1 = · · · = vi = 0 < vi+1 = · · · = vn is an
expansive flex of G.

Hence, X̄g has a unique maximal bounded face, the facet given by the
equation vn − v1 = g1n and corresponding to the edge 1n alone. This facet is
then an (n − 2)-dimensional simple polytope that we denote Xg. The n− 2
neighbors of each vertex v correspond to the n−2 possible exchanges of edges
different from 1n in the tree E(v).

Theorem 5.10. Xg is a simple (n−2)-dimensional polytope whose face poset
is that of the associahedron. Vertices are in one-to-one correspondence with
the non-crossing alternating trees on n vertices. Two vertices are adjacent if
and only if the two non-crossing alternating trees differ in a single edge.

X̄g is an unbounded polyhedron with the same vertex set as Xg. The
extreme rays correspond to the non-crossing alternating trees with the edge
1n removed.

Proof. Only the statement regarding the face poset remains to be proved.
This can be proved in two ways: On the one hand, we already know that
the graphs of Xg and of the (d− 2)-associahedron coincide (the latter being
the graph of rotations between binary trees). And simple polytopes with
the same graph have also the same face poset. (This is a result of Blind
and Mani; see [28, Section 3.4]). As a second proof, the correspondence
between non-crossing alternating trees and bracketings trivially extends to a
correspondence between non-crossing alternating forests containing 1n and
“partial bracketings” in a string of n letters which include the parentheses
enclosing the whole string. The poset of such things is the face poset of the
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associahedron (see [24], Proposition 6.2.1 and Exercise 6.33). In particular,
the face-poset of Xg is a subposet of the face-poset of the associahedron, and
two polytopes of the same dimension cannot have their face posets properly
contained in one another. This is true in general by topological reasons, but
specially obvious in our case since we know our polytopes to be simple and
their vertices to correspond one to one. Each vertex is incident to exactly
(

d−2
i

)

faces of dimension i in both polytopes, and two subsets of cardinality
(

d−2
i

)

cannot be properly contained in one another.

A result which is related to Theorem 5.10 was proved by Gelfand, Graev,
and Postnikov [10, Theorem 6.3], in a setting dual to ours: there a triangula-
tion of a certain polytope was constructed. The non-crossing alternating trees
correspond to the simplices of the triangulation. It is shown explicitly that
the simplices form a partition of the polytope. Certain numbers gij are then
associated with the vertices of the polytope to show that the triangulation is
a projection of the boundary of a higher-dimensional polytope. Incidentally,
the numbers that were suggested for this purpose are (i−j)2, which coincides
with the simple proposal given above after (14), but the calculations are not
given in the paper [10].

One easily sees that the conditions (12–13) on g are also necessary for the
theorem to hold: If any of these conditions would hold as an equality or as an
inequality in the opposite direction, the argument of Lemma 5.6 would work
in the opposite direction, and certain non-crossing alternating trees would
be excluded. Thus, (12–13) are a complete characterization of the “valid”
parameter values gij .

Further Remarks. The result we presented in this section is surprising
in two ways: first, that it produces such a well studied object as the associ-
ahedron; second, that it requires additional types of linear constraints that
are not needed in dimension 2. Indeed, inequalities (13) in the 1-dimensional
case are the exact analog of inequalities (8) in the 2-dimensional case, as we
will see in Section 6. But the constraints (12) have no analog. This second
aspect makes the task of producing 3d generalization of the constructions of
this paper more challenging, as there does not seem to be a straightforward
pattern for producing the linear constraints whose instantiations in 1d and
2d give the polytopes of expansive motions.

The conditions (12–13) leave a lot of freedom for the choice of the vari-
ables gij . We have an

(

n

2

)

-dimensional parameter space. This is in contrast
to the classical representation, which has 2n parameters (the coordinates of
n points in the plane). If we select the parameters to be integral, we obtain
an associahedron which is an integral polytope (this is also true for the clas-
sical associahedron for a polygon with integer vertices.) But observe that, in
fact, the associahedra obtained here are in a sense much more special than
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the classical associahedra obtained as secondary polytopes. They have n− 2
pairs of parallel facets, given by the equations vi = v1 + g1i and vi = vn− gin

(i.e., corresponding to the pairs of edges 1i and in). See the right picture of
Figure 4, where n = 5. This is no surprise, since we have constructed our
polytope by perturbing (a region of) a Coxeter arrangement, whose hyper-
planes are in extremely non-general position.

One can check that classical associahedra have no parallel facets. Hence,
are associahedra are not affinely equivalent to the classical ones. Recently,
Chapoton, Fomin and Zelevinsky [5] have shown another construction of the
associahedron having as facet normals the root system of type An (more
generally, they show a similar construction for all root systems). Still, our
associahedra are not affinely equivalent to theirs: Comparing the right part
of our Figure 4 with their Figure 2 we see that both are 3-dimensional asso-
ciahedra with three pairs of parallel facets but in their realization the three
remaining facets share a vertex while in ours they do not. It is however
conceivable that they are related by projective transformations.

(a) (b)

Figure 6: (a) The non-crossing alternating trees appear as a face of a ppt-
polytope. (b) Another associahedron in the same ppt-polytope.

The non-crossing alternating trees also appear directly as a face of the ppt-
polytope. Consider the configuration of points shown in Figure 6, consisting
of a convex chain {p1, . . . , pn} and an additional point p0. The pseudotrian-
gulations containing all the edges from p0 to the other points (Figure 6a),
correspond to the non-crossing alternating trees on p1, . . . , pn, forming an as-
sociahedron of dimension n− 2. Another associahedron (of dimension n− 3)
appears as a different face of this ppt-polytope: the face corresponding to
the edges of the convex chain (Figure 6b). These two faces are disjoint.

Relations to optimization and the Monge matrices. Constraints of
the form (11) are commonly found in project planning and critical path anal-
ysis. The variables vi represent unknown start times of tasks, and the con-
straints (11) specify waiting conditions between different tasks. For example,
the minimization of vn − v1 is a longest path problem in an acyclic network.
The different vertices of Xg correspond to the different optimal solutions
when we apply various linear objective functions.
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Matrices G = (gij) with the property (12) are said to have the Monge
property, if we set gii = 0 and gij = ∞ for i > j. The Monge property
has received a great deal of attention in optimization because it arises often
in applications and it characterizes special classes of optimization problems
that can be solved efficiently, see [4] for a survey.

The dual linear program of the linear programming problem (11) (with
a suitable objective function) is a minimum-cost flow problem on an acyclic
network with edges ij for 1 ≤ i < j ≤ n, and cost coefficients −gij . Net-
work flow is actually one of the oldest areas in optimization in which the
Monge property has been applied, and where it has been shown that optimal
solutions can be obtained by a greedy algorithm in certain cases. The non-
crossing alternating trees are just the different possible subgraphs of those
edges which carry flow in an optimal solution.

6 Towards a General Framework, in Arbitrary

Dimension

To make more explicit the analogy between our 1d and 2d constructions we’ll
rewrite the 1d construction back in terms of inequalities (6) instead of (11).
As we mentioned at the beginning of Section 5.3, the way to do this is to
substitute gi,j = fi,j/(pj−pi) everywhere. In particular, the constraints (13)
become

fik

pi − pk

+
fkl

pk − pl

+
fil

pl − pi

> 0.

But ωik = 1
pi−pk

, ωkl = 1
pk−pl

and ωil = 1
pl−pi

define a self-stress on any

1-dimensional point set {pi, pk, pl}. Hence, inequalities (13) are the exact
analog of inequalities (8) of the 2d case. The difference is that in 2d these in-
equalities are necessary and sufficient for a choice of parameters to be “valid”,
while in 1d we need the additional constraints (12), which do not follow from
(13) as the following example shows:

g12 = g23 = g34 = 1, g13 = g24 = 2.2, g14 = 3.3.

Let’s see what would be a generalization of the 1d and 2d cases to ar-
bitrary dimension. For any finite point set P = {p1, . . . , pn} spanning R

d

(in general position or not) there is a well-defined cone of expansive motions
X̄0 of dimension nd−

(

d+1
2

)

, which is the positive region in the arrangement
of hyperplanes defined by the constraints (4). Every choice of perturba-
tion parameters (fij)i,j∈{1,...,n}, via inequalities (6), produces a polyhedron
of constrained expansions X̄f , whose faces are in correspondence with some
graphs embedded on P . If the fij ’s are sufficiently generic, this polyhedron
is simple and:
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• The face poset of X̄f is isomorphic to a subposet of the graphs embed-
ded on P , ordered by reverse inclusion.

• The maximal graphs in this subposet are some of the infinitesimally
minimally rigid frameworks on P .

• Adjacent vertices on the polyhedron correspond to graphs differing only
by one edge.

The main question is whether there is a clever choice of the fij ’s or a sensi-
ble choice of a special family of minimally rigid frameworks to be the vertices
of the polyhedron which admits a nice and simple geometric characterization,
as non-crossing alternating trees in 1d or pointed pseudo-triangulations in 2d
do. In particular, what should be the analog of pointed pseudo-triangulations
on a point set in general position in 3d? One difficulty is that the combina-
torics of minimally rigid graphs in dimension three is not fully understood.
Perhaps a good case to start with would be points in convex and general posi-
tion in dimension 3, for which the convex hull edges provide a very canonical
minimally rigid framework to start with.

Another observation is that both in the 1d and 2d cases that we have
treated here, the resulting polytope X̄f has a unique maximal bounded face.
This is related to the graph of flips between the special minimally rigid frame-
works considered being connected and regular, which is an extra desirable
property.

It would even be interesting to have a good generalization of the 2d case
to point sets which are not in general position. If we use the 2d definition of
f from equations (9) with many points on a common line, there are solutions
in which all the inequalities are tight. In this way we get essentially the one-
dimensional expansion cone of Proposition 2.7, when we project all vectors
vi on the direction of that line. (This is the same situation as when all
relations (13) are satisfied as equations.) One way to get rid of this degeneracy
is to “perturb the perturbations” by adding an infinitesimal component of
the one-dimensional expansion parameters of Section 5.3: instead of f we use

f
(2)
ij + εf

(1)
ij , where f (2) is valid for two-dimensional point sets, f

(1)
ij satisfy

the restrictions required for the 1d perturbation parameters, and ε > 0 is
sufficiently small. The situation would be like in Figure 6a when the points on
the convex chain converge to being collinear. We have not further investigated
this idea.

Another consideration which may help to treat degenerate point sets and
arbitrary-dimensional ones is that the ideas in Section 5.1 generalize with not
much difficulty under very weak general position assumptions. Let us first try
to generalize Lemma 5.1. We need to decide what is the right analog of the
statement in part (b). We propose the following. Remember that a circuit
of a point set P = {p1, . . . , pn} ⊂ R

d is a minimal affinely dependent subset.
If P is in general position, its set of circuits C(P ) is

(

P

d+2

)

. In general, any
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set of d + 2 points spanning d dimensions contains a unique circuit, but this
circuit can have less than d+2 elements. In any case, the complete graph on
a circuit C has (up to a constant factor) a unique self stress (ωij)i,j∈C with
no vanishing ωij , which is the one given by Lemma 2.5.

Let us consider the following linear maps:

M : R
dn −→ R

(n

2)

(v1, . . . , vn) 7−→ 〈vi − vj , pi − pj〉,

∆: R
(n

2) −→ R
C(P )

{fij}ij∈(n

2)
7−→

{

∑

ij∈C

ωijfij

}

C∈C(P )
.

M is just the rigidity map of the complete graph on P . The equivalence of
(b) and (c) in Lemma 5.1 can be rephrased as

ker∆ = Im M, for every planar point set in general position.

But in fact the same is true in arbitrary dimension and under much weaker
assumptions than general position:

Proposition 6.1. For any point set P ⊂ R
d, Im M ⊆ ker∆. If P has

d affinely independent points whose spanned hyperplane contains no other
point of P , then the reversed inclusion also holds.

Proof. That Im M ⊂ ker∆ (i.e., ∆ ◦M = 0) is one direction of Lemma 2.4.

To prove ker∆ ⊂ Im M , let f ∈ R
(n

2) be such that
∑

ij∈C ωijfij = 0 for every
circuit C. We want to find a motion a = (a1, . . . , an) for which M(a) = f .
Without loss of generality assume that p1, . . . , pd are the claimed affinely
independent points. Let us fix a motion (a1, . . . , ad) for the first d points
satisfying the

(

d
2

)

equations of the system Ma = f concerning these points.
This motion exists and is unique up to an arbitrary translational and rota-
tional component, because the complete graph on any affinely independent
point set is minimally infinitesimally rigid.

By assumption, {p1, . . . , pd, pi} is an affine basis for every i > d, and hence
the complete graph on it is again minimally infinitesimally rigid. Thus, there
is a motion (a′1, . . . , a

′
d, ai) satisfying the

(

d+1
2

)

corresponding equations of the
system Ma = f . Adding translations and rotations we can assume a′j = aj ,
j = 1, . . . , d. So we have constructed a motion (a1, . . . , an) which restricts to
the one chosen for the d first points and which satisfies all the equations for
pairs of points that include one of the first d.

It remains to show that the equations are also satisfied for the edges
kl with k, l > d. We follow the same idea as in the proof of Lemma 5.1.
Our assumption on the point set implies that the unique circuit C contained
in {p1, . . . , pd, pk, pl} uses both pk and pl. To simplify notation, assume
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that this circuit is {p1, . . . , pi, pk, pl}. By Lemma 2.4, there is a feasible
motion (a′1, . . . , a

′
i, a

′
k, a′l). By translations and rotations we assume aj =

a′j for j = 1, . . . , i. Observe now the value of 〈v − u, pj1 − pj2〉, for any
of the points in the circuit and for any vectors v and u, depends only on
the projection of v and u to the affine subspace spanned by C. Since the
complete graphs on {p1, . . . , pi}, on {p1, . . . , pi, pk} and on {p1, . . . , pi, pl} are
minimally infinitesimally rigid when motions are restricted to that subspace,
we conclude that the projections of ak and al to that affine subspace coincide
with the projections of a′k and a′l. In particular, 〈al − ak, pl − pk〉 = 〈a′l −
a′k, pl − pk〉 = fkl.

Hence, Lemma 5.1 and its corollary, Lemma 5.2, hold in this generalized
setting, with one equation per circuit instead of one equation per 4-tuple.
The weakened general position assumption for d of the points holds for every
planar point set, since, by Sylvester’s theorem, any finite set of points in the
plane, not all on a single line, has a line passing through only two of the
points.

In dimension 3, however, the same is not true, and actually there are
point sets for which Im M 6= ker∆. Consider the case of six points, three
of them in one line and three in another, with the two lines being skew (not
parallel and not crossing). These two sets of three points are the only two
circuits in the point set. In particular, ker∆ has at most codimension 2 in
R

15, i.e., it has dimension at least 13. On the other hand, Im M has at most
the dimension of the reduced space of motions, 18− 6 = 12.

7 Final Comments

We describe some open questions and ideas for further research. The main
questions related to this work are how to extend the constructions from di-
mensions 1 and 2 to 3 and higher, and how to treat subsets in special posi-
tion in 2d. The expectation is that this would give a coherent definition for
“pseudo-triangulations” in higher dimensions. Some ideas in this direction
have been mentioned in Section 6.

Is our choice of fij ’s in Section 3 essentially unique? The set of valid

choices for a fixed point set is open in R
(n

2). But, what if we restrict our
attention to choices for which, as in Theorem 3.9, each fij depends only on
the points pi and pj , and not the rest of the configuration? Observe that
if we want this, then Theorem 3.7 provides an infinite set of conditions on
the infinite set of unknowns {f(p, q) : p, q ∈ R

2}. It follows from Lemma 5.1
that adding to a valid choice (fij)i,j∈{1,...,n} any vector (δij)i,j∈{1,...,n} in the
image of the rigidity map we still get a valid choice. And, of course, we can
also scale any valid choice by a positive constant. This gives a half-space of
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valid choices of dimension
(

n

2

)

+ 1. Is this all of it?

It would also be interesting to see if there is a deeper reason behind
Lemma 3.10. We have actually been able to extend the identity

∑

ωijfij = 1
to a more general class of planar graphs than just the complete graph on four
vertices: to wheels (graphs of pyramids). A wheel is a cycle with an additional
vertex attached to every vertex of the cycle. For a wheel embedded in the
plane in general position, formulas that are quite similar to (3) in Lemma 2.6
define a self-stress ωij on its edges which make the identity

∑

ωijfij = 1 true.
(Since the wheel is infinitesimally rigid and has 2n− 2 edges, the self-stress
is unique up to a scalar factor.) We take this as a hint that the identity of
Lemma 3.10 might be an instance of a more general phenomenon which we
don’t fully understand.

(a) (b) (c)

Figure 7: (a) The Delaunay triangulation of a point set in convex position.
(b-c) The triangulations minimizing and maximizing the objective function
(p1, . . . , pn) over the ppt-polytope, respectively. The triangulations in (b)
and (c) are invariant under affine transformations, whereas (a) is not.

Another issue, with which we raised the introduction, is that having a
representation of combinatorial structures as vertices of a polytope opens the
way for selecting a particular structure, by optimizing some linear functional
over the polytope. For example, the minimization of the objective function
with coefficient vector (|p1|

2, . . . , |pn|
2) over the secondary polytope gives the

Delaunay triangulation. The opposite choice gives the furthest-site Delaunay
triangulation. The most natural choice of objective function for the polytope
of pointed pseudo-triangulations is (p1, . . . , pn) or its opposite, i.e., minimize
or maximize

∑

i〈pi, vi〉 over all constrained expansions which are tight on
convex hull edges. Even if, for points in convex position, our ppt-polytope
is affinely isomorphic to the secondary polytope, this functional on the ppt-
polytope does not, in general, give the Delaunay triangulation of those points,
see Figure 7. In fact, the result on the ppt-polytope is invariant under affine
transformations of the point set, while the Delaunay triangulation is not.
The properties of the pointed pseudo-triangulations that are defined in this
way await further studies.

Added in proof. The second author, together with David Orden, has ex-
tended the main construction of this paper to a simple polyhedron of dimen-
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sion 3n − 3 with a unique maximal bounded face whose vertices are all the
pseudo-triangulations of the point set. Bounded edges correspond to either
classical edge-flips or to the creation or destruction of pointedness at a vertex
by the deletion or inclusion of a single edge. The face poset of this polyhedron
is (essentially) the poset of all non-crossing graphs on the point set.
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