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ABSTRACT
We show how to embed a 3-connected planar graph with n
vertices as a 3-polytope with small integer coordinates. The
coordinates are bounded by O(27.55n). The crucial part is
the construction of a plane embedding which supports an
equilibrium stress. We have to guarantee that the size of
the coordinates and the stresses are small. This is achieved
by applying Tutte’s spring embedding method carefully.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; G.2.2 [Graph The-
ory]: Graph algorithms

General Terms
Algorithms, Theory

Keywords
Spring embedding, equilibrium stress

1. INTRODUCTION
Steinitz proved in 1922 one of the most famous results

in polytope theory [13]: a graph G is an edge graph of a
3-polytope if and only if G is planar and 3-connected. A
constructive approach, which uses liftings of stressed graphs,
shows furthermore that rational (and thus, integer) coordi-
nates are sufficient to realize the 3-polytope. The best pre-

vious bound on the size of the coordinates was O(218n2
) for

embedding a graph with n vertices, by Richter-Gebert [10].
We present a construction which allows an embedding

with integer coordinates not greater than O(27.55n). There-
fore it suffices to use O(n) bits to store each vertex in an
embedding of a combinatorial polytope. Integer realizations
with at most exponential coordinates were previously only
known for polytopes whose graph contains a triangle [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’07,June 6–8, 2007, Gyeongju, South Korea.
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00.

For the special family of stacked polytopes a better upper
bound was shown recently [18], but it is still exponential.

The key part in the construction of an integer embed-
ding is the concept of lifting stressed graphs in equilibrium.
This technique was used by Richter-Gebert to achieve the

O(218n2
) upper bound.

In Section 2 we focus on constructing a planar straight-
line embedding of the graph. In Section 3 we show how the
planar embedding can be lifted into R

3. Finally we analyze
the size of the embedding in Section 4.

Little is known about a lower bound for a grid embed-
ding. The smallest square grid that contains a convex n-gon
in the plane has size Ω(n3/2) × Ω(n3/2) [1, 2, 14]. There-
fore the embedding of a polytope with two convex n/2-gonal
faces, which share an edge, needs a grid where at least one
dimension is Ω(n3/2).

Planar graphs can be embedded in the plane on a linear-
size grid [12, 5]. This is also true for convex embeddings [4].
A strictly convex drawing can be realized on an O(n2) ×
O(n2) grid [3].

In higher dimension it is known that there are 4-polytopes
which cannot be realized with rational coordinates at all.
Moreover, a 4-polytope which can be embedded on the grid
might require coordinates that are doubly exponential in the
number of vertices [11, 10].

2. CONSTRUCTING A PLANE EMBEDDING
We are given a graph G with n vertices, which are denoted

as v1, . . . , vn. An embedding of G assigns a point pi =
(xi, yi) to each vertex vi of G. We denote the family of
points by p = (p1, . . . ,pn), and the embedded graph by
G(p). We use bold letters to emphasize that a symbol refers
to a vector. We assume that the first k vertices belong to
the boundary face (the outer face) f0 in cyclic order.

We use the concept of equilibrium stresses to obtain an
embedding of G as 3-polytope. A stress ω is an assignment
of scalars to the edges of G. The stress ω(e) of an edge
e = (vi, vj) is denoted as ωij = ωji. A vertex vi in an
embedding G(p) is in equilibrium if

X
1≤j≤n:(vi,vj)∈E(G)

ωij(pi − pj) =

„
0
0

«
(1)

The embedded graph is in equilibrium if all vertices are in
equilibrium.

Our construction is based on a theorem stated by Maxwell
in 1864 [7]. Whiteley [17] proved the reverse direction of
Maxwell’s theorem, which we apply in the construction. For



our purposes, it suffices to use a weaker (special) formulation
of the Maxwell-Whiteley Theorem:

Theorem 1. Let G be a 3-connected planar graph with
a plane embedding G(p). The following two statements are
equivalent :

• G(p) has an equilibrium stress ω which is positive on
the interior edges and negative on the boundary edges.

• There exists a polytope that projects on G(p), where
the boundary of the outer face is in the xy-plane, and
the polytope lies entirely in the upper half-space (z ≥
0).

There is actually a one-to-one correspondence between the
equilibrium stresses and the polytopes that are mentioned
in the theorem. The proof is constructive. It allows to build
the polytope from the equilibrium stress in an easy sequence
of arithmetic operations, which are reviewed below in Sec-
tion 3. An example of the correspondence between a stressed
embedding and a polyhedron is shown in Figure 1, for the
graph of the dodecahedron. This polytope was constructed
by our method. The details are given in Section 5.

Figure 1: An example of an equilibrium embedding
and its induced lifting to three dimensions.

The condition that the bottom face is horizontal at z = 0
is only a technical condition. It can always be achieved by
a suitable affine transformation.

Spring Embedding.If we fix the position of the outer ver-
tices, it is easy to obtain an embedding with equilibrium
at the interior vertices: We may take any positive stresses
ωij and solve the system of linear equations (1) for the in-
terior vertices. This system has an unique solution, and it
embeds the graph without crossings. (This is the essence
of Tutte’s spring embedding method [15, 16] for obtaining
strictly convex drawings of planar graphs.)

For simplicity, we will always choose ωij = 1 for all interior
edges. This gives, after fixing the position of the k boundary
vertices, a plane embedded graph that is in equilibrium at
every interior vertex. The boundary points are not in equi-
librium. For a boundary point pi, the sum in (1) will sum
up to a nonzero force vector Fi. The problem is now to ob-
tain equilibrium at the boundary vertices. We have control
over the stresses of the k boundary edges. These stresses
must fulfill a system of 2k linear equations (two equilibrium
equations at every vertex).

If the outer face is a triangle, it turns out that the stress
can always be completed to an equilibrium stress at the
boundary vertices (in a unique way, and with negative bound-
ary stresses).

If the outer face is a quadrilateral or a face with more
sides, however, it is not always possible to balance the forces
from the interior edges by stresses on the boundary edges.
(This dichotomy between the triangular case and the re-
maining cases has also a geometric interpretation: by a vari-
ation of the Maxwell Theorem (Theorem 1), a stress that is
in equilibrium at the interior vertices gives rise to a polyhe-
dral terrain, i. e., a surface with boundary that projects on
G(p). Now, if the outer face is triangular, it always lies in
a plane and there is no problem to put the “bottom” under
the surface to obtain a closed surface bounding a polytope.
If the outer face has 4 or more vertices, they are not neces-
sarily coplanar, and thus it may not be possible to close the
surface.)

Richter-Gebert [10] solved this problem by choosing a tri-
angle at the outer face if the graph contains a triangular
face. Otherwise, the dual graph must contain a triangular
face. Realizing the dual polytope and applying a polarity
to it yields a realization of the original polytope. However,
the arithmetic operations that are involved in producing the
polar lead to a growth of the coordinates. After an appro-
priate scaling, the resulting integer coordinates are bounded

by O(218n2
).

We follow a different approach. By choosing the outer
polygon carefully, we ensure that the forces at the outer ver-
tices can be canceled by appropriate stresses on the bound-
ary edges.

The Substitution Lemma.To analyze how we should po-
sition the boundary vertices, we need to find out how their
placement affects the resulting boundary forces. It turns
out that, for this purpose, we can replace the whole graph
by a complete graph on the boundary vertices only, with
appropriate stresses.

Let A be the adjacency matrix of G (possibly weighted ac-
cording to the stresses ω), and let D be the diagonal matrix
of row sums of A. We subdivide A and D into block matrices
indexed by the sets B = {1, . . . , k} and I = {k + 1, . . . , n}.
The matrix D − A is called the Laplacian matrix L of G
and the matrix DI − AII is called the reduced Laplacian
matrix L̄ of G. Furthermore let xB = (x1, . . . , xk)T and
xI = (xk+1, . . . , xn)T , and similarly for the y-coordinates.

Lemma 1 (Substitution Lemma). There are nonneg-
ative weights ω̃ij = ω̃ji, for i, j ∈ B, independent of p, such
that the resulting forces at the boundary vertices i ∈ B are
obtained by

Fi =
X

j∈B:j 6=i

ω̃ij(pi − pj). (2)

The weights ω̃ are multiples of 1/ det L̄.

Proof. Let Fx denote the vector (F x
1 , . . . , F x

k )T , where
F x

i is the x-coordinate of the force Fi. In block matrix form,
the equilibrium equations for the x-coordinates are written
as follows„

DI − AII −AIB

−ABI DB − ABB

«„
xI

xB

«
=

„
0

−Fx

«
(3)



From this we can obtain

Fx = ABI(DI − AII)
−1AIBxB − DBxB =: ÃxB .

For the y-coordinates, we obtain a similar formula with the
same matrix Ã. We define ω̃ij as the entries ãij of Ã. Since
ABI = (AIB)T , the matrix Ã is symmetric and therefore
ω̃ij = ω̃ji holds.

To show that the expression Fx = ÃxB has the form
stated in (2) we have to check that all row sums in Ã equal 0.
Let 1 denote the vector where all entries are 1. We know that
AII1 + AIB1 = DI1 and therefore (DI −AII)

−1AIB1 = 1.

Plugging this expression into Ã1 = ABI(DI−AII)
−1AIB1−

DB1 gives us Ã1 = ABI1 − DB1, which is (0, . . . , 0)T .

The matrix Ã can be written as a rational expression
whose denominator is the determinant of DI − AII = L̄,
and thus the weights ω̃ are multiples of 1/ det L̄.

We observe that the stress ω̃ is independent of the shape
of the outer face. It only depends on the graph G. In
other words, the stress ω̃ stores all the necessary informa-
tion about the combinatorial structure of G. Thus we have
a compact (constant-size) description of the structure of G,
as far as it determines the non-resolving forces at the bound-
ary. We name the stress ω̃ substitution stress to emphasize
that it is used as a substitution for the stress ω on the whole
graph G.

The above lemma holds for any stress on the graph G.
We apply it to the stress that is uniformly equal to 1 on the
interior edges, and zero on the boundary edges. In other
words, A is the adjacency matrix after removing the bound-
ary edges.

For the later analysis of the grid size it is necessary to
bound the substitution stresses.

Lemma 2. The substitution stresses ω̃ij are bounded by

0 ≤ ω̃ij < n − k.

Proof. The substitution stresses are independent of the
location of P . Therefore we can choose the positions for
the boundary points freely. We place vertex pi at position
(0, 0)T , and all other boundary vertices at (1, 0)T . By (2),
the stress ω̃ij is the x-component of Fj and therefore ω̃ij =P

k∈I ωjk(xj − xk). The sum consists of |I| nonnegative
terms less than 1 (under the assumption that all ω’s are 1).
Thus we have 0 ≤ ω̃ij < n − k.

We always choose a face with the smallest number of sides
as the outer face f0, and thus we have to distinguish three
cases for the outer face: a triangle, a quadrilateral, or a
pentagon. By Euler’s formula, a face of one of these three
types must always exist.

2.1 The Plane Embedding for Graphs with a
Triangular Face

The triangular case is easy: we can position its vertices
at any convenient position. We place the three boundary
vertices as follows:

p1 =

„
0
0

«
,p2 =

„
1
0

«
,p3 =

„
0
1

«
. (4)

Lemma 3. If the smallest face of G is a triangle and we
place the boundary vertices like stated in (4) then the bound-
ary forces can be resolved.

Proof. We embed G as spring embedding and calculate
the substitution stresses. After setting ω12 = −ω̃12, ω23 =
−ω̃23, ω13 = −ω̃13 all points are in equilibrium.

2.2 The Plane Embedding for Graphs with a
Quadrilateral Face

In the quadrilateral case, the Substitution Lemma helps us
to reduce the problem to the consideration of the stresses ω̃ij

between k = 4 vertices. It turns out that the substitution
stresses ω̃ij between adjacent vertices (on the boundary)
are irrelevant, since their resulting forces can be directly
cancelled by the corresponding stresses ωij (see formula (6)
below). Thus, we only have to look at ω̃13 and ω̃24. (Or more
precisely, only the ratio between ω̃13 and ω̃24 matters.)

We need to position p1, . . . ,p4 in such a way that they
form a convex quadrilateral, and the linear system for the
four canceling stresses ω12, ω23, ω34, ω14 on the boundary
edges is solvable. The positions and the boundary stresses
can be computed as the solution of a non-linear equation
system which consists of the equations

ωi,suc(i)(pi − psuc(i)) + ωi,pre(i)(pi − ppre(i)) = −Fi, (5)

for all i ∈ B. where suc(i) denotes the successor of vi and
pre(i) denotes the predecessor of vi at f0 in cyclic order.
The variables Fi can be expressed by (2) in terms of the
substitution stresses.

To obtain a solution we fix some of the positions of the
boundary vertices, namely

p1 =

„
0
0

«
,p2 =

„
1
0

«
,p3 =

„
2
y3

«
,p4 =

„
0
1

«
. (6)

Under this assumption, there is the unique solution

ω12 = −2ω̃13 − ω̃12,

ω23 = ω̃24 − 2ω̃13 − ω̃23,

ω34 = − ω̃24

2
− ω̃34,

ω14 =
ω̃24ω̃13 − ω̃24 + 2ω̃24ω̃13 − ω̃14ω̃24

ω̃24 − 2ω̃13
,

y3 =
ω̃24

2ω̃13 − ω̃24
.

(7)

We assume that ω̃13 ≥ ω̃24. (Otherwise we cyclically re-
label the vertices of f0.) Thus y3 > 0 and f0 forms a convex
face.

If f0 is convex, the boundary stresses must necessarily be
negative, since otherwise the boundary vertices could not
be in equilibrium, with all interior stresses being positive.
Thus we need not explicitly check the sign of the boundary
stresses.

Lemma 4. If the smallest face of G is a quadrilateral and
we place the boundary vertices as stated in (6) and (7), then
f0 forms a convex polygon and the boundary stresses in (7)
cancel the boundary forces.

2.3 The Plane Embedding for Graphs with a
Pentagonal Face

The case of a pentagon is more complicated. We have`
5
2

´
= 10 substitution stresses ω̃ij , but the adjacent ones do

not count. So we are left we five “diagonal” substitution
stresses ω̃ij . Again, we managed to find suitable positions
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Figure 2: Placement of p1, . . . ,p5.

for p1, . . . ,p5 that will allow the forces to be cancelled by
boundary stresses.

We mimic the approach of Section 2.2. The location of f0

will be again computed as solution of a non-linear equation
system. The system consists of the equations given in (2),(5)
and constraints for boundary vertices. However, we have to
make more effort to guarantee the convexity of f0. The
following lemma helps us here:

Lemma 5. We can relabel the boundary points for any
stress (ω̃ij)1≤i,j≤5 such that

ω̃35 ≥ ω̃24 and ω̃25 ≥ ω̃13.

Proof. Without loss of generality we assume that the
largest stress on an interior edge is ω̃35. If ω̃25 ≥ ω̃13 we
are done. Otherwise we relabel the vertices by exchanging
p3 ↔ p5 and p1 ↔ p2.

For the rest of this section we label the vertices such that
Lemma 5 holds. The way we embed the f0 depends on the
substitution stresses ω̃ij .

CASE A: We assume that

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 > ω̃35ω̃25. (8)

In this case we assign

p1 =

„
0
0

«
,p2 =

„
1
0

«
,p3 =

„
1
1

«
,p4 =

„
0
1

«
,p5 =

„
x5

y5

«
.

Figure 2a illustrates the location of the points. Together
with (2) and (5) we obtain as the solution for p5:

x5 =
(ω̃13 − ω̃25 − ω̃24)(ω̃35 + ω̃13 − ω̃24)

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25
,

y5 =
ω̃35 + ω̃13 − ω̃24

ω̃35 + ω̃25
.

We have to check that the points p1, . . . ,p5 form a convex
polygon. Clearly y5 > 0 since the ω̃ij ’s are positive and
ω̃35 ≥ ω̃24. Moreover y5 < 1, because ω̃25 ≥ ω̃13. The
numerator of x5 is negative and due to (8) the denominator
of x5 is positive. Therefore x5 < 0 and the outer face is
embedded as a convex face.

CASE B: We assume the opposite of (8). The coordi-
nates for the boundary vertices are chosen as

p1 =

„
0
−1

«
,p2 =

„
1
y2

«
,p3 =

„
1
y3

«
,p4 =

„
0
1

«
,p5 =

„−1
0

«
.

See Figure 2b for an illustration. This leads to the solution
y2 =

ω̃24ω̃13+ω̃24ω̃35+ω̃25ω̃13+2ω̃25ω̃35−ω̃2
13−2ω̃13ω̃35−ω̃35ω̃14

(ω̃24ω̃35 + 2ω̃25ω̃13 + 2ω̃25ω̃35)/2
,

and y3 =

ω̃24ω̃13+ω̃24ω̃35+ω̃25ω̃13+2ω̃25ω̃35−ω̃2
24−2ω̃24ω̃25−ω̃14ω̃25

(ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)/2
.

(The boundary stresses ωij are more complicated expres-
sions and not shown here.) The outer face is convex if
−2 < y2 < y3 < 2. The inequalities −2 < y2 and y3 < 2 are
equivalent to

−ω̃2
13 − ω̃13ω̃35 − ω̃35ω̃14 + ω̃13(ω̃24 − ω̃35) < 0 and

−ω̃2
24 − ω̃24ω̃25 − ω̃14ω̃25 + ω̃24(ω̃13 − ω̃25) < 0.

These inequalities hold, because we add only negative terms
on the left side. It remains to check y2 − y3 < 0. First we
get rid of the denominator and bring all negative terms on
the right side. This leads to the equivalent inequality

ω̃2
13 + ω̃2

24 + 2ω̃13ω̃35 + 2ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14

< 2ω̃24ω̃35 + 2ω̃25ω̃13 + 4ω̃25ω̃35 + 2ω̃24ω̃13.
(9)

We observe that ω̃2
13 ≤ ω̃25ω̃13 and ω̃2

24 ≤ ω̃24ω̃35. Because
of the assumption for case B we have 4ω̃35ω̃25 > 2ω̃13ω̃35 +
ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14. Therefore the right side of (9) is
greater than its left side which shows that y2 < y3 and the
outer face is embedded as convex pentagon. This finishes
the case distinction and we can conclude:

Lemma 6. If the smallest face of G is a pentagon and we
place the boundary vertices as discussed above, then the outer
face will be embedded as a convex polygon and the computed
boundary stresses cancel the boundary forces.

We defined four different ways to embed G. The selected
embedding depends on the combinatorial structure G. If G
contains a triangle we say it is of type 3. If it contains a
quadrilateral but no triangle G it is of type 4. Otherwise it
is of type 5A or type 5B, depending on the case (Case A or
Case B).

3. LIFTING TO THREE DIMENSIONS
We now review how the lifting is obtained from an equilib-

rium stress [6, 17, 10]. (This is one direction of Theorem 1.)
Every lifted face fi of G lies on a plane Hi. Together with
the 2d coordinates pi, the set of planes Hi determines the
embedding in space. We describe each plane Hi as a func-
tion which assigns to every xy-coordinate a height:

Hi : q 7→ zi(q) = 〈ai,q〉 + di.

The plane Hi is defined by its two-dimensional gradient vec-
tor ai and a scalar di.

The following relation lies at the heart of the correspon-
dence of Theorem 1. If two faces fs and ft share an edge
(vi, vj) and fs lies left of this edge, then

ωij

„
yi − yj

xj − xi

«
= at − as (10)

The planes Hi are computed incrementally. We start with
the boundary face f0, whose plane H0 is the x-y-plane: a0 =
(0, 0)T and d0 = 0. Let us assume we have computed the
planes for some connected region R of faces in G. In the
next step we select a face fnew which shares an edge (vi, vj)
with R, but is not a member of R. Let fold be the face in
R which contains (vi, vj). With help of (10) we compute
anew. The scalar dnew is then given by the condition that



H0

H1

Figure 3: Lifting the face f1.

the lifting (pi, zold(pi)) of pi lies on Hnew, which leads to
dnew = zold(pi) − 〈anew,pi〉.

The following lemma helps to guarantee that the lifting
produces integer z-coordinates.

Lemma 7. If every ai used in the lifting is integral and
all pj are integral then the lifting yields integer z-coordinates
for every pj as well.

Proof. Since the operations described above involve only
multiplications and additions of integers, an inductive ar-
gument shows that all di values and all heights z(pj) are
integral.

Let f1 be a plane adjacent to the outer face f0. Then the
lifted (convex) polytope lies completely between the planes
H0 and H1 (see Figure 3). Therefore we can bound the
maximal z-coordinate by maxj∈B z1(pj).

4. BOUNDING THE GRID SIZE

4.1 Size of an Integral Spring Embedding
So far we obtained an embedding of G which supports a

lifting. The coordinates of the computed plane embedding
are rational. A quantitative analysis of the spring embed-
ding method allows us to bound the denominator of the
interior points.

Let us review the spring embedding method shortly. The
coordinates of the boundary vertices were obtained in Sec-
tion 2. From the equilibrium equations (3), the positions of
the of the interior points xI and yI can be computed by

xI = −L̄−1AIBxB ,

yI = −L̄−1AIByB .
(11)

As shown by Tutte [15, 16], this yields a non-crossing em-
bedding (see also [10]).

Lemma 8. If the boundary points are integral, the spring
embedding yields coordinates which are multiples of 1/ det L̄.

Proof. By Cramer’s rule every coordinate can be ex-
pressed as

xi = det L̄(i)/ det L̄,

where det L̄(i) is obtained from L̄ by replacing the i-th col-
umn of L̄ by AIBxB . Since det L̄(i) is integral, det L̄ is the
denominator of xi. The same holds for yi.

4.2 An Upper Bound for the Determinant of
the Reduced Laplacian Matrix

For bounding the grid size it is necessary to take a closer
look at det L̄, because it appears as the denominator of the
stresses and the coordinates. This quantity is connected to
the number of certain spanning forests of G.

Definition 1. A subgraph FB of G is called spanning B-
forest if

• FB consists of |B| vertex-disjoint trees covering all ver-
tices of G,

• each tree contains one vertex of B.

A generalization of the Matrix-Tree-Theorem is given in [8].
It states that the number #FB(G) of spanning B-forests of
G is det L̄. The classical Matrix-Tree-Theorem is the case
|B| = 1.

Moreover, the number #FB(G) is related to the number
#T (G) of spanning trees of G.

Lemma 9. Let G be a planar graph with a distinguished
set of vertices B. The number of spanning B-forests of G is
bounded from above by

#FB(G) ≤
 

n − 1

|B| − 1

!
· #T (G).

Proof. Let T be a spanning tree of G. To get a spanning
B-forest, we have to remove |B| − 1 edges from T . Every
spanning B-forest can be obtained in this way.

It is easy to give an exponential upper bound for #T (G):

Proposition 1 ([8]). 1. The number of spanning trees
in a graph is bounded by the product of all vertex de-
grees:

#T (G) ≤
Y

i

deg(vi)

2. For a planar graph, we have
Q

i deg(vi) < 6n.

Proof. 1. Pick an arbitrary vertex v1. Consider allQ
i6=1 deg(vi) directed graphs that are obtained by choos-

ing an outgoing edge in G out of every vertex except v1.
By ignoring the edge orientations, one obtains all spanning
trees (and many graphs that are not spanning trees).

2. This follows from the arithmetic-geometric-mean in-
equality and

P
i deg(vi) < 6n, which is a consequence of

Euler’s formula.

Sharper bounds for #T (G) have been given by Ribó Mor [8],
see also [9]. These bounds also take into account whether G
contains triangles or quadrilaterals:

if G has type 3: #FB(G) ≤
 

n − 1

2

!
5.3̄n,

if G has type 4: #FB(G) ≤
 

n − 1

3

!
3.529988n,

if G has type 5A/5B: #FB(G) ≤
 

n − 1

4

!
2.847263n.

4.3 Scaling
Finally we scale the embedded graph to get integer coor-

dinates. For the sake of compact statements we abbreviate
det L̄ with ∆. Remember that Lemma 7 implies that in-
tegral xy-coordinates and integral vectors ai are sufficient
conditions for integer z-coordinates.

Getting integer coordinates for the boundary vertices is
our first objective. Let Sx be the scaling factor for the x-
coordinates and Sy the scaling factor for the y-coordinates.



We will use integral scaling factors; therefore, no integer
coordinate will be scaled to a non-integer.

If G is of type 3 then we need not scale, since all boundary
coordinates are 0 or 1 (thus we set Sx = Sy = 1). If G is of
type 4 we have to scale only the y-coordinates. We multiply
every y-coordinate by Sy := (2ω̃13 − ω̃24)∆, which is an
integer, by Lemma 1. Observe that the only non-integer
coordinate y3 is scaled to y3Sy = ω̃24∆, and is therefore, by
Lemma 1, integral.

If G is of type 5A we have to scale such that Sxx5 and
Syy5 are integral. This will be achieved by

Sx = (ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25) · ∆2

Sy = (ω̃35 + ω̃25) · ∆.

It can be checked that these factors are integral, and so are
Sxx5 and Syy5.

It remains to introduce scaling factors when G is of type
5B. Since the non-integer boundary coordinates are y2 and
y3, we need to scale in y-direction only. We choose

Sy = (ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35) · ∆2.

Again we can observe that, by Lemma 1, Sy is integral as
well as Syy2 and Syy3.

We have found for every type of G a pair of scaling factors
such that the scaled boundary points are integral. To ob-
tain integral coordinates for all points we extend the scaling
factors Sx and Sy to S̄x := Sx ·∆ and S̄y := Sy ·∆. Because
of Lemma 8, the extended scaling factors will yield integer
coordinates for all pi.

Furthermore we observe

Lemma 10. We choose S̄x and S̄y as discussed above de-
pending on the type of G. In the plane embedding of G, we
multiply all x-coordinates by S̄x and all y-coordinates by S̄y.
The z-coordinates of the lifting of G(p) induced by ω will be
integral.

Proof. It is sufficient to show that the gradient a1 of
some face f1 that is adjacent to the outer face f0 is integral.
This implies that the remaining vectors ai are also integral,
since we can use the integral stresses on interior edges to
compute them.

To prove the integrality of a1 we make a case distinction
on the type of G. Assume G has type 3. Let f1 be the face
which shares the edge (v1, v2) with f0. Calculating a1 with
help of (10) yields a1 = −ω12(0, S̄x). Since ω12 is a multiple
of 1/∆, and in our case ∆ = S̄x, a1 is integral.

Next we assume G has type 4. The face f1 is selected as
in the previous case. We obtain a1 = −ω12(0, S̄x)T . The
stress ω12 is part of the solution (7), namely −2ω̃13 − ω̃12.
Since S̄x was chosen as ∆, we have a1 = (0, ∆(2ω̃13−ω̃12))

T .
Therefore a1 is integral.
If G has type 5A, f1 is again chosen as the face which shares
the edge (v1, v2) with f0. We obtain a1 = −ω12(0, S̄x)T .
The system we solved to determine p5 gives

−ω12 =
Ω1

ω̃25ω̃13 + ω̃23ω̃25 + ω̃24ω̃35 + ω̃35ω̃23 − ω̃25ω̃35
,

where Ω1 is a polynomial in ω̃ of degree 3 which is less than
12(n − 5)3. We notice that S̄xω12 equals Ω1∆

3. Due to
Lemma 1, a1 is integral.
Finally we assume G has type 5B, the face f1 is now chosen
as the face which shares (v2, v3) with f0. We have a1 =
ω23(S̄y(y3 − y2), 0)T . The stress ω23 is part of the solution

of the equation system we solved to determine y2 and y3,
namely

ω23 =
−Ω2

(ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(y3 − y2)
.

The term Ω2 denotes a polynomial in ω̃ of degree 3 which
is less than 17(n − 5)3. Evaluating a1 gives (−Ω2∆

3, 0)T ,
hence a1 is integral.

It remains to analyze the necessary grid size for the lifting.
We have already calculated the values for a1 in the proof of
the previous Lemma. We observe that δ1 = Ω2∆

4 if G is of
type 5B, otherwise δ1 = 0. The different equations for H1,
depending on the type of G, are listed in Table 1. Table 2
contains the maximal z-coordinate of the lifted boundary
vertices, depending on the type of G.

type of G z1(x, y)
3 ω̃12∆

2y
4 (ω̃12 + 2ω̃13)(2ω̃13 − ω̃24)∆

3y
5A Ω1(ω̃25 + ω̃35)∆

5y
5B Ω2∆

4(1 − x)

Table 1: Equations for H1, for each type of G.

type of G maxi≤k z1(pi)
3 z1(p3) = ω̃12∆

2

4 z1(p3) = (ω̃12 + 2ω̃13)ω̃24∆
3

5A z1(p4) = Ω1(ω̃25 + ω̃35)∆
5

5B z1(p5) = 2Ω2∆
4

Table 2: Maximal z-coordinates on the plane H1,
depending on the type of G.

We observe that exponentially large coordinates suffice to
embed G as 3-polytope. Lemma 2 implies that the expo-
nential growth of the size of the coordinates is at most ∆5.
The analysis of the polynomial factors is straightforward.
Details are given in the full version of the paper. Table 3
summarizes the upper bounds for the grid size.

type of G u.b. for |x| u.b. for |y| u.b. for |z|
3 n2 5.3̄n n2 5.3̄n n5 28.4̄n

4 n3 3.53n n7 12.46n n11 46.38n

5A/5B n14 23.08n n10 8.10n n24 187.12n

Table 3: Upper bounds (u.b.) for the grid size for
the different types of G.

Theorem 2. Every planar 3-connected graph G with n
vertices can be embedded as 3-polytope with integer coordi-
nates that are bounded by O(27.55n).

5. AN EXAMPLE
A dodecahedron is one of the five platonic solids. It has

20 vertices, 30 edges and 12 faces. Figure 1 shows the edge
graph and a 3-dimensional realization of the dodecahedron.
This example is motivated by the fact, that all faces of the
dodecahedron are pentagons. Thus we have to apply the
more involved methods for an integer embedding. Since the
dodecahedron is symmetric it makes no difference which face



we choose as the outer face. We start with the computation
with calculating the substitution stresses. We obtain for all
the stresses ω̃13, ω̃14, ω̃24, ω̃25 and ω̃35 the value 36/449. The
fact that all these stresses have the same value is again due
to the symmetry of the dodecahedron. Because the outer
face is a pentagon, we have to check if the graph of the
dodecahedron is of type 5A or 5B. Evaluating (8), shows
that the graph is of type 5A. With help of the substitution
stresses we can compute the coordinates of the boundary
points. We obtain

p1 = (0, 0)T ,p2 = (1, 0)T ,p3 = (1, 1)T

p4 = (0, 1)T ,p5 = (−1/3, 1/2)T .

As the next step we apply Tutte’s method to compute the
coordinates of the interior points. The stress ω12 is com-
puted with help of the substitution stresses – we obtain
ω12 = −151/449. We scale the embedded graph as defined
in Section 4.3. We obtain ∆ = 403202. This yields the
scaling factors

S̄x = 1264158727403904,

S̄y = 26069428512.

Next we compute the planes Hi. Finally we obtain the coor-
dinates of the polytope by plugging the coordinates into the
equation for the corresponding plane. The result is shown in
Figure 1. We have scaled the z-coordinates down to obtain
a nicer picture. The greatest coordinate is

zmax = 3,845,325,824,461,495,633,711,104 ≈ 281.67,

which is quite large, but much smaller than the bound 2151

of Theorem 2.
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number of edges of convex digital polygons included
into an m × m-grid. J. Comb. Theory Ser. A,
69(2):358–368, 1995.
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