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Abstract

Given a set S of n points in the plane, we compute in time O(n3) the total

number of convex polygons whose vertices are a subset of S. We give an O(m � n3)

algorithm for computing the number of convex k-gons with vertices in S, for all

values k = 3; : : : ;m; previously known bounds were exponential (O(ndk=2e)). We

also compute the number of empty convex polygons (resp., k-gons, k � m) with

vertices in S in time O(n3) (resp., O(m � n3)).

Key words: Computational geometry, convexity, combinatorics, dynamic

programming

1 Introduction

Let S denote a set of n points in the plane. A subset T � S is said to be in

convex position if T is the vertex set of a convex polygon, and we then say

that T determines a convex k-gon, where k = jT j. We say that a polygon is

empty if it contains no point of S in its interior.
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If S is in convex position, then there are exactly
�
n

k

�
convex k-gons determined

by subsets of S. In general, however, S may determine far fewer convex k-gons.

Consider, for example, a set S of n = 3K points, with K points along each of

three rays emanating from the origin, such that the three rays positively span

the plane. Then there is no convex k-gon determined by a subset of S for any

value of k � 5.

In this note we show that the total number of convex polygons determined by

S can be computed in time O(n3). Further, we show that the number of convex

k-gons determined by S can be tabulated, for all values of k = 3; : : : ; m, in

total time O(m � n3). Within these same time bounds, we can compute the

total number of empty convex polygons determined by S (in time O(n3)) or

tabulate, for k = 3; : : : ; m, the number of empty convex k-gons determined

by S (in time O(m � n3)). Finally, we can compute for a given point u (not

necessarily from the set S) the number of convex k-gons determined by S

that contain u in total time O(m � n3), for all k � m. In general, the numbers

that we compute can be large | e.g., n points in convex position determine

roughly 2n convex polygons. We assume a real RAM model of computation in

which arithmetic operations on large integers can be done in constant time.

Relation to previous work. Khuller and Mitchell [6] showed how to com-

pute the number of triangles determined by S containing each point p 2 S

in total time O(n2). Rote et al. [8] showed how to count the total number of

convex k-gons determined by S in time O(nk�2), improving over the trivial

bound of O(nk). This result has recently been improved to O(ndk=2e) by Rote

and Woeginger [9]. Unfortunately, these bounds are exponential in k. Our

bounds are polynomial in n and k.

Counting problems are closely related to optimization problems for convex

polygons, because both types of problems show di�erent aspects of their natu-

ral common generalization: the enumeration of convex polygons. Furthermore,

both types of problems can be solved by dynamic programming. This is also

the approach that we will take here. The details of our recursions are similar

to some recursions applied by Arkin, Khuller, and Mitchell [1] in the context

of various optimization problems associated with selecting subsets of S to en-

close with a \fence", or similar recursions of Eppstein et al. [5] for computing

polygons of smallest area. Chv�atal and Klincsek [2] also apply similar recur-

sions to the problem of searching for maximum weight convex point sets (see

also the book of Korte, Lov�asz, and Schrader [7], pp. 170{171). An overview

of various optimization problems associated with polygons determined by a

given point set can be found in Eppstein [4].
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2 Counting all convex polygons

Consider �rst the problem of computing the total number of convex poly-

gons determined by S. For simplicity of presentation, we assume that no three

points of S are colinear and that no two points of S have the same y-coordinate;

our methods easily extend to the degenerate cases. Fix attention on one point

s 2 S; we will compute in time O(n2) the number of convex polygons deter-

mined by S such that s is the lowest vertex of the polygon. Let Us denote the

open halfspace of all points whose y-coordinate is greater than that of s.

Following the \sweep-line" algorithm of [1] for computing maximum value

enclosures, we devise a set of recursions based on imagining a \sweep-ray"

rotating clockwise about s, starting with a leftward ray and ending with a

rightward ray out of s. Let Hp;q denote the open halfspace to the left of the

oriented line pq.

Let p and q be points of S \Us, such that q 2 Hs;p (i.e., q is counterclockwise

from p with respect to s, and p 6= q 6= s). Then, we de�ne f(p; q; s) to be the

number of convex polygons which (a) have vertices among the points S; (b)

lie in the closure of the cone Us \Hs;p; and (c) have qp and ps as two edges.

Refer to Figure 1. Then, the number f(p; q; s) is obtained as follows: We test

r

r

r

r

s

r

q

p

Fig. 1. Notation used in formulating the recursions.

each point r 2 Us; if r 2 Hp;q \ Hs;q, then we add up the numbers f(q; r; s),

obtaining

f(p; q; s) = 1 +
X

r2Us\Hp;q\Hs;q

f(q; r; s): (1)
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This recursion can be evaluated systematically, if we tabulate the values of

f(p; q; s), for all q 2 S \ Us \ Hs;p, for p in clockwise angular order about s.

The justi�cation of the expression for f(p; q; s) is simple: A convex polygon

satisfying (a){(c) is either a triangle (with third edge qs) or is obtained by

attaching the triangle pqs to a convex polygon counted in f(q; r; s), for some

r 2 S in the cone Us \Hs;q that lies left of the oriented line pq.

As written, these recursions can be evaluated in O(n) time for each choice

of p; q; s, and overall O(n4) time. But this can be improved by noting that,

for �xed values of q and s, we can evaluate f(p; q; s) incrementally for points

p 2 Us \ Hq;s in clockwise order about q. Speci�cally, if the points of S in

Hq;s are labelled p1; p2; : : :, in clockwise order about q, then we can compute

f(pi; q; s) from f(pi�1; q; s) according to

f(pi; q; s) = f(pi�1; q; s) +
X

r2Hp
i
;q\Hq;p

i�1

f(q; r; s): (2)

Refer to Figure 2. First, f(p1; q; s) is evaluated directly, using (1), and then

all other values are obtained using (2). We can charge o� the work involved

in the summation to the points r, each of which is considered at most once

during the angular sweep about q. The result is that, for the �xed choice of s,

the values f(p; q; s) can be tabulated in total time O(n2). (The O(n) angular

sorts of points about each choice of q can be done, using the standard method

of computing the arrangement of dual lines, in total time O(n2); see [3].)
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Fig. 2. Notation used in recursion (2).

The total number of convex polygons determined by S is obtained simply by
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summing:

X
s2S

X
p2Us

X
q2Us\Hs;p

f(p; q; s):

3 Counting convex k-gons

Now consider the problem in which we count only convex k-gons, for a given

integer k. (In the process of counting k-gons, we will in fact also count convex

j-gons, for j � k.) Let p and q be points of Us, such that q 2 Hs;p. We de�ne

g(p; q; j; s) to be the number of convex polygons which ful�ll the conditions

(a){(c), as in the previous section, and have exactly j edges. Then the number

g(p; q; j; s) is obtained as follows:

g(p; q; j; s) =

8>><
>>:

1; if j = 3;
X

r2Us\Hp;q\Hs;q

g(q; r; j � 1; s); otherwise;
(3)

and the total number of convex k-gons is given by summing:

X
s2S

X
p2Us

X
q2Us\Hs;p

g(p; q; k � 1; s):

As in (2), we can improve the eÆciency of evaluating the recursion in (3)

incrementally, obtaining g(pi; q; j; s) from g(pi�1; q; j; s), plus a sum (over r)

of g(q; r; j � 1; s), for points p1; p2; : : : sorted in clockwise order about q.

4 Counting empty convex polygons

If we restrict attention to empty convex polygons we only have to rewrite

the recursions (1) and (3), adding the restriction that triangle �pqs have no

points of S in its interior. For example, the number of j-edge convex polygons

(with lowest point s) whose convex hull encloses no points of S is given by the

following recursion:

G(p; q; j; s) =

8>>>>>><
>>>>>>:

0; if �pqs \ S 6= ;;

1; if �pqs \ S = ; and j = 3;
X

r2Us\Hp;q\Hs;q

G(q; r; j � 1; s); otherwise.
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Note that the test to see if �pqs is empty can be done in constant time: As

shown in Theorem 2.1 of [5] or in Theorem 1 of [1], we can preprocess the

set S in time O(n2) into a data structure of size O(n2), so that for any query

consisting of three points of S, we can check in constant time if the triangle

determined by the three points is empty or not. (Actually, the theorem allows

us to sum the \weights" of the contained points; but we do not need this

generality.)

5 Counting convex polygons containing a given point

Another variation is the problem of computing the number of convex k-gons

containing a given point u (not necessarily from the set S) in the interior.

The case k = 3 was considered in [6], where an O(n2) algorithm was given for

computing, for each u 2 S, the number of triangles containing u.

For each of the four versions of our problem given above (all convex polygons

vs. convex k-gons; arbitrary convex polygons vs. empty convex polygons), we

can solve the variant in which we require point u to be inside the polygons

that are counted. We again �x attention on counting those polygons that have

point s 2 S as their lowest vertex. If u =2 Us the answer is 0. Otherwise, we

can compute, for example, the number g0(p; q; j; s) of j-edge convex polygons

which ful�ll the conditions (a){(c), as before, and contain point u, by solving

the following recursion:

g0(p; q; j; s) =

8>>>>>>>>>>><
>>>>>>>>>>>:

0; if u 62 Hs;p \ Us;

1; if u 2 �pqs and j = 3;
X

r2Us\Hp;q\Hs;q

g0(q; r; j � 1; s); if u 62 �pqs;

X
r2Us\Hp;q\Hs;q

g(q; r; j � 1; s); if u 2 �pqs;

where g(p; q; j; s) has been already computed by equations (3).

6 Summary

For the space complexity, note that we never have need to store more than

O(n2) or O(kn2) numbers (for the cases of counting all polygons, or all k-gons,

respectively). The time complexity is obtained simply by multiplying O(n)
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(the number of choices for s) by the number of entries (O(n2) or O(kn2)) that

we need to store for each choice of s.

Theorem 1 Given a set S of n points in the plane, in time O(n3) (resp.,

O(mn3)) and space O(n2) (resp., O(mn2)), the total number of convex poly-

gons (resp., convex k-gons, for all k � m) whose vertices are a subset of S can

be computed. Also, in the same time and space complexities, the total number

of empty convex polygons (empty convex k-gons) can be computed, or the total

number of convex polygons (convex k-gons) containing a given point can be

computed.

Note: We can extend the above recursions to compute the number of t-

subsets T � S whose convex hull is a k-gon, in time O(k(t�k+1) �n4). (This

number is denoted by #(t; k) in [8,9].) For t = k this reduces to the part of

the above theorem.

It is straightforward to decrease the storage requirement to O(n), at the ex-

pense of a factor of n in the running time.

Acknowledgement

We thank the referees for observing the improvement by a factor of n in the

running time for the evaluation of the recursions.

References

[1] E.M. Arkin, S. Khuller, and J.S.B. Mitchell, Geometric knapsack problems,

Algorithmica 10 (1993), 399{427.

[2] V. Chv�atal and G. Klincsek, Finding largest convex subsets, in: Proc. 11th

Southeastern Conf. Combinatorics, Graph Theory, and Computing, (Boca Raton,

Florida, 1980), Vol. II; Congressus Numerantium 29 (1980), 453{460.

[3] H. Edelsbrunner and L. Guibas, Topologically sweeping an arrangement, Journal

of Computer and System Sciences 38 (1989), 165{194.

[4] D. Eppstein, New algorithms for minimum area k-gons, in: Proc. 3rd ACM-SIAM

Sympos. Discrete Algorithms (SODA), 1992, pp. 83{88.

[5] D. Eppstein, M. Overmars, G. Rote, and G. Woeginger, Finding minimum area

k-gons, Discrete & Computational Geometry 7 (1992), 45{58.

[6] S. Khuller and J.S.B. Mitchell, On a triangle counting problem, Information

Processing Letters 33 (1990), 319{321.

7



[7] B. Korte, L. Lov�asz, and R. Schrader, Greedoids, in the series Algorithms and

Combinatorics, Vol. 4, Springer-Verlag, 1991.

[8] G. Rote, Z. Wang, G. Woeginger, and B. Zhu, Counting k-subsets and convex

k-gons in the plane, Information Processing Letters 38 (1991), 149{151.

[9] G. Rote and G. Woeginger, Counting convex k-gons in planar point sets,

Information Processing Letters 41 (1992), 191{194.

8


