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Let me confess at the very beginning that I did not know anything from the mathematical
theory of juggling before reading Polster’s book. I was not even aware of the fact that such a
theory exists. My personal experience with juggling is not very impressing either. I can juggle
with three balls, once or twice in my lifetime I also managed four.

For me one of the most fascinating aspect of the “mathematical theory of juggling” is the
fact that it represents in a nutshell everything that a decent theory which describes certain
phenomena in the real world should have. The first point is that it is necessary to consider a
rather idealized situation, here this leads to the basic definition of a “juggling sequence” (the
definition will be given below). And then one can start to work on this fundament. One has to
discuss the first examples, one can prove theorems (the proofs of which sometimes have to be
prepared by some lemmata), and from these theorems one can derive corollaries.

Having mastered the problems connected with the basic approach one can turn to more
complicated situations. This gives rise to more sophisticated definitions, the theorems are harder
to prove, the mathematics involved is deeper. And finally one can try to apply the theory to
other areas of interest.

Juggling sequences
We start with the simplest situation. A juggler can throw a ball with his or her left or right

hand, we suppose that the “actions” are equally spaced in time and that the hands alternate: left
hand, right hand and so on. If we assume that at any time at most one ball can land and that the
juggling lasts from the infinite past to the infinite future we arrive at the following mathematical
model of juggling:

Juggling is encoded by a function g : Z → N0. A positive g(n) indicates that a ball is
caught at time n and is thrown immediately again such that it lands after g(n) time
units. If g(n) = 0, then no action takes place at time n.

One assumes that g satisfies the following conditions:

• The function n 7→ n + g(n) is one-to-one: otherwise more than one ball would
land at a certain time.

• g is periodic: for a suitable p > 0 one has g(n + p) = g(n) for all n.

As simple examples consider g(n) := s, where s is a fixed integer (this is called the s-ball
cascade). For s = 1 this pattern can be juggled by everyone: simply throw the ball from the
right hand to the left and vice versa. The case s = 2 is also simple: at even time units catch ball
number one and throw it immediately again with the left hand such that it can be caught two
time units later with the same hand, similarly the right hand deals with ball number two at odd
time units. A more demanding juggling pattern is the three ball cascade: At every time unit a
ball is caught and immediately thrown again such that it is in the air for three time units. (This
seems to be the simplest juggling pattern where three balls are involved.)

If g is periodic with period p it suffices to know the values of g for p consecutive values. g can
be reconstructed uniquely up to a translation. For example, “312” stands for a juggling pattern
where the g-sequence looks like . . . 312312312 . . ., and the three ball cascade can be abbreviated



by “3”. Finite sequences which arise in this way (like 312 and 3 in the preceding example) are
called juggling sequences.

Theorems and corollaries
The theory starts with simple results (“If a0, . . . , ap−1 is a juggling sequence then so is the

sequence a0 + d, . . . , ap−1 + d, where d is a fixed positive integer.”), but rather soon the asser-
tions are more interesting and the proofs are more tricky. For example, let a juggling sequence
a0, . . . , ap−1 be given. One can show that the number of balls needed to juggle it is precisely
(a0 + · · · + ap−1)/p: this is intuitively clear since this number is the number of balls which are
in the air “in the average”. It follows that the s-cascade “s” needs s balls (which is clear) and
that one must have 2 balls to juggle “312”. This “average theorem” has a nice corollary: A finite
sequence of integers will give rise to a juggling sequence only if the average is an integer. However,
this condition is not sufficient. As an example, consider 321. The average is 2, but the associated
function n 7→ n + g(n)is not one-to-one.

Surprisingly, it can be shown that the condition is nearly sufficient: If the average of a finite
sequence a of nonnegative integers is an integer, then there exists a permutation of a which is
a juggling sequence. The proof is rather involved, but nevertheless – as it is to be expected –
elementary.

Now suppose that someone is juggling a certain juggling sequence a0 . . . ap−1 of length p.
After some time it might be desirable to pass without interruption to another pattern. Fix an i
and an integer d such that 0 < d ≤ ai. If ai is replaced by ai+d + d and ai+d by ai − d, then this
will be again an admissible sequence. E.g., the ball thrown at time unit i will be caught at that
moment when in the original pattern the ball thrown at time unit i + d is going to land. (For
example, in the case p = 3, i = 0 and d = 1 one will pass from 642 to 552.)

The operation to generate a new sequence in this way is called a site swap. As another,
more elementary operation one can consider the cyclic shift where one replaces a0 . . . ap−1 by
a1a2 · · · ap−1a0. It is rather surprising that site swaps and cyclic shifts suffice to pass from any
juggling sequence to any other provided the length p and the number of balls (a0 + · · ·+ ap−1)/p
coincide. For example, one could start with bb · · · b (which is identical with the cascade b) and
arrive at (pb)0 · · · 0 (this corresponds to the pattern where at every p’th time unit a ball is thrown
so strong that it is in the air for pb time units).

The book also contains many results centering around counting : What is the number of
juggling sequences with a prescribed property? As a sample theorem consider the case of minimal
juggling sequences. (A juggling sequence a0 . . . ap−1 is called minimal if it cannot be written as
a repetition of smaller juggling sequences; so 441 is minimal, but 44444 is not.) It can be shown
that the number of minimal juggling sequences of period p with average b is precisely
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here µ is the usual Moebius function, and juggling sequences which are identical up to cyclic
permutations are identified.

More sophisticated definitions
Juggling sequences are the basic objects of interest, their study covers the first chapters of

Polster’s book. More complex notation is needed when weakening the assumptions of the first
approach. How can one deal with the possibility that it is allowed to throw and to catch more



than one ball at a given time unit (multiplex juggling)? What modifications are necessary if not
one but several jugglers are involved (multihand juggling)?

Formally a multiplex juggling sequence is a finite sequence of finite nonempty ordered sets
of nonnegative integers. These sets encode what kinds of throws are made on every beat. For
example, {1, 4}{1} has to be realized as follows: On the first beat, two balls are caught, they are
immediately thrown again, the first one to height one, the second to height four; on the second
beat, one ball is caught and thrown to height one; the actions on beat one and two are repeated
again and again.

Multihand juggling needs an even more elaborate notation, one has to pass to matrices the
columns of which prescribe what has to be done at a certain time unit. For example, one can
learn from the second entry of such a column what action “hand” number two is assumed to
perform at the corresponding time: catch 5 balls, throw two of them such that they arrive at
“hand” number one two units later and throw the remaining balls such that they are at “hand”
four at the next time.

The emphasis is similar to that in the case of the above juggling sequences of a single player.
One can prove average theorems, it is possible to count the number of essentially different pat-
terns, the mutual dependence of these patterns can be visualized by graphs etc.

With the notations of multihand juggling at hand it is also possible to change the point of
view. If b balls are juggled by h hands in a certain way one may interchange the roles of balls and
hands: Fix the position of the balls and let the hands move! Now the balls juggle the hands using
a pattern which is in a sense dual to the original one. Claude Shannon, the famous information
theorist, was one of the first who has investigated this “duality theory”.

The book contains much more. A survey on the history of juggling, hints for jugglers, the
connections with bell ringing, to mention a few. For me it was very stimulating. I tried to juggle
some of the simpler juggling sequences, also I wrote a computer program to visualize even very
complicated a0, . . . , ap−1 (which no human being will ever manage). The mathematics involved
are very interesting, I had not expected to see so many connections with algebra, graph theory
and combinatorics.

In a review of this book by Allen Knutson (Notices of the AMS, January 2004) it has been
argued that the historical part is not free of errors. I do not have the background information to
decide whether this criticism is justified. For me it is a fascinating book from which I learned a
lot.


