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Abstract

The well-known greedy triangulation GT (S) of a �nite point set S is obtained by inserting

compatible edges in increasing length order, where an edge is compatible if it does not cross

previously inserted ones. Exploiting the concept of so-called light edges, we introduce a new

way of de�ning GT (S). The new de�nition does not rely on the length ordering of the edges. It

provides a decomposition of GT (S) into levels, and the number of levels allows us to bound the

total edge length of GT (S). In particular, we show jGT (S)j � 3 � 2k+1jMWT (S)j, where k is

the number of levels andMWT (S) is the minimum-weight triangulation of S. This constitutes

the �rst non-trivial upper bound on jGT (S)j for general points sets S.

1 Introduction

A triangulation of a given set S of n points in the plane is a maximal set of non-crossing line

segments (called edges) which have both endpoints in S. Besides the Delaunay triangulation and the
minimum-weight triangulation, the greedy triangulation (GT) is among the three most prominent
ones. It is obtained by inserting compatible edges in increasing length order, where an edge is

compatible if it does not cross previously inserted ones. Various algorithms for computing the GT

are known, and the GT has been used in several applications. See, e.g., [DDMW] for a short history.

One use of the greedy triangulation is a length approximation to the minimum-weight triangu-

lation (MWT). For a given point set S, the MWT minimizes the total edge length for all possible
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triangulations of S. Unfortunately, there are no known e�cient algorithms for computing a MWT

for general point sets. Therefore, e�ciently computable approximations to the MWT are of impor-

tance.

Although the GT tends to be short in practical applications (and the GT for uniformly dis-

tributed points is expected to be within a constant factor of the MWT, see [LL]), its worst-case

length behaviour is fairly unexplored. The only known result [L] in this respect is that the GT can

be a factor of 
(
p
n) longer than the MWT. In particular, no non-trivial worst-case upper bounds

have been known.

In this paper, we prove an upper bound of the form jGT (S)j � ck � jMWT (S)j, where ck is a

constant depending on the shape of S but not on its size. In Section 2, we introduce a decomposition

ofGT (S) into k disjoint sets of edges, called levels, where the parameter k � 1 results from the shape

of S. The level decomposition provides a new way of viewing, or de�ning, GT (S) without having

at hands the sorted list of edges spanned by S. It is based on the concept of light edges introduced

in [AACRTX] and allows us to gain more insight into the structure of GT (S). In particular, we

show ck � 3 � 2k+1 for k � 2 in Section 3. This generalizes the result c1 = 1 in [AACRTX] and

implies that a GT with constantly many levels is a constant approximation to the MWT. Section

4 studies the number of levels in a GT and o�ers a short discussion of the presented topic.

2 A Level Decomposition of GT

The usual procedural de�nition of GT (S), as given in the introduction, resorts to the length prop-

erties of the edges spanned by S as well as to their crossing properties1. In particular, an edge
which is not crossed by any shorter edge will surely belong to GT (S). Let us call an edge light in
this case. Below is a catalog of basic properties of light edges.

Lemma 1 Let L denote the set of all light edges de�ned by S.

(a) L is a non-crossing set of edges.

(b) L contains all edges bounding the convex hull of S.

(c) L is a subset of GT (S).

(d) In general, L is no subset of MWT (S).

The following result is less obvious and is proved in [AACRTX]. Let jAj be the weight of a given
set A of edges, that is, the sum of the lengths of all the edges in A.

Lemma 2 jLj � jMWT (S)j.

In conjunction with Lemma 1(c), Lemma 2 immediately implies: if L happens to form a trian-

gulation of S, then jLj = jGT (S)j = jMWT (S)j. In any case, we learn that at least a subset of the

edges in GT (S) can be bounded in length by the weight of MWT (S).

1By length of an edge we mean the Euclidean distance between its endpoints. Two distinct edges are said to cross

if they intersect in their interiors. To ease the presentation, let us assume throughout that S is in general position

and that no two edges have the same length.
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In general, the following fact prevents particular edges in GT (S) from being light. An edge e,

though showing up in GT (S), may still be crossed by some edge f shorter than e, as f might be

non-compatible, that is, f is crossed by shorter edges which have already been inserted into GT (S).

This fact suggests to generalize the de�nition of light edges.

The edges in L are called light of level 1 . Let E be the total set of edges de�ned by S, and

let C1 collect all edges of E that are crossed by some edge in L. Notice that each edge in L, and

therefore no edge in C1, appears in GT (S). De�ne E2 = E n (L [ C1). An edge e 2 E2 is called

light of level 2 if e is not crossed by a shorter edge in E2. Let L2 be the set of all edges which are

light of level 2, and let C2 collect all edges of E2 that are crossed by some edge in L2. Again, each

edge in L2, and therefore no edge in C2, appears in GT (S). By setting E3 = E2 n (L2 [C2) we now

can de�ne, in the obvious way, the set L3 of edges which are light of level 3. Repeating this process

until Ek+1 = ; yields a hierarchy of levels L1; L2; : : : ; Lk with L1 = L.

It is evident that levels are pairwise disjoint, and that no edge of level i can cross an edge of

level j, for 1 � i; j � k. More speci�cally, we have:

Lemma 3 GT (S) = L1 [ L2 [ : : : [ Lk.

Lemma 3 gives an alternate, though still procedural, de�nition of GT (S) which is of interest in
its own right. It provides a more structured view of GT (S) than does the original de�nition and

does not require the sorted order of the edges spanned by S. Clearly, a level decomposition of GT (S)
can be computed in polynomial time. We leave open the question whether the level decomposition
proves useful in the design of new and e�cient greedy triangulation algorithms.

Figure 1: GT with three levels shown full, dotted, and dashed.
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From Lemma 2 we learn that a GT with a single level is in fact a MWT. This suggests the

conjecture that, if GT (S) has only a few levels, it should not decline in weight too much from

MWT (S). We a�rmatively settle this conjecture in the next section.

3 Bounding the Weight of a k-Level GT

The goal of this section is to establish an upper bound on the weight of GT (S) that depends on

the number of levels of GT (S).

Theorem 1 Let S be a �nite set of points in the plane, and let k be the number of levels attained

by GT (S). Then jGT (S)j � ck � jMWT (S)j, where c1 = 1 and ck = 3 � 2k+1 for k � 2.

The special case k = 1 follows from Lemma 2. To our knowledge, Theorem 1 constitutes the

�rst non-trivial upper bound on the weight of a GT for general point sets. Still, the exponential

dependence on the number of levels calls for improvement. Notice, however, that the bound is

independent of the cardinality of the underlying set of points.

The reminder of this section contains a proof of Theorem 1. The proof is mainly based on an
appropriate weighting scheme for the points in S. It proceeds in three stages. First, each point is

associated with an initial weight, such that the sum of these weights can be related to the weight
of MWT (S) (Lemma 4). Next, point weights are updated stepwise, where each step corresponds
to a level of GT (S), and the increase of weight per point is controlled (Lemma 5). At last, the sum

of the �nal point weights is used to bound the weight of GT (S) (Lemma 7).
The weight for each point p 2 S is obtained by assigning to p a certain star of incident edges.

A star can also contain edges which are not in GT (S). The initial star of p, �0(p), consists of

three edges such that the angles between consecutive edges are less than �, and the sum of the
edge lengths is minimum. (An exception are points lying on the convex hull of S. Their initial

star consists of the two respective convex hull edges instead.) Here, and during the subsequent
extensions and modi�cations of stars, the weight of a point p is de�ned to be the length of the
longest edge in its star. Let w0(p) be the initial weight of p.

Lemma 4
P

p2S w0(p) � 2 � jMWT (S)j.

Proof. For any point p 2 S, any triangulation of S has to contain edges incident to p whose total
length is at least w0(p). In particular, this is true for MWT (S). The factor 2 is obtained because

each edge of MWT (S) is counted twice in this way, once for each endpoint. 2

Let GT (S) consist of k levels. For each point p 2 S, its star is now updated during k steps. Let

�i(p) denote the star of p after step i, for i = 1; : : : ; k. The following three invariants for �i(p) are

maintained.

(1) �i(p) contains { among possible other edges { all incident edges in GT (S) which are of level

at most i.

(2) All angles between consecutive edges in �i(p) are less than �.

(3) No edge of �i(p) is crossed by any edge in GT (S) of level � i.
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To maintain invariant (1), all incident level-i edges are added to �i�1(p). Adding such an edge

is called an expansion of a star. Clearly, an expansion does not destroy invariant (2).

After having expanded the stars for all points in S, invariant (3) may be violated. Assume this

is the case for point p. For each edge g in p's star that is crossed by edges of level � i we do the

following; see Figure 2. Let ` be the edge of level � i that crosses g closest to p. Consider the

(topologically closed) triangle spanned by ` and p, and let x and y be the points in this triangle

that are hit �rst when g is rotated about p. (Note that x or y can be an endpoint of `.) We remove

g, and add the edges px and py if they have not been part of the star yet. This action is called a

modi�cation of a star.

h

p

x
l

g

y

Figure 2: Modi�cation of a star.

Indeed, after the modi�cation, no edge of level � i crosses px or py. By construction, any such
edge e would have to cross g, too. As being no edge of GT (S), g was already present in �i�1(p).

Hence, by invariant (3), e cannot be of level � i � 1. It also cannot be of level i, as this would
contradict the de�nition of `, x, and y. Notice �nally that invariant (2) is maintained during a
modi�cation.

Recall that the weight of a point p after step i, wi(p), was de�ned to be the length of the longest

edge in �i(p).

Lemma 5 wi(p) � 2 � wi�1(p), for i = 1; : : : ; k.

Proof. We argue that an expansion, as well as a modi�cation, can produce edges of length at most

twice the length of the longest edge in �i�1(p).

We �rst consider an expansion of �i�1(p). Let ` be an edge of level i that is added, and let g

and h be the edges neighbored to ` in �i�1(p); see Figure 3. We have jgj; jhj � wi�1(p). Assume

j`j > wi�1(p) as nothing is to prove, otherwise. By invariant (2), ` then crosses the edge qr, where

q and r is the second endpoint of g and h, respectively. Consider the convex hull of all points of S

that lie in the triangle pqr, including q and r but excluding p. Let e be the edge of the convex hull

which is crossed �rst by ` when coming from p. (Note that e = qr is possible.) By construction,

e cannot be crossed by any edge of level � i � 1 as such an edge would have to cross g or h,

too, contradicting invariant (3). Hence j`j � jej, as e instead of ` would be of level i, otherwise.

Moreover, by the triangle inequality, jej � jgj+ jhj. We conclude j`j � 2 � wi�1(p).

5



Similar arguments can be used to bound the length of edges stemming from a modi�cation of the

expanded star. Let g, `, x, and y be de�ned as in the modi�cation step; cf. Figure 2. Recall that g

already appears in �i�1(p). So jgj � wi�1(p). Furthermore, g cannot cross edges of level � i� 1 by

invariant (3), but by de�nition crosses the level-i edge ` added in step i. This implies j`j � jgj. By
construction of x and y, maxfjpxj; jpyjg � jgj+ j`j. We conclude jpxj; jpyj � 2 � jgj � 2 �wi�1(p). 2

g

q

l

r

h

p e

Figure 3: Expansion of a star.

Finally, in order to bound the weight of GT (S) by means of the weights of the points in S after

step k, we utilize the following result proved in [AAR].

Lemma 6 Let T be an arbitrary triangulation of S. Then the edges of T can be oriented such that

each point p 2 S has an in-degree of at most 3.

The assertion below is now easy to prove.

Lemma 7 jGT (S)j � 3 �Pp2S wk(p).

Proof. According to Lemma 6, we orient the edges of GT (S) such that each point p 2 S has at

most three incident edges pointing at it. By invariant (1), these edges also have to be present in
the �nal star �k(p). Therefore, their total length is bounded by 3 � wk(p). Summing over all points
in S gives the stated result. 2

Theorem 1, the main result of this paper, now follows from combining Lemmas 4, 5, and 7.

4 On the Number and Length of Levels

The quality of the bound on GT expressed in Theorem 1 depends on how a GT is structured into

levels. Below we summarize several observations on the number of levels as well as on lower bounds

on the weight of particular levels.

Let us �rst report on some experimental results. We have run a level decomposition algorithm
for the GT of n � 200 points uniformly distributed in the unit square. Figure 4 displays the number
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Figure 4: Expected number of levels.

k of levels in dependence of n. For each n, this number has been averaged over 100 sets of cardinality

n. As can be observed, k shows an almost constant behaviour already for moderately large n.

For constant k, Theorem 1 implies that the GT is a constant approximation to the MWT. Hence,
for uniformly distributed points, our observed behaviour of GT is in accordance with the theoretical

result in [LL].

n
p

1
p

2
p

3
p

Figure 5: GT with many levels.

For specially constructed point sets, however, k can be up to linear in n. The points p1; p2; : : : ; pn
in Figure 5 are placed on a circle where, for i = 2; : : : ; n, jpi�1pij increases by a �xed amount such
that jpnp1j = 2 � jp1p2j. Aside from convex hull edges, only p1p3 belongs to level L1. This is because,

for 2 � i � n, jpipjj > jpi�1pi+1j if j � i+ 2. For similar reasons, only p3p5 belongs to level L2. By

repeating this type of argument, we see that in fact each inner edge of GT (fp1; : : : ; png) constitutes
a separate level. This gives a lower bound of k � n� 3.

As a curious fact, notice that GT (fp1; : : : ; png) { though far from being a light triangulation {
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Figure 6: Level 2 (full) exceeds the MWT (dashed).

coincides with MWT (fp1; : : : ; png) in this case.

From Lemma 2 the question arises whether each particular level of a GT can be bounded in

weight by the corresponding MWT. (The proof of Theorem 1 shows that levels can at most double
in weight in the worst case.) A result of this kind would give a bound on GT that depends linearly
on k rather than exponentially. Figure 6 exhibits a point set S where jL2j > jMWT (S)j. The

inner edge shown in full at the left top of the picture belongs to level L1. This edge is shorter
than all dashed edges it crosses and excludes them from GT (S). Therefore, the bundle of full edges

emanating from the points on the bottom of the picture belongs to level L2. The dashed edges em-
anating from these points, however, are shorter than the full ones and belong to MWT (S). Thus,
if the number of bottom points is su�ciently large, L2 will dominate MWT (S) in weight. A simi-

lar construction can be done for a higher level Li, yielding jLij > jMWT (S)j for a given value i � k.

Despite of these negative results, it still remains open whether jGT (S)j � ck � jMWT (S)j, where
ck is polynomial in k. We have taken a look at the number of levels in the GT example in [L] {
where the GT is a factor of 
(

p
n) longer than the MWT { and have found this number to be

�(
p
n). From this we conjecture ck = O(k). A proof of this conjecture, however, seems to require

methods di�erent from those used in the present paper.
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