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Abstract. Let O1, . . . , On be open sets in C [ 0, 1 ], the space of real-
valued continuous functions on [ 0, 1 ]. The product O1 · O2 · · ·On will in
general not be open, and in order to understand when this can happen we
study the following problem: given f1, . . . , fn ∈ C [ 0, 1 ], when is it true
that f1 · f2 · · · fn lies in the interior of Bε(f1) · Bε(f2) · · ·Bε(fn) for all
ε > 0 ? (Bε denotes the closed ball with radius ε and center f .)

The main result of this paper is a characterization in terms of the walk t 7→
γ(t) := (f1(t), . . . , fn(t)) in Rn. It has to behave in a certain admissible
way when approaching {x ∈ Rn | x1 · x2 · · ·xn = 0}.

We will also show that in the case of complex valued continuous functions
on [ 0, 1 ] products of open subsets are always open.
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1. Introduction

The starting point of the investigations in [1] was the observation that the
product of two open sets in the space of real-valued continuous functions is
not necessarily open. However, such products always contain interior points.
The results have been generalized in [4] to the space of real-valued N -times
differentiable functions, and in [2] a characterization was given: what are the
properties of the functions under consideration that make such a phenomenon
possible? The aim of the present paper is a generalization of these results to
n-fold products.

As in [2] we describe the “local obstruction”: when is it true that f1 · · · fn

lies in the interior of the product of the n balls Bε(f1), . . . , Bε(fn) for every
ε > 0 ? We will characterize the families f1, . . . , fn ∈ C [ 0, 1 ] where this holds.

It will turn out that the topological properties close to the zeros of f1 · · · fn

will play a crucial role.
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In order to state the main result of this paper (theorem 1.2) we need some
preliminary definitions. We denote by Π the set {−1,+1}n and by Π+ resp. Π−

the subset of those π where π1 · π2 · · ·πn equals +1 resp. −1.
Each π ∈ Π gives rise to a subset Qπ of Rn:

Qπ := {x ∈ Rn | xiπi ≥ 0 for i = 1, . . . , n}.

Note that, e.g., the Qπ are just the quadrants in R2 if n = 2. Also it is clear that
the function H : Rn → R, x 7→ x1 · · ·xn, is ≥ 0 resp. ≤ 0 on Qπ for π ∈ Π+

resp. π ∈ Π−.
Now let x ∈ Rn be given. For which Qπ is it true that there are y ∈ Qπ

close to x such that H(y) is slightly larger resp. slightly smaller than H(x)?
More precisely we define the set Z+

x ⊂ Π as the collection of the π such that
for every ε > 0 there exists y ∈ Qπ for which ||x − y|| ≤ ε and H(y) > H(x).
(|| · || will always denote the maximum norm on Rn.) Similarly Z−x is defined:
here H(y) < H(x) has to be true.

If x is such that H(x) 6= 0, i.e., if x is in the interior of some Qπ, we have
Z+

x = Z−x = {π}. For the x withH(x) = 0 the explicit description is as follows: π
will be in Z+

x (resp. Z−x ) precisely if π ∈ Π+ (resp. π ∈ Π−), and πixi > 0 for the
i with xi 6= 0. In particular it follows for π = (πi), π̃ = (π̃i) ∈ Z+

x that πi = π̃i

for the i with xi 6= 0. (A similar result holds for π = (πi), π̃ = (π̃i) ∈ Z−x .)
Note also that Z+

x ∩ Z−x = ∅ for the x such that H(x) = 0.
As an illustration consider in R3 the following examples:

• Z+
(1,−2,3)

= Z−
(1,−2,3)

= {(+1,−1, +1)};

• Z+
(3,0,0)

= {(+1, +1, +1), (+1,−1,−1)}, Z−
(3,0,0)

= {(+1,−1, +1), (+1, +1,−1)};

• Z+
(0,0,0)

= Π+, Z−
(0,0,0)

= Π−.

Now we fix arbitrary f1, . . . , fn ∈ C [ 0, 1 ], and we put γ(t) :=
(
f1(t), . . . , fn(t)

)
for 0 ≤ t ≤ 1. Here is the crucial definition:

Definition 1.1. We say that γ is positive admissible (resp. negative admissible)
if the following holds: whenever there are given t1 < · · · < tn in [ 0, 1 ] such that
H ◦ γ ≥ 0 (resp. ≤ 0) on [ t1, tn ], then

⋂
i Z

+
γ(ti)

6= ∅ (resp.
⋂

i Z
−
γ(ti)

6= ∅).
If γ is positive admissible and negative admissible, γ is said to be admissible.

To illustrate this definition let us consider some examples:

• For n = 1 every γ is admissible.

• For n = 2 the walk γ is admissible iff it never moves directly from Q(+1,+1)

to Q(−1,−1) (or vice versa) and never directly from Q(+1,−1) to Q(−1,+1)

(or vice versa). In [2] this was called “γ has no positive and no negative
saddle point crossings”.

• Now let us consider the case n = 3, suppose, e.g., that γ stays inQ(+1,+1,+1).
Then γ will be positive admissible, but it will be negative admissible only
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if it does not move to three linearly independent directions on subinter-
vals where H ◦ γ = 0. For example, a walk that moves on straight lines
from (1, 0, 0) to (0, 0, 0) to (0, 1, 0) to (0, 0, 0) to (0, 0, 1) is not negative
admissible.

Our main result (that generalizes the characterization in [2] for the case n = 2)
reads as follows:

Theorem 1.2. Let f1, . . . , fn ∈ C [ 0, 1 ] be given. Then the following assertions
are equivalent:
(i) f1 · f2 · · · fn lies in the interior of Bε(f1) ·Bε(f2) · · ·Bε(fn) for every ε > 0.
(ii) The associated walk γ : t 7→

(
f1(t), . . . , fn(t)

)
is admissible.

The proof will be given in section 3 after the introduction of some further
definitions and the verification of some preliminary results in section 2 . The
idea will be to show a more precise variant of the theorem by induction on n.
By this variant we will be able to derive properties of γ on [ 0, 1 ] from properties
of γ on the subintervals of appropriate partitions of [ 0, 1 ].
In section 4 we prove that in the space of complex-valued functions on [ 0, 1 ]
products of open sets are always open, and finally, in section 5 , one finds some
consequences of the main theorem and some concluding remarks.

2. Preliminaries

A translation of the problem: “walk the dog”

We fix f1, . . . , fn, and γ is defined as before. The investigations to come
are rather technical, and as in [2] it will be helpful to have an appropriate
visualization.

First we note that “for every positive ε the function f1 · · · fn lies in the
interior of Bε(f1) · · ·Bε(fn)” just means that for ε > 0 there is a τ0 > 0 such that
for every τ ∈ C [ 0, 1 ] with ||τ || ≤ τ0 there exists a continuous d : [ 0, 1 ] → Rn

such that ||d(t)|| ≤ ε and H
(
γ(t) + d(t)

)
= H ◦ γ(t) + τ(t) for every t ∈ [ 0, 1 ]:

if γ is considered as your walk in Rn, then your “dog” – its position at time t is
(γ+d)(t) – can move such that it is always ε-close to you, and its “height above
sea level” H

(
(γ + d)(t)

)
relative to yours (which is H

(
γ(t)

)
) can be prescribed

as τ(t) arbitrarily provided it is uniformly small.

A lemma concerning the Z+
x and the Z−x

In section 1 we have defined what it means that γ is admissible. We will
need some consequences of this property.
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Lemma 2.1. Suppose that γ is admissible.
(i) If H ◦ γ ≥ 0 on some subinterval [ a, b ], then

⋂
a≤t≤b Z

+
γ(t) 6= ∅.

If, in addition, there is a t ∈ [ a, b ] with H ◦ γ(t) > 0 then
⋂

a≤t≤b Z
+
γ(t) is a

singleton.
(ii) If H ◦ γ ≤ 0 on some subinterval [ a, b ], then

⋂
a≤t≤b Z

−
γ(t) 6= ∅.

If, in addition, there is a t ∈ [ a, b ] with H ◦ γ(t) < 0 then
⋂

a≤t≤b Z
−
γ(t) is a

singleton.
(iii) If H ◦ γ = 0 on some subinterval [ a, b ], then there are π = (πi), π̃ = (π̃i)
such that π belongs to all Z+

γ(t) and π̃ belongs to all Z−γ(t) for t ∈ [ a, b ]. If i is
an index such that πi 6= π̃i then fi (the i’th component of γ) vanishes on [ a, b ].
Note that such i exist since Z+

x ∩ Z−x = ∅ whenever H(x) = 0.

Proof. (i) Consider Ji := fi([ a, b ]) for i = 1, . . . , n. The Ji are compact subin-
tervals of R, we claim that 0 is never contained as an interior point. In fact,
if the product fi(t)fi(t′) would be negative for some i, t, t′, we would have
Z+

γ(t) ∩ Z
+
γ(t′) = ∅ (since for π ∈ Π+ the i’th component cannot be positive

and negative at the same time). This would contradict the assumption that γ
is positive admissible. Let ∆ be the collection of i where Ji is not the interval
[ 0, 0 ]. Choose ti for these i such that fi(ti) 6= 0.

If ∆ is a proper subset of {1, . . . , n} we are already done: we define πi for
i ∈ ∆ such that πifi(ti) > 0, and the remaining πi are chosen in such a way
that π ∈ Π+. Then π will lie in all Z+

γ(t) for a ≤ t ≤ b.
Now suppose that ∆ = {1, . . . , n}. Since γ is positive admissible there is a π

in
⋂

i Z
+
γ(ti)

. It lies in Π+ and it must have the property that πifi(ti) is strictly
positive for all i. Therefore

∏
fi(ti) > 0. Since Ji does not have 0 as an interior

point it follows that fi(ti)fi(t) ≥ 0 for all t ∈ [ a, b ], and this implies that a π
which lies in all Z+

γ(ti)
must also lie in Z+

γ(t) for arbitrary t ∈ [ a, b ].
The second part of the assertion is clear since Z+

x contains just one element
if H(x) 6= 0.
(ii) This can be proved in a similar way.
(iii) By (i) and (ii) it is clear that π and π̃ with the desired properties exist.
Now let i be such that πi 6= π̃i. With the notation of the proof of (i) we claim
that the interval Ji equals [ 0, 0 ]. Otherwise, if Ji would contain stricly positive
(resp. strictly negative) elements, πi and similarly π̃i would both be +1 (resp.
−1). �

Canonical positions

Suppose that someone stays during his or her walk at some time at x ∈ Rn

and that one has to find a position of the dog that is close to x and that has a
prescribed H-value. There will be many of them, but it will be crucial for our
investigations to have a canonical one.

We start with an x such that H(x) 6= 0. Then x lies in the interior of some
Qπ: here π is uniquely determined, and Z+

x = Z−x = {π}. All components of x
are different from zero.
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We put ys := (1 + s)x. The function s 7→ H(ys) = (1 + s)nH(x) is strictly
monotonic on ]−1,∞ [ (strictly increasing resp. decreasing if π ∈ Π+ resp. π ∈
Π−). Its range is ] 0,∞ [ or ]−∞, 0 [ and we can conclude that for |α| < |H(x)|
there is a unique sα such that H(ysα) = (1 + sα)nH(x) = H(x) + α. We will
denote this ysα by W (x, π, α): this is our canonical choice.

Next we consider an x such that H(x) = 0 and a pair (π, π̃) ∈ Z+
x × Z−x .

(Note that such pairs always will exist.) Let ∆ be the nonvoid set of indices i
where πi 6= π̃i. It is obvious that the cardinality l of ∆ is an odd number and
that xi = 0 for i ∈ ∆.

Let ε > 0 be so small that ε ≤ |xi| for all i such that xi 6= 0. Then define,
for |s| ≤ ε, a vector ys as follows. For the i such that xi 6= 0 we put (ys)i = xi,
for the i ∈ ∆ the value of (ys)i is s, and for the remaining i (i.e., the i where
xi = 0 and πi = π̃i, if there are any) we define (ys)i := επi(= επ̃i). Then
H(ys) = c · sl, where c is a constant with |c| ≥ εn−l. Since l is odd, the function
s 7→ H(ys), |s| ≤ ε, is strictly monotonic, and its range contains at least the
interval [−εn, εn ]. Thus, for |α| ≤ εn, there is a uniquely determined s such that
H(ys) = α. This ys will be denoted by Wε(x, π, π̃, α). (Note that this vector will
only depend on ε if there are i /∈ ∆ with xi = 0.)

It is obvious that Wε(x, π, π̃, α) is ε-close to x for the α under consideration.
This will be – depending on π, π̃ – our canonical choice for a y such that H(y) =
H(x) + α in the case H(x) = 0.

Types, admissible pairs, and pep

Let [ a, b ] a nontrivial interval and φ : [ a, b ] → R a continuous function1. If
φ is identically zero we will say that φ is of type T (0).

If this is not the case we distinguish several cases. If φ(a) 6= 0 we say that φ
is of left type u. Suppose that φ(a) = 0, but φ vanishes on no neighbourhood of
a. There are three possibilities for the behaviour of φ:

1. There is a δ0 > 0 such that φ ≥ 0 on [ a, a+ δ0 ], and for every δ > 0 there
exists a t ∈ [ a, a+ δ ] with φ(t) > 0.

2. There is a δ0 > 0 such that φ ≤ 0 on [ a, a+ δ0 ], and for every δ > 0 there
exists a t ∈ [ a, a+ δ ] with φ(t) < 0.

3. For every δ > 0 there exist t, t′ ∈ [ a, a+ δ ] with φ(t) > 0 and φ(t′) < 0.

We will say that φ is of left type + resp. − resp. ± if “1.” resp. “2.” resp. “3.”
holds. The right types u (if φ(b) 6= 0) and +,−,± (when φ(b) = 0, but φ vanishes
on no neighbourhood of b) are defined similarly.

φ is said to be of type T (T1, T2) on [ a, b ] if φ is of left type T1 ∈ {u,+,−,±}
and of right type T2 ∈ {u,+,−,±}. It should be clear that for every φ precisely
one of the following 50 situation occurs:

1We will need the following classification only in the case when φ is the restriction of H ◦γ
to certain subintervals.
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• φ is of type T (0) on [ a, b ].

• φ is of some type T (T1, T2) on [ a, b ].

• There is a′ ∈ ] a, b [ such that φ is of type T (0) on [ a, a′ ] and of some
type T (T1, T2) on [ a′, b ]. (Note that in this case T1 must be in the subset
{+,−,±}. Similar restrictions apply to T2 in the next and to both T1 and
T2 in the last case.)

• There is b′ ∈ ] a, b [ such that φ is of type T (0) on [ b′, b ] and of some type
T (T1, T2) on [ a, b′ ].

• There are a′, b′ ∈ ] a, b [ with a′ < b′ such that φ is of type T (0) on [ a, a′ ]
and on [ b′, b ] and of some type T (T1, T2) on [ a′, b′ ].

In our case properties of the function φ = H◦γ will be crucial, and depending
on the type of this function we would like to be able to choose the starting and
final position of the “walk of the dog”, i.e., the vectors γ(a)+d(a) and γ(b)+d(b)
in a canonical way in certain Qπa ∪ Qπ̃a (at a) and in certain Qπb ∪ Qπ̃b (at
b), where (πa, π̃a) ∈ Z+

γ(a) × Z−γ(a) and (πb, π̃b) ∈ Z+
γ(b) × Z−γ(b), respectively. For

example, if T1 = +, then for a distinguished π ∈ Z+
γ(a) and all π̃ ∈ Z−γ(a) we

want to choose the starting position of the dog in a canonical way in Qπ ∪Qπ̃.
To make this precise we need some further definitions. Let γ : [ 0, 1 ] → Rn be

admissible and [ a, b ] ⊂ [ 0, 1 ]. We suppose that H ◦ γ is of some type T (T1, T2)
on [ a, b ]. We define sets of left (resp. right) admissible pairs (Al

T1
resp. Ar

T2
) as

follows.

• If T1 = u, then Al
u := {(π, π)}, where π is the unique vector such that

γ(a) lies in the interior of Qπ.

• Let T1 = +. By definition there is a δ0 > 0 such thatH◦γ is nonnegative on
[ a, a+ δ0 ], and since H ◦ γ is strictly positive at some point in [ a, a+ δ0 ]
there is a unique π0 such that

⋂
a≤t≤a+δ0

Z+
γ(t) (cf. lemma 2.1(i)). We put

Al
+ := {(π0, π̃) | π̃ ∈ Z−γ(a)}.

• Similarly, if T1 = −, we know that
⋂

a≤t≤a+δ0
Z−γ(t) = {π̃0} for a suffi-

ciently small δ0 and a unique π̃0. In this case we put Al
− := {(π, π̃0) | π ∈

Z+
γ(a)}.

• It remains to consider the case T1 = ±. Then we defineAl
± := Z+

γ(a)×Z
−
γ(a).

• The right admissible pairs Ar
T2

, are defined in a similar way.

We now turn to “pep” the possibility to choose prescribed end points, i.e. the
positions at t = a and at t = b, for the walk of the dog. As before, γ is supposed
to be admissible.
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Definition 2.2. Suppose that H ◦ γ|[ a,b ] is of type T (T1, T2) and ε0 > 0. We
will say that γ of type T ε0

pep(T1, T2) on [ a, b ] if the following holds.
There is a positive ε∗ ≤ ε0 such that for every ε ∈ ] 0, ε∗ ] one can find a τ0 > 0

such that for arbitrary (πa, π̃a) ∈ Al
T1

and (πb, π̃b)×Ar
T2

and for every continuous
τ : [ a, b ] → R with ||τ || ≤ τ0 there exists a continuous d : [ a, b ] → Rn such that

• H
(
γ(t) + d(t)

)
= H

(
γ(t)

)
+ τ(t) and ||d(t)|| ≤ ε0 for t ∈ [ a, b ].

• At a and at b the value of γ + d is defined in a canonical way:

(γ + d)(a) = Wε(γ(a), πa, π̃a, τ(a)) resp. W
(
(γ + d)(a), πa, τ(a)

)
if T1 ∈ {+,−,±} resp. T1 = u, and

(γ + d)(b) = Wε(γ(b), πb, π̃b, τ(b)) resp. W
(
(γ + d)(b), πb, τ(b)

)
if T2 ∈ {+,−,±} resp. T2 = u.

If this is true for every ε0 > 0 we will say that γ is of type Tpep(T1, T2)

When does T (∗, ∗) for H ◦ γ|[ a,b ] imply Tpep(∗, ∗) for γ|[ a,b ] ?

The answer to this question will be crucial for our investigations. We will
prove three results that hold in general.

Later we will consider situations where 0 ≤ a < b < c < d ≤ 1 are given,
H ◦γ is of some type Tpep on [ a, b ] and on [ c, d ] and vanishes on [ b, c ]. How can
one fill the gap between b and c for the walk of the dog if there are walks on [ a, b ]
and [ c, d ] that are provided by the pep-condition? The following proposition will
enable us to do this.

Proposition 2.3. Suppose that γ = (f1, . . . , fn) is admissible and that H ◦γ is
of type T (0) on [ a, b ]. We assume that π = (πi) ∈

⋂
a≤t≤b Z

+
γ(t) and π̃ = (π̃i) ∈⋂

a≤t≤b Z
−
γ(t) are given2. Then, for every ε > 0, one can find a τ0 > 0 such that

for every continuous τ : [ a, b ] → R with ||τ || ≤ τ0 there exists a continuous
d : [ a, b ] → Rn such that

(γ + d)(a) = Wε(γ(a), π, π̃, τ(a)), (γ + d)(b) = Wε(γ(b), π, π̃, τ(b)),

and ||d(t)|| ≤ ε and H
(
γ(t) + d(t)

)
= τ(t) for all t ∈ [ a, b ].

Proof. Let ε > 0 be given. Let us assume that ε is smaller than all |fi(a)| where
fi(a) 6= 0 and also smaller than all |fi(b)| where fi(b) 6= 0. (If necessary, replace
ε by a smaller positive number.) Denote by ∆ the collection of i where πi 6= π̃i.
For i ∈ ∆ the function fi vanishes on [ a, b ] (cf. the proof of lemma 2.1(iii)), and
the number l of elements in ∆ is odd.

2Note that by lemma 2.1(iii) such pairs exist.
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The following construction makes use of the Wε above. As a first step we
pass to slight perturbations of the fi for i /∈ ∆.

Let an i /∈ ∆ be given. Then πi = π̃i, and the function fiπi is nonnegative on
[ a, b ]. We define gi : [ a, b ] → R by gi(t) := fi(t), if |fi(t)| ≥ ε and by gi(t) := επi

otherwise. gi is continuous and it is ε-close to fi. We have gi(a) = fi(a) if
fi(a) 6= 0 and fi(a) = επi otherwise, and, similarly, gi(b) = fi(b) if fi(b) 6= 0
and fi(b) = επi otherwise. For the i ∈ ∆ we put gi := fi = 0.

Now let τ : [ a, b ] → R be continuous such that ||τ || ≤ τ0 := εn. We will
define a walk that stays ε-close to γ on [ a, b ], for which the H-value at time t
is just τ(t), and for which the endpoints are the prescribed canonical points as
claimed.
For t ∈ [ a, b ] we put

Pε(t, π, π̃, τ) := Wε

(
G(t), π, π̃, τ(t))

)
,

where G(t) := (g1(t), . . . , gn(t)).
The map Pε(·, π, π̃, τ) has the following properties:

• It is continuous since it can explicitly described by using roots and scalar
products.

• Pε(a, π, π̃, τ) = Wε(γ(a), π, π̃, τ(a)).

This makes use of the following fact that is an immediate consequence

of the definition (we use the notation in the paragraph where “canonical

positions” have been introduced): Suppose that H(x) = 0. If y ∈ Rn is

such that xi = yi for i ∈ ∆ and for the i with xi 6= 0 and if yi = επi for

the remaining i (if there are any), then Wε(x, π, π̃, α) = Wε(y, π, π̃, α) for

α ∈ [−εn, εn ].

• Pε(b, π, π̃, τ) = Wε(γ(b), π, π̃, τ(b)).

• ||γ(t)−Pε(t, π, π̃, τ)|| ≤ ε for t ∈ [ a, b ]; this can be easily checked coordinate-
wise.

• H
(
Pε(t, π, π̃, τ)

)
= τ(t) for all t.

And this means that d := Pε(·, π, π̃, τ)− γ behaves as desired. �

It is possible to glue intervals together where γ is of some type Tpep. This
is true in general and will be important later (cf. the proof of lemma 2.6 and of
the main theorem in section 3). Here we will consider only a special case:

Proposition 2.4. Let γ be admissible and 0 ≤ a < b < c ≤ 1. We assume that
γ is of type Tpep(T1, u) on [ a, b ] and of type Tpep(u, T2) on [ b, c ].
Then γ is of type Tpep(T1, T2) on [ a, c ].
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Proof. If ε0 is a given positive number choose ε∗ as the smaller of the ε∗ that
are appropriate for [ a, b ] and [ b, c ]. Let ε ∈ ] 0, ε∗ ] be given and τ0 the smaller
of the τ0’s for [ a, b ] and [ b, c ] for this ε.

Now let τ : [ a, c ] → R with ||τ || ≤ τ0 be prescribed. We find the desired
walks d1, d2 on [ a, b ] and on [ b, c ] by assumption: the γ+di are ε0-close to γ, the
H-value is H

(
γ
)
+τ , and γ+di have both at b the value W (γ(b), π, τ(b)), where

π is the unique vector with γ(b) ∈ Qπ. Thus the walks can be glued together to
produce a continuous walk with the desired properties that is defined on [ a, c ].

�

The next proposition concerns situations when the walk stays very close to
0 ∈ Rn on [ a, b ]. Then the “dog” can move rather freely: it has not to be in
the same Qπ as γ provided its position is also close to zero. The proposition is
prepared with the following lemma.

Lemma 2.5. Fix ε0 > 0 and [ a, b ] ⊂ [ 0, 1 ]. There are given x, y with ||x||, ||y|| ≤
ε0 and a continuous function σ : [ a, b ] → R with σ(a) = H(x) and σ(b) = H(y)
and ||σ|| ≤ εn

0 . We claim that in each of the following cases there is a con-
tinuous D (= Da,b;x,y;σ) : [ a, b ] → Rn such that D(a) = x, D(b) = y, and
H

(
D(t)

)
= σ(t) and ||D(t)|| ≤ 2ε0 for every t.

(i) There is π ∈ Π such that x, y are in the interior of Qπ.
(ii) x resp. y lies in the interior of Qπ resp. Qπ̃, where π ∈ Π+, π̃ ∈ Π−.
(iii) There is a y0 with H(y0) = 0 such that x lies in the interior of some Qπ

with π ∈ Z+
y0

, π̃ ∈ Z−y0
, and y = Wε(y0, π, π̃, α), where |α| ≤ εn

0 and 0 < ε ≤ ε0.

Proof. The translation is the following: one can move from x to y with arbitrarily
prescribed H-value in these cases provided that this value is small enough.
(i) Without loss of generality we may assume that π = (1, . . . , 1) which implies
that H(x) > 0. The walk will be defined by putting together three subwalks D1,
D2 and D3: one from x to F := {(ε0, . . . , ε0, α) | α ∈ R, |α| ≤ ε0}, one on F
and a third one from F to y.

Choose a′ ∈ ] a, b [ such that σ(t) ≤ 2H(x) on [ a, a′ ] (note that σ is conti-
nuous and σ(a) = H(x) > 0). D1(t) will be defined on this interval by(

X1(t), . . . , Xn−1(t), st

)
,

where
Xi(t) :=

(
(a′ − t)xi + (t− a)ε0

)
/(a′ − a),

and st is chosen such that H
(
D1(t)

)
= σ(t):

st =
σ(t)

X1(t) · · ·Xn−1(t)
.

It is then clear that D1 is continuous and that D1(a) = x and

D1(a′) = (ε0, . . . , ε0, σ(a′)/εn−1
0 )
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hold. Also note that

|st| =
∣∣σ(t)/

(
X1(t) · · ·Xn−1(t)

)∣∣
≤ |σ(t)/x1 · · ·xn−1|
≤ |2H(x)/x1 · · ·xn−1|
= 2|xn|.

This proves that ||D1(t)|| ≤ 2ε0 for all t.
Similarly we define a walk D3 from F to y. It is defined on some small

interval [ b′, b ] where a′ < b′ < b, the distance of the walk to zero is at most 2ε0,
and the H-value at any time t is σ(t).
It remains to fill the gap between a′ and b′. We put

D2(t) :=
(
ε0, . . . , ε0, σ(t)/εn−1

0

)
.

This D2 connects the first two walks in a continuous way3, we have H ◦D2 = σ,
and the norm at every point of [ a′, b′ ] is a most 2ε0. (In fact, it is even bounded
by ε0.)
(ii) Let ∆ be the set of i where πi 6= π̃i. This set is nonempty and its cardinality
is an odd number. Without loss of generality we assume that π = (1, . . . , 1) and
that ∆ = {1, . . . , l} with 1 ≤ l ≤ n.

This time we first move from x to G1, the set where the last n− l (if there
are any) components equal ε0, then to the subset G2 ⊂ G1 of those vectors
where the first l components coincide. The walk will stay on G2 for some time,
and then it moves from G2 to G1 to y.
We start by choosing a′ ∈ ] a, b [ such that

(1 + η)−1H(x) ≤ σ(t) ≤ (1 + η)H(x)

on [ a, a′ ]; here η is a positive number that will be fixed later. Select any a′′ ∈
] a, a′ [.

Between t = a and t = a′′ we will move from x to a point in G1. This will
be done as follows. With Xi(t) :=

(
(a′′− t)xi + (t− a)ε0

)
/(a′′− a), we select st

such that
D(t) :=

(
stx1, . . . , stxl, Xl+1(t), . . . , Xn(t)

)
satisfies H ◦D(t) = σ(t). D is continuous, it connects x with a point in G1, and
the H-value is as desired. It stays also close to zero:

|st| =
∣∣ l

√
σ(t)/

(
x1 · · ·xlXl+1(t) · · ·Xn(t)

)∣∣
≤ | l

√
σ(t)/x1 · · ·xn|

≤ l
√

1 + η,

3Note that D2(a′) = D1(a′) and D2(b′) = D3(b′).
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and this implies that all components of D(t) are bounded by ε0 l
√

1 + η.
Now we will move from x̂ = (x̂i) := D(a′′) to a point in G2. We choose

s0 such that sl
0ε

n−l = σ(a′), and this time we consider functions Xi that are
defined by Xi(t) :=

(
(a′ − t)x̂i + (t − a′′)s0

)
/(a′ − a′′). D will be defined on

[ a′′, a′ ] by
D(t) :=

(
stX1(t), . . . , stXl(t), ε0, . . . , ε0

)
,

where st is the unique number such that H ◦ D(t) = σ(t). (Such an st exists
since l is odd.)
This walk satisfies H ◦ D = σ, it only remains to prove that it stays close to
zero.

For the proof we observe that x̂1 · · · x̂lε
n−l = σ(a′′) ≥ σ(a)/(1 + η). Also

sl
0ε

n−l = σ(a′) ≥ σ(a)/(1+η) holds so that |X1(t) · · ·Xl(t)εn−l
0 | ≥ |σ(a)|/(1+η).

(This follows from the inequality (1−t)c+td ≤ c1−tdt for c, d > 0.) Consequently

|st| =
∣∣ l

√
σ(t)/

(
X1(t) · · ·Xl(t)εn−l

0

)∣∣
≤

∣∣ l
√

(1 + η)σ(t)/σ(a)
∣∣

≤ l
√

(1 + η)2,

and we conclude that all components of all D(t) are bounded by l
√

(1 + η)3ε0.
Thus it will suffice to put η := 3

√
2− 1 to guarantee that ||D(t)|| ≤ 2ε0.

Similarly, the last part of the walk will move for t in a suitable interval [ b′, b ]
from some (s, . . . , s, ε0, . . . , ε0) ∈ G2 with H(s, . . . , s, ε0, . . . , ε0) = σ(b′) to y,
and it will meet a suitable ŷ ∈ G1 at some time t = b′′ between b′ and b.
The gap between a′ and b′ will be filled by the walk

D(t) := ( l

√
σ(t)/εn−l

0 , . . . ,
l

√
σ(t)/εn−l

0 , ε0, . . . , ε0).

Note again that l is odd so that the definition applies also for the negative values
of σ(t).
The norm of D(t) is as desired also on [ a′, b′ ] since |σ(t)/εn−l

0 | ≤ εl
0.

(iii) As before we assume that, without loss of generality, π = (1, . . . , 1) and π̃ =
(−1, . . . ,−1, 1, . . . , 1), where the number l ∈ {1, . . . , n} of the entries −1 is odd.
By the definition of the canonical positions y has the form (sy, . . . , sy, yl+1, . . . , yn)
where the yl+1, . . . , yn are positive and bounded from below by ε. We also know
that α = H(y) = σ(b) = sl

yyl+1 · · · yn.
To find a continuous walk D with H ◦D = σ we proceed as in the preceding

proofs. First walk from x to some point in G2, then the walk stays there until t =
b′, where b′ < b. b′ is chosen close to b in the following way. We know that |sy| =∣∣ l

√
σ(b)/

(
yl+1 · · · yn

)∣∣ ≤ ε0, and we choose b′ such that
∣∣ l

√
σ(t)/

(
yl+1 · · · yn

)∣∣ ≤
2ε0 for t ∈ [ b′, b ].

At t = b′ the walk stays at a point ŷ := (s0, . . . , s0, ε0, . . . , ε0) with sl
0ε

n−l
0 =

σ(b′) and |s0| ≤ ε0. It remains to move to y.
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We put Yi(t) :=
(
(b − t)ε0 + (t − b′)yi

)
/(b − b′) for i = l + 1, . . . , n: the Yi

are continuous and they lie between yi and ε0. We define

D(t) := (st, . . . , st, Yl+1(t), . . . , Yn(t)),

where st is such that H ◦D(t) = σ(t).
Then D is continuous, it connects ŷ with y, and the norm is small:

|st| =
∣∣ l

√
σ(t)/

(
Yl+1(t) · · ·Yn(t)

)∣∣
≤

∣∣ l

√
σ(t)/

(
yl+1(t) · · · yn(t)

)∣∣
≤ 2ε0.

�

With these preparations it is now possible to show that the pep property
can be guaranteed for walks that stay close to the origin.

Proposition 2.6. Let ε0 > 0 be given and suppose that ||γ(t)|| < ε0 for t ∈
[ a, b ] and that H ◦γ has type T (T1, T2) on this subinterval. As before we assume
that γ is admissible.
We claim that γ is of type T 3ε0

pep (T1, T2) on [ a, b ].

Proof. Suppose that our assertion has been shown for the following cases:

1. T (u, u), and H ◦ γ ≥ 0 on [ a, b ].

2. T (u, u), and H ◦ γ(a) > 0 > H ◦ γ(b).

3. T (u,+), H ◦ γ(a) > 0, and H ◦ γ ≥ 0 on [ a, b ].

4. T (u,±), and H ◦ γ(a) > 0.

We claim that then we are done. In fact, if one considers γ̃ = (−f1, f2, . . . , fn),
then the assertions 1., 2., 3, 4, applied to γ̃ yield four new assertions for γ. For
example, “4.” for γ̃ covers the case “T (u,±), and H ◦γ(a) < 0 ” for γ. Similarly
a proof for T (u,+) implies one for T (+, u): simply pass from γ to t 7→ γ(1−t).
One only has to note that with γ also γ̃ and t 7→ γ(1−t) are admissible.

However, there remain some other situations to be treated. Consider for
example the case T (u, u) where H ◦ γ(a) and H ◦ γ(b) are strictly positive,
but H ◦ γ is negative at some point a′ of [ a, b ]. We consider [ a, a′ ] and [ a′, b ]
separately. There H ◦ γ is of type T (u, u) for which the pep property is already
known, and it remains to glue together the walks on these subintervals with
the help of proposition 2.4. Similarly the cases T (+,+), T (+,−), . . . can be
reduced to the above assertions 1., 2. , 3., 4. by choosing a suitable a′ ∈ [ a, b ]
and discussing the intervals [ a, a′ ] and [ a′, b ] separately: the smaller of the ε∗

associated with these subintervals will work for [ a, b ] in definition 2.2.
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ad 1.: We have to find a positive ε∗ ≤ 3ε0 with the properties described in
definition 2.2. We claim that it suffices to choose ε∗ such that ||γ(t)||+ ε∗ ≤ ε0
for all t ∈ [ a, b ].

To show that this choice is appropriate let a positive ε with ε ≤ ε∗ be given.
We put τ0 := εn

0 − (ε0 − ε)n. For a continuous τ : [ a, b ] → R with ||τ || ≤ τ0 we
have to find a continuous walk d such that ||d|| ≤ 3ε0, H ◦ (γ + d) = H ◦ γ + τ ,
and γ+ d connects W

(
γ(a), π, τ(a)

)
with W

(
γ(b), π, τ(b)

)
; here π is the unique

vector such that γ(a), γ(b) is in the interior of Qπ. (It is a consequence of lemma
2.1(i) that it is the same π for γ(a) and for γ(b).)
We define σ := H◦γ+τ on [ a, b ], x := W

(
γ(a), π, τ(a)

)
and y := W

(
γ(b), π, τ(b)

)
.

Since
|σ(t)| ≤ |H

(
γ(t)

)
|+ |τ(t)| ≤ (ε0 − ε)n + τ0 ≤ εn

0

the assumptions of lemma 2.5(i) are satisfied. We find D = Da,b,x,y;σ as in this
lemma, and then it is clear that d := D − γ has the desired properties.
ad 2.: The proof is similar, this time lemma 2.5(ii) comes into play.
ad 3.: Here lemma 2.5(iii) will be used. Note first that Z+

γ(a) is a singleton {π}
so that Al

T1
= {(π, π)}. Since we assume that H ◦γ ≥ 0 we have Ar

T2
= {(π, π̃) |

π̃ ∈ Z−γ(b)}.
We define ε∗ as in the proof of “1.”, and additionally we assume that ε∗ is

so small that the absolute value of all components of γ(b) that are non-zero are
bounded from below by ε∗. The claim is that this choice of ε∗ is appropriate.

Let ε ∈ ] 0, ε∗ ] be given, we define τ0 := εn; note that then also εn
0 − (ε0 −

ε)n ≥ τ0. Suppose that τ : [ a, b ] → R is continuous with ||τ || ≤ τ0. We put
σ := H ◦ γ + τ (defined on [ a, b ]), x := W

(
γ(a), π, τ(a)

)
, y0 := γ(b) and

y := Wε(y0, π, π̃, τ(b)). We note that this is possible since |τ(b)| ≤ εn. Lemma
2.5(iii) provides a path Da,b;x,y;σ from x to y with ||D|| ≤ 2ε0, and it is easy to
check that d := D − γ satisfies ||d|| ≤ 3ε0, H ◦

(
γ + d

)
= H ◦ γ + τ , and at a

and b the walk γ + d touches the canonical positions.
ad 4: Here a little trick will be necessary. We define ε and τ0 as in the proof
of ”1.“, and we suppose, e.g., that H ◦ γ(a) > 0. Let τ , π1, π2 and π̃ be given,
where

• τ is continuous and ||τ || ≤ τ0.

• π1 is such that γ(a) ∈ Qπ1 .

• π2 ∈ Z+
γ(b), π̃ ∈ Z

−
γ(b).

And we have to produce a walk γ + d that starts at x := W
(
γ(a), π1, τ(a)

)
,

that ends at y := Wε

(
γ(b), π2, π̃, τ(b)

)
, and that satisfies H ◦(γ+d) = H ◦γ+τ .

The problem is that π1 might be different from π2. But H ◦ γ is of type “±”
at b so that we may choose a′, b′ with a < a′ < b′ < b such that H ◦ γ(a′) < 0 <
H◦γ(b′). We decrease τ0 (if necessary) such thatH◦γ(a′)+τ0 < 0 < H◦γ(b′)−τ0.
This guarantees that the function σ := H ◦ γ + τ is strictly negative at a′ and
strictly positive at b′.
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Next we choose an x′ ∈ Qπ̃ such that H(x′) = σ(a′) and ||x′|| ≤ ε0. This
is possible since |σ(a′)| ≤ εn

0 . Also we select y′ ∈ Qπ2 with H(y′) = σ(b′) and
||y′|| ≤ ε0.

It remains to apply lemma 2.5 to find D : [ a, b ] → Rn such that ||D(t)|| ≤
2ε0 and H ◦D(t) = σ(t) for all t: First move from x to x′ according to the walk
described in lemma 2.5(ii), continue (again using the construction in 2.5(ii)) to
y′, and the final part of the walk is as described in 2.5(iii), where y0 = γ(b).
With d := γ −D we have found a function with the desired properties. �

3. Proof of the main result

After the preceding preparations we are now able to prove our main result,
theorem 1.2. The structure will be as follows:

• Proof of (i) ⇒ (ii); this will be rather simple.

• Definition of a more refined variant of “(ii) ⇒ (i)”.

• Proof by induction that the refined variant holds for all n.

• A summary.

Proof of (i)⇒(ii)

We start with an observation concerning the definition of Z+
x for x = (xi) ∈

Rn. Let ε > 0 be such that |xi| > ε for all xi with xi 6= 0. It then follows
immediately from the definition of Z+

x that x + y will lie in some Qπ with
π ∈ Z+

x whenever H(x+ y) > H(x) and ||y|| ≤ ε.
Now we prove by contradiction that (i) implies (ii). We assume that γ is not

admissible, and we will show that then (i) cannot be true. Suppose that, e.g.,
γ is not positive admissible. Then there are t1 < · · · < tn such that H ◦ γ ≥ 0
on [ t1, tn ], and

⋂
i Z

+
γ(ti)

= ∅. Choose ε > 0 such that it satisfies the condition
of the preceding paragraph for all x = γ(ti), i = 1, . . . , n. If (i) would be true
we could find a continuous d : [ 0, 1 ] → Rn such that ||d(t)|| ≤ ε for all t and
H ◦ (γ + d) > H ◦ γ. In particular H ◦ (γ + d) would be strictly positive on
[ t1, tn ].

Now we apply the preceding observation. Each (γ + d)(ti) will lie in some
Qπ with π ∈ Z+

γ(ti)
. But there is no π that lies in all Z+

γ(ti)
so that there must

exist i, j such that (γ + d)(ti) resp. (γ + d)(tj) lie in Qπ resp. Qπ̃ with π 6= π̃.
But every continuous path from a point of Qπ to one in Qπ̃ has to pass through
{H = 0} so that we find a t between ti and tj with H

(
(γ+ d)(t)

)
= 0. This is a

contradiction, since H ◦ (γ + d) was assumed to be strictly positive on [ t1, tn ].

Definition of a refined variant of “(ii) ⇒ (i)”
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Definition 3.1. By (A)n we mean the following assertion: Whenever functions
f1, . . . , fn ∈ C [ 0, 1 ] are given such that the associated walk γ is admissible,
then the following holds: If H ◦ γ is of type T (T1, T2) on [ 0, 1 ], then γ is of type
Tpep(T1, T2).

Admittedly this looks much more clumsy than the statement “(ii) ⇒ (i)”.
In fact it is a sharper assertion:

Proposition 3.2. Suppose that (A)n holds. Then it is true that “(ii) ⇒ (i)” is
valid in theorem 1.2.

Proof. First we note that (A)n implies that one may replace [ 0, 1 ] in the definiti-
on of (A)n by any subinterval [ a, b ]. (Simply consider the walk t 7→ γ

(
a+t(b−a)

)
instead of γ; this map is also admissible.)

Now let an admissible γ and an ε0 > 0 be given. We have to provide –
for “sufficiently small” functions τ – a continuous d with ||d|| ≤ ε0 such that
H ◦ (γ + d) = H ◦ γ + τ .

Suppose first that H ◦ γ vanishes identically. That in this case H ◦ γ is an
interior point of the product of the balls Bε0(fi) (i.e., the assertion (i) of the
theorem holds) is an immediate consequence of proposition 2.3.

So let us assume that there is an a ∈ ] 0, 1 [ with H ◦ γ(a) 6= 0. If H ◦ γ is of
some type T (T1, T2) on [ 0, 1 ] it is of type Tpep(T1, T2) by assumption, and (i) of
the theorem follows again immediately (cf. definition 2.2 where the pep-property
was introduced).

It remains to deal with situations where there are possibly a′, b with 0 <
a′ < a < b < 1 such that H ◦ γ vanishes identically on [ 0, a′ ] and/or on [ b, 1 ].
We may suppose that [ 0, a′ ] is a maximal interval where H ◦ γ vanishes so that
H ◦ γ is of some type T (T1, u) on [ a′, a ] with T1 ∈ {+,−,±}. Now proposition
2.3 comes again into play, the argument will depend on T1.

Consider first the case T1 = +. Then H ◦ γ is nonnegative on a suita-
ble interval [ 0, a′ + δ0 ], and there are t where this function is strictly posi-
tive. Consequently there is (by lemma 2.1(i)) a unique π ∈ Π+ such that⋂

t∈[ 0,a′+δ0 ] Z
+
γ(t) = {π}. Also (by lemma 2.1(ii)) there is a π̃ ∈

⋂
t∈[ 0,a′ ] Z

−
γ(t).

Choose ε∗ for ε0 according to the pep-condition on [ a′, a ], put ε := ε∗ and
select then a τ0 for this ε∗. We may suppose that τ0 is so small that it satisfies the
conditions of proposition 2.3. Now let a continuous τ : [ 0, a ] → R with ||τ || ≤ τ0
be given. Proposition 2.3 and the pep-condition provide continuous walks of the
dog d1 and d2 on [ 0, a′ ] and on [ a′, a ] respectively such that the norm is bounded
by ε0, H ◦ (γ + d1) = H ◦ γ + τ on [ 0, a′ ] and H ◦ (γ + d2) = H ◦ γ + τ on
[ a′, a ]. At a′ the functions γ + d1 and γ + d2 coincide, both have the value
Wε

(
γ(a′), π, π̃, τ(a′)

)
so that d1 and d2 can be glued together in a continuous

way. This gives rise to a walk d on [ 0, a ] with the desired properties.
If T1 = − one argues similarly. Finally suppose that T1 = ±. Choose any

π ∈
⋂

t∈[ 0,a′ ] Z
+
γ(t), π̃ ∈

⋂
t∈[ 0,a′ ] Z

−
γ(t) (which is possible by lemma 2.1(iii)) and

apply as before proposition 2.3 and the pep-condition with these π, π̃.
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In this way we have produced an admissible walk on [ 0, a ]. The interval [ a, 1 ]
can be treated in the same way, and it only remains to glue the walks together
at a. Since the positions at a for both walks γ + d (on [ 0, a ] and on [ a, 1 ])
are the canonical vector W

(
γ(a), π, τ(a)

)
(where Z+

γ(a) = {π}) this construction
gives rise to a continuous walk on all of [ 0, 1 ] with the desired properties. �

Proof by induction that the refined variant holds for all n

It remains to show that (A)n holds for every n. The case n = 1 is rather
simple, one can always work with d(t) = τ(t). Let us suppose that (A)n has
been verified for some n, and we will prove that (A)n+1 also holds.

To this end let f0, . . . , fn ∈ C [ 0, 1 ] be given such that the associated walk
γ : t 7→ (f0(t), . . . , fn(t)) is admissible and H ◦ γ is of some type T (T1, T2) on
[ 0, 1 ]. We have to show that γ is of type Tpep(T1, T2).

The idea of the proof will be to partition [ 0, 1 ] into finitely many subintervals
such that on each of these subintervals one of the following conditions is satisfied:

• At least one component of γ is bounded away from zero, or

• all components of γ are close to zero.

In the first case Tpep will follow from (A)n, and in the second with the help of
the constructions at the end of the last section. It then will only be necessary
to glue the parts together as in the proof of lemma 2.4.

This will now be made precise. We suppose that H ◦ γ is of some type
T (T ′1 , T ′2 ) on [ 0, 1 ] and that ε0 > 0. We will show that γ is of type T 3ε0

pep(T ′1 , T ′2 ).

Lemma 3.3. There is a partition 0 = a0 < a1 < · · · < ak = 1 such that the
intervals Ij := [ aj , aj+1 ] have the following property:

1. On each Ij H ◦ γ is either of type T (0) or of some type T (T1, T2).

2. If H ◦γ is of some type T (T1, T2) on Ij, then (at least) one of the following
statements is true: ||γ(t)|| < ε0 for all t ∈ Ij, or there is an i ∈ {0, . . . , n}
such that |fi(t)| ≥ ε0/2 (all t ∈ Ij).

3. No intervals of type T (0) and no intervals where H ◦ γ has some type
T (T1, T2) are adjacent.

Proof. This is simple. In a first step one finds the Ij such that “2.” holds.
Split each Ij further (if necessary) into intervals for which H ◦ γ has some type
T (T1, T2) and others with type T (0). Finally pass to unions of adjacent intervals
with type T (0) and to unions of adjacent intervals where H ◦ γ has some type
T (T1, T2). �

Lemma 3.4. Suppose that an interval of the preceding partition has some type
T (T1, T2). Then it has type T 3ε0

pep (T1, T2).



Products of n open balls 17

Proof. For the Ij where ||γ(t)|| < ε0 this is just the assertion of proposition
2.6. Suppose that one component of γ is bounded away from zero. Without
loss of generality we may assume that f0 ≥ ε0/2 on Ij . In order to apply the
induction hypothesis we consider the walk γ̃ : t 7→

(
f1(t), . . . , fn(t)

)
for t ∈ Ij .

It is straightforward to show that γ̃ is admissible. The elementary argument
starts with the observation that a (π0, . . . , πn) belongs to Z+

γ(t) iff π0 = 1 and
(π1, . . . , πn) ∈ Z+

γ̃(t) (for t ∈ Ij). It is also easy to verify that H ◦ γ̃ has type
T (T1, T2) on Ij if H ◦ γ has this type4. Only very elementary facts come into
play: If x0 ≥ ε/2 and x0 · · ·xn > 0 then x1 · · ·xn > 0 etc.

By assumption γ̃ has Tpep(T1, T2) on Ij . We choose ε∗ as in definition 2.2
for ε0 and we select any ε ∈ ] 0, ε∗ ] and the associated τ0. Put τ ′0 := ε0τ0/2 and
consider a continuous τ : Ij → R with ||τ || ≤ τ ′0. Then τ̃ := (τ/f0)|Ij

satisfies
||τ̃ || ≤ τ0, and therefore there is a continuous d̃ : Ij → Rn such that ||d̃|| ≤ ε0,
H ◦ (γ̃ + d̃) = H ◦ γ̃ + τ̃ , and at the end points of Ij the walk γ̃ + d̃ is at the
canonical positions5.

We claim that d(t) := (0, d̃1, . . . , d̃n) has (essentially) the desired properties.
In fact, it is continuous, the norm is bounded by ε0 and H ◦γ+ τ = H ◦ (γ+d).
It remains to check whether the walk starts at the canonical points. This is
true whenever the left and right type is in {+,−,±}, this follows from the
definition 2.2 of the canonical positions. But it is not true in the case T = u.

The problem is the following. Suppose, e.g., that the left type is u. Then the
walk that we have constructed starts at some point

x :=
(
f0(aj), f1(aj) + s, . . . , f1(aj) + s

)
with a suitable small number s, but it should start at the (n+ 1)-dimensional

W
(
γ(aj), π, τ(aj)

)
= y :=

(
f0(aj) + s′, . . . , fn(aj) + s′

)
where both vectors have the same H-value. This can be overcome by using the
same techniques as in the proof of lemma 2.5: Choose a′ > aj that is sufficiently
close to aj and apply the preceding argument to the interval [ a′, aj+1 ]: The
walk will now start at some x′ :=

(
f0(a′), f1(a′) + s, . . . , f1(a′) + s

)
. And the

interval [ a, a′ ] will be used for a walk from y to x′ that stays close to γ and
for which H ◦ (γ + d) = H ◦ γ + τ . This can be done without much effort since
we are in a situation where all functions are nonzero and – if a′−aj is small –
nearly constant. �

We now complete the induction proof . [ 0, 1 ] is partitioned into intervals
I0, . . . , Ik−1 as in lemma 3.3, and on intervals where H ◦ γ has some type we
know that γ has the corresponding T 3ε0

pep-type. We will show that this will suffice

4For the sake of simplicity we use the same symbol H for the functions (x0, . . . , xn) 7→
x0 · · ·xn and (x1, . . . , xn) 7→ x1 · · ·xn.

5More precisely: (γ̃ + d̃)(aj) equals W (γ̃(aj), π, τ̃(aj)) if H(γ̃(aj)) 6= 0 and
Wε

�
γ̃(aj), π, π̃, τ̃(aj)

�
otherwise; here (π, π̃) can be prescribed as any left-admissible pair.

Similar conditions are satisfied at aj+1.
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to prove that γ has type T 3ε0
pep(T ′1 , T ′2 ) on [ 0, 1 ]. The idea how to do this is not

new, we have used it in the proofs of proposition 2.4 and proposition 3.2. We will
construct the desired walk of the dog d with prescribed H ◦ (γ + d) = H ◦ γ + τ
by glueing together the walks on I0, . . . , Ik−1. To achieve this one has to check
whether the possible boundary conditions fit.

As a first example consider a situation where H ◦γ is of type T (T1,+) on Ij ,
of type T (0) on Ij+1 and of type T (+, T2) on Ij+2. The claim is that the pep-
condition on Ij and Ij+2 implies that γ has type T 3ε0

pep(T1, T2) on Ij∪Ij+1∪Ij+2.
We know that at aj+1, the right end point of Ij , one may prescribe an

endpoint in Qπ ∪ Qπ̃, where π is the unique element of
⋂

t∈[ aj+1−δ0,aj+1 ] Z
+
γ(t)

for some positive δ0 and π̃ ∈ Z−γ(aj+1)
is arbitrary. A similar fact is known for the

starting point in Ij+2, it lies in Qπ′ ∪Qπ̃′
, where

⋂
t∈[ aj+2,aj+2+δ0 ] Z

+
γ(t) = {π′}

and π̃′ ∈ Z−γ(aj+2)
is arbitrary.

With the help of proposition 2.3 the gap between t = aj+1 and t = aj+2

could be filled if we knew that π = π′. Fortunately this is true: One simply has to
apply lemma 2.1(i) to the interval [ aj − δ0, aj+2 + δ0 ].H◦γ is nonnegative there
and sometimes strictly positive so that just one element lies in the intersection
of the Z+

γ(t), t ∈ [ aj − δ0, aj+2 + δ0 ].
The rest is routine. Choose ε and τ0 so small that they are appropriate for

Ij , Ij+1 and Ij+2, any left admissible pair (πa, π̃a) at aj and any right admissible
pair (πb, π̃b) at aj+3. Then, if τ : [ aj , aj+3 ] → R is continuous with ||τ || ≤ τ0 we
can find walks dj , dj+1, dj+3 on Ij , Ij+1, Ij+2, respectively, with small norm such
that at aj+1 (resp. at aj+2) d1 and d2 (resp. d2 and d3) occupy the same position.
Therefore they can be glued together to give rise to a walk an [ aj , aj+3 ].

The preceding example shows that the essential part of the argument is to
guarantee that the admissible end point conditions fit. Here is a second ex-
ample where H ◦ γ is of type T (T1,+) on Ij , of type T (0) on Ij+1 and of
type T (±, T2) on Ij+2. This is even simpler, because then we can choose again
π ∈

⋂
t∈[ aj+1−δ0,aj+2 ] Z

+
γ(t) as in the first example and any π̃ ∈ Z−γ(aj+1)

. Then
(π, π̃) is a right-admissible pair for Ij and a left-admissible pair for Ij+2, and
the rest of the proof is similar.

As a third example we consider a situation where H ◦γ is of type T (T1,+) on
Ij , of type T (0) on Ij+1 and of type T (−, T2) on Ij+2. Note that there is a unique
π ∈

⋂
t∈[ aj+1−δ0,aj+2 ] and a unique π̃ ∈

⋂
t∈[ aj+1,aj+2+δ0 ] for a sufficiently small

positive δ0 (by lemma 1.1(i) and (ii)). (π, π̃) is a right-admissible pair for Ij and
a left-admissible pair for Ij+1 and we can continue as in the first example.

All other possibilities can be treated in a similar way, and after applying this
procedure several times we finally arrive at a walk of the dog that is defined for
all t ∈ [ 0, 1 ]. Thus the proof of theorem 1.2 is complete.

A summary

It has to be admitted that the proof is technically rather involved. The main
ingredients are:
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• Treat intervals where γ(t) is small separately.

• Use induction where some component of γ is bounded away from zero.

• Use a general result on intervals where H ◦ γ vanishes.

Needless to say that it is not easy to provide a concrete positive τ0 for given
ε0, since in any of the finitely many construction steps it might be necessary to
pass to a smaller τ0. Our use of canonical end points has made it possible to glue
together walks in a continuous way that are defined on adjacent subintervals,
and lemma 2.1 was important to guarantee that the conditions when coming
from the right resp. from the left are compatible.

4. The case of complex scalars

We will now consider the case of complex valued continuous functions on
[ 0, 1 ]. It will be shown in the next proposition that there the product of open
sets is always open. The proof is prepared by three lemmas.

Lemma 4.1. For every r > 0 there is a δ > 0 with the following property:
There exists a continuous function

φ : {a ∈ C | |a| ≤ r} × {d ∈ C | |d| ≤ δ} → C

such that z0 := φ(a, d) solves the equation z0 + az2
0 = d, and φ(0, d) = d for all

d with |d| ≤ δ.

Proof. Let δ > 0 be such that 4rδ < 1. Put φ(0, d) := d and φ(a, d) := “the root
of z + az2 = d that is closer to zero” for a 6= 0. This mapping φ is well-defined,
and it has the desired properties. �

Lemma 4.2. Suppose that 0 < ε < r are given. There is a δ > 0 such that
there exist continuous functions

ψ1, ψ2 : {(a, b, d) ∈ C3 | ε ≤ |a|2 + |b|2 ≤ r, |d| ≤ δ}

with the following property: the numbers z = ψ1(a, b, d), w = ψ2(a, b, d) solve
the equation

az + bw + zw = d,

and ψ1(a, b, 0) = ψ2(a, b, 0) = 0

Proof. ψ1 and ψ2 will be defined with the help of lemma 4.1. We will put

ψ1(a, b, d) :=
a · d

|a|2 + |b|2
+ a · z0, ψ2(a, b, d) :=

b · d
|a|2 + |b|2

+ b · z0

with a “small” z0. If d is sufficiently small the equation az+bw+zw = d (where
z = ψ1(a, b, d), w = ψ2(a, b, d)) leads precisely to an equation as in lemma 4.1
so that z0 as a continuous function of the parameters can be found. �
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Lemma 4.3. Let ε0 > 0 be given. We suppose that z0, w0, z1, w1 are complex
numbers with absolute value at most ε0 and that σ : [ a, b ] → C is a continuous
function such that

σ(a) = z0w0, σ(b) = z1w1

and |σ(t)| ≤ ε20 for all t. Then there are continuous functions z, w : [ a, b ] → C
such that

z0 = z(a), w0 = w(a), z1 = z(b), w1 = w(b),

and |z(t)|, |w(t)| ≤ ε0 and z(t)w(t) = σ(t) hold for all t.

Proof. Note that this lemma has no analogue in the case of real scalars. It is true
since the boundary of the complex ball with radius ε0 is connected. Consider as
a typical example the case [ a, b ] = [ 0, 1 ], z0 = w0 = ε0 = 1, z1, w1 = −1 and
σ(t) = 1. Solutions with real z(·), w(·) do not exist, but z(t) := eitπ, w(t) :=
e−itπ have the desired properties.

The general case can be treated by applying the same idea. Suppose, e.g.,
that σ(a), σ(b) 6= 0 and that |z0| ≥ |w0| and |z1| ≥ |w1|. Choose z(·) as a
continuous path from z0 to z1 such that z is nowhere zero, bounded by ε0 and
that |z(t)| ≥

√
|σ(t)| holds for all t. Put w(t) := σ(t)/z(t). The other possible

cases can be treated similarly. �

Proposition 4.4. Let O1, . . . , On be open subsets of the Banach space CC [ 0, 1 ]
of continuous complex-valued functions on [ 0, 1 ], provided with the supremum
norm. Then O1 · · ·On is also open.

Proof. It will suffice to prove the proposition for n = 2. The assertion will follow
easily from the following
Claim: Let f1, f2 : [ 0, 1 ] → C be continuous and ε > 0. Then one can find a
τ0 > 0 with the following property: whenever τ : [ 0, 1 ] → C is continuous with
||τ || ≤ τ0 there exist continuous d1, d2 : [ 0, 1 ] → C such that ||d1||, ||d2|| ≤ 5ε,
and (

f1(t) + d1(t)
)(
f2(t) + d2(t)

)
= f1(t)f2(t) + τ(t) (4.1)

for all t.
Proof of the claim: Let ε > 0 be given. We partition [ 0, 1 ] into intervals Ii =
[ ai, ai+1 ] (i = 0, . . . , k − 1) such that for each i one of the following conditions
is satisfied:

1. |f1(t)|2 + |f2(t)|2 ≥ ε for all t ∈ Ii; or

2. |f1(t)|2 + |f2(t)|2 ≤ 2ε for all t ∈ Ii.

We assume that no subintervals of type “1” and no subintervals of type “2” are
adjacent.

Let a continuous τ : [ 0, 1 ] → C with “sufficiently small” ||τ || be given (the
maximal size of τ will be made precise in the following proof). First we define
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d1, d2 on the Ii with type “1”. Choose r such that |f1(t)|2 + |f2(t)|2 ≤ r on
[ 0, 1 ]. Then we put

d1(t) := ψ2(f1(t), f2(t), τ(t)), d2(t) := ψ1(f1(t), f2(t), τ(t)),

where ψ1, ψ2 are as in lemma 4.2: this can be done if (with the notation of this
lemma) ||τ || ≤ δ. We then know that d1, d2 are continuous, that the norm of
these functions will be bounded by 5ε if ||τ || is sufficiently small and that

f1(t)d2(t) + f2(t)d1(t) + d1(t)d2(t) = τ(t);

this is precisely the equation 4.1.
It remains to extend the definition of d1, d2 to the Ii of type “2”. Let Ii be

such an interval. Then Ii−1 and Ii+1 are of type “1” (the obvious modifications
of the proof when i = 0 or i = k− 1 are left to the reader). The functions d1, d2

are already defined on Ii−1 and Ii+1, and we put

z0 := (f1 + d1)(ai), w0 := (f2 + d2)(ai),

z1 := (f1 + d1)(ai+1), w1 := (f2 + d2)(ai+1).

Now lemma 4.3 comes into play, where the function σ : Ii → C will be defined
by z 7→ f1(t)f2(t)+τ(t). With ε0 := 3ε the conditions of the lemma are satisfied.
Let z(·), w(·) be as in this lemma. We define

d1(t) := z(t)− f1(t), d2(t) := w(t)− f2(t).

Lemma 4.3 guarantees that the equation 4.1 holds, and

|d1(t)| ≤ |z(t)|+ |f1(t)| ≤ 5ε, |d2(t)| ≤ |w(t)|+ |f2(t)| ≤ 5ε.

The definitions of the di on the various Ii can be glued together to give rise to
continuous functions since at the endpoints ai the values coincide. �

5. Consequences of the main theorem, concluding remarks

We have characterized the fact that f1 · · · fn is an interior point of the set
Bε(f1) · · ·Bε(fn) for all ε > 0 by a geometric-topological condition. This implies
an easy-to-check criterion:

Proposition 5.1. Let f1, . . . , fn ∈ C [ 0, 1 ] be such that there are no common
zeros, i.e., the sets {fi = 0} are pairwise disjoint. Then f1 · · · fn is an interior
point of Bε(f1) · · ·Bε(fn) for all ε > 0.

Proof. We will show that γ := (f1, . . . , fn) is positive admissible. That γ is
negative admissible follows by a similar argument (or by an application of the
first part to (−f1, f2, . . . , fn)) so that the assertion is a consequence of our
theorem 1.2.
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Let [ a, b ] ⊂ [ 0, 1 ] be an interval such thatH◦γ|[ a,b ] ≥ 0. Then no fi changes
its sign on [ a, b ]: this follows easily from the fact that the {fi = 0} are pairwise
disjoint. Therefore we may choose πi ∈ {−1,+1} such that πifi|[ a,b ] ≥ 0, and
with π := (πi) we have found a π that lies in all Z+

γ(t). This proves that γ is
positive admissible. �

Corollary 5.2. Let f1, . . . , fn ∈ C [ 0, 1 ] be arbitrary and ε > 0.
Then Bε(f1) · · ·Bε(fn) contains interior points.

Proof. Choose polynomials g1, . . . , gn such that gi is (ε/4)-close to fi. We may
choose sufficiently small δi > 0 such that the functions ĝ(t) := gi(t− δi) have no
common zeros and ĝi is (ε/2)-close to fi for every i. It follows from the preceding
proposition that ĝ1 · · · ĝn is an interior point of Bε/2(ĝ1) · · ·Bε/2(ĝn), and this
set is contained in Bε(f1) · · ·Bε(fn). �

Here is a natural generalization of the problem that we have discussed in this
paper:

Let A be a Banach algebra. How can one characterize the n-tupels
(x1, . . . , xn) ∈ An such that x1 · · ·xn is an interior point ofBε(x1) · · ·Bε(xn)
for every ε > 0 ?

In view of the rather involved investigations that were necessary here in
the case A = CR [ 0, 1 ] it is unlikely that a characterization in the general
case is possible. Up to now only partial results are known, e.g. it is true for
arbitrary x1, . . . , xn in A = l∞ that x1 · · ·xn is always an interior point of
Bε(x1) · · ·Bε(xn). (A similar result holds, more generally, for arbitrary f1, . . . , fn

in CK whenever K is a zero-dimensional compact Hausdorff space; see [3].)
We have proved that for C [ 0, 1 ] the behaviour is different for real and

complex scalars. In the following example of an operator algebra both cases can
be treated simultaneously6:
Example: Let X be real or complex Banach space such that there exist an
isometry T : X → X together with a unit vector e such that

||e+ Tx|| = max{||e||, ||Tx||} (= max{1, ||x||})

holds for every x. (Consider, e.g., X = l∞, T (x1, x2, . . .) := (x1, 0, x2, 0, x3) and
e = (0, 1, 0, 1, . . .).)

Then, in the Banach algebra A of operators on X, the zero operator 0 is
not an interior point of B1 ◦B2, where B1 is the open ball with radius one and
center T and B2 is the open unit ball.
Proof. Let U be an operator on X such that ||U || < 1. We will show that T +U
is not surjective. Then (T+U)◦V will not be surjective for V ∈ B2, in particular
the operators ε Id will not be in B1 ◦B2 which would prove our claim.

6The example is a generalization of an example due to V. Kadets.
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We will show that e is not in the range of T + U . If this were the case we
could write e = Tx+ Ux, and this would imply

||x|| > ||Ux|| = ||e− Tx|| = max{1, ||x||}

which is absurd. �
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of continuous functions on [ 0, 1 ]. Studia Math. 170(2) (2005), 203–209.

[2] E. Behrends. Walk the dog, or: products of open balls in the space of continuous
functions. Functiones et approximatio (to appear 2011).

[3] A. Komisarski. A connection between multiplication in CX and the dimension
of X. Fund. Math. 189(2) (2006), 149–154.

[4] A. Wachowicz. Multiplying balls in C(N) [ 0, 1 ]. Real Analysis Exchange 34(2)
(2008/2009), 445–450.

Mathematisches Institut, Freie Universität Berlin, Arnimallee 6,
D-14 195 Berlin, Germany; e-mail: behrends@math.fu-berlin.de


