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Abstract. Let (M,d) be a complete metric space and suppose that
there are given finitely many contractions Γρ : M → M and Lipschitz
maps ϕρ : M → R (ρ = 1, . . . , r).

We consider “walks” of length m with a given starting point x0 in M .
They are defined as follows: One chooses a sequence (ρµ)µ=1,...,m of
length m in {1, . . . , r}, and this choice induces the “walk”

x0, x1 := Γρ1(x0), x2 := Γρ2(x1), . . . , xm := Γρm
(xm−1).

Associated with x1, . . . , xm is the “reward”

ϕρ1(x0) + ϕρ2(x1) + · · ·+ ϕρm
(xm−1).

We denote by Rmax
x0

(m) the maximal possible reward.

The aim of this note is to investigate the behaviour of the sequence(
Rmax

x0
(m)

)
for large m. It will be shown that the growth is nearly

linear: there is a constant γ (which does not depend on x0) such that
Rmax

x0
(m)/m tends to γ. However, an explicit calculation of γ might be

hard. The complexity depends on the fractal dimension of the smallest
nonempty compact subset of M which is invariant with respect to all
Γρ.

In the case of finite M one can say much more. Then – after a suitable
rescaling – the sequence

(
Rmax

x0
(m)

)
is periodic where the length of the

period can be described in terms of the length of certain cycles of a
graph associated with M .

The motivation to study this problem came from a variant of Par-
rondo’s paradox from probability theory: What is the optimal choice
of games if a great number of players is involved?

keywords: stochastic game, weighted graph, fractal, Parrondo’s para-
dox.
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1. Introduction

Parrondo’s paradox states that there are losing games which, when com-
bined stochastically in a suitable way, give rise to winning games. For a more
precise formulation we use the notation introduced in [3]. A Parrondo game
consists of a collection P1, . . . ,Pr of stochastic (s×s)-matrices and “reward
vectors” x1, . . . ,xr ∈ Rs. (We will write Pρ as (p(ρ)

ij )i,j=0,...,s−1 and xρ as

(x(ρ)
i )i=0,...,s−1.) One starts the game at 0 ∈ S := {0, . . . , s− 1}, then a ρ is

chosen. One obtains immediately the reward x
(ρ)
0 , and a random step on S

is performed according to the probabilities in the first row of Pρ. Suppose
that the resulting state is i ∈ S. Then again a matrix is chosen, say Pρ′ .
One gets x

(ρ′)
i and moves according to the i’th row of Pρ′ . And so on.

In the case r = 1 there is no real choice. One observes that the gain in
the µ’th round is the first component of Pµ

1x1, and also that – under the
assumption that P1 is ergodic and µ is not too small – the matrix Pµ

1 has
nearly identical rows each of which approximates the equilibrium πP1 of P1

(see, e.g., chapter 7 in [3]). Consequently the gain in the µ’th round can be
approximated better and better by the scalar product 〈πP1 ,x1〉 of πP1 with
x1 if µ is large, and thus the game should be called fair if this scalar product
vanishes. Parrondo has observed that there are (Pρ,xρ), ρ = 1, . . . , r, such
that each individual (Pρ,xρ) is fair but it is possible to choose ρ1, . . . , ρm

such that the expected total reward after m rounds tends to infinity with
m →∞.

In [6] Dinis and Parrondo investigate a situation where a huge number
N of people play such a Parrondo game: a β ∈ ] 0, 1 ] is given, and in the
µ’th round βN players – which are chosen at random – play their game with
(Pρµ ,xρµ). What is the best choice of ρ1, . . . , ρm?

The first observation is that one may assume that β = 1: In the case
β < 1 one only has to replace each Pρ by (1−β)I +βPρ and each xρ by βxρ

(here and in the sequel “I” stands for the identity matrix). Also we note
that for the calculation of the collective gain it is only necessary to know
the proportions of the players being in state 0, 1, . . . , s − 1. Suppose that
in the µ’th round these are v

(µ)
0 , . . . , v

(µ)
s−1. Then the collective gain in this

round is
N

(
v

(µ)
0 x

(ρµ)
0 + · · ·+ v

(µ)
s−1x

(ρµ)
s−1

)
,

i.e., N times the scalar product of v(µ) := (v(µ)
0 , . . . , v

(µ)
s−1) with xρ. Also,

after this round, the new proportions in the states 0, . . . , s − 1 will be the
components of the vector v(µ)Pρ.
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In order to avoid that the gain grows over all bounds with N →∞ it will
be appropriate to rescale the xρ: in the case of N players we replace these
gain vectors by xρ/N . Then we arrive at the following problem: Let ∆s be
the collection of all probability vectors in Rs. For a v ∈ ∆s and ρ = 1, . . . , r
we define

Γρ(v) := vPρ ∈ ∆, ϕρ(v) := 〈v,xρ〉 ∈ R.

One wants to know which choice of ρ1, . . . , ρm gives rise to the maximal
collective gain if m – the number of rounds – and the starting distribution
v0 are prescribed. It remains to note that it is generally assumed that the
Pρ are not only ergodic but that one has some quantitative information
about the ergodic behaviour. One assumes that there is a number L < 1
such that the l1-distance between two arbitrary rows of any Pρ is bounded
by 2L: ∑

j

∣∣∣p(ρ)
ij − p

(ρ′)
i′j

∣∣∣ ≤ 2L

for i, i′ = 0, . . . , s−1 and ρ, ρ′ = 1, . . . , r. As a consequence of this condition
the mappings Γρ are contractions with Lipschitz constant L on Γs (see, e.g.,
lemma 10.6 in [3]). Since, as a consequence of the Cauchy-Schwarz inequal-
ity, the ϕρ are Lipschitz maps, we therefore are precisely in the situation
described in the abstract. M is the compact space ∆s, provided with the
l1-distance.

The paper will be organized as follows. We start in section 2 with some
supplements concerning the precise description of our problem. Then we
note that it can be thought of as the search for optimal walks in a certain
directed weighted graph. The vertices of this graph are the points of M ,
an essential role will play the smallest closed nonvoid subset F of M which
is invariant with respect to all Γρ. The set F has in many cases a fractal
structure.

In section 3 we restrict our attention to the case of finite M . We describe
the behaviour of the sequence

(
Rmax

x0
(m)

)
completely in the slightly more

general setting of finite graphs. With the help of elementary number theory
one can prove that this sequence is “periodic”, the period can be rather
large.

The methods developed in section 3 will be used in section 4 to treat
the general case. As for finite M there is a constant γ which is something
like the “value of the game”: if one plays in an optimal way, then the gain
per round is essentially γ. The compactness of M plays an essential role, it
enables us to approximate the infinite problem by a finite situation.
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The question remains how to determine γ numerically. This is surpris-
ingly complicated, a result by which approximations can be obtained is given
in section 5 . It will be shown that the complexity depends on the fractal
dimension of F .

2. Preliminaries

The meaning of (M,d), the Γρ, the ϕρ (ρ = 1, . . . , r) and Rmax
x0

(m)
will be as introduced in the abstract. The Γρ are contractions, we will
denote by L the maximum of their contraction constants. Thus 0 ≤ L < 1,
and d

(
Γρ(x),Γρ(y)

)
≤ Ld(x, y)) for arbitrary x, y and ρ. Also the ϕρ are

Lipschitz maps. Let L′ be a number such that always |ϕρ(x)− ϕρ(y)| ≤
L′ d(x, y) holds.

As in the abstract the Γρ will be thought of as “moves” of a game, and
the ϕρ are “reward functions”. We are interested in rewards associated with
walks starting at x0 which are induced by the choices ρ1, . . . , ρm ∈ {1, . . . , r}.
We will call this number R(x0; ρ1, . . . , ρm):

R(x0; ρ1, . . . , ρm) := ϕρ1(x0) + ϕρ2(x1) + · · ·+ ϕρm(xm−1),

where xk+1 := Γρk+1
(xk) for k = 1, . . . ,m− 1. With this notation Rmax

x0
(m)

is the maximum of the rm numbers R(x0; ρ1, . . . , ρm).
We want to investigate how the Rmax

x0
(m) behave for large m and how

one can determine the ρ1, . . . , ρm which give rise to the best choice.
The set F of fixed points

Recall that, by Banach’s fixed point theorem, contractions on complete
metric spaces have a unique fixed point and that these fixed points are
stable. For ρ1, . . . , ρl ∈ {1, . . . , r} the map Γρ1 ◦ · · · ◦ Γρl

is a contraction
(with contraction constant Ll) on M , and thus there exists a unique πρ1...ρl

in M such that
Γρ1 ◦ · · · ◦ Γρl

(πρ1...ρl
) = πρ1...ρl

.

The results of the following lemma are “folklore”. They are contained
here for the sake of completeness.

Lemma 2.1.
(i) Let x ∈ M be such that d

(
Γρ1 ◦ · · · ◦ Γρl

x, x
)
≤ η for some number

η ≥ 0. Then d(x, πρ1...ρl
) ≤ η/(1− Ll).

(ii) If (ρl)l is a sequence in {1, . . . , r}, then (πρ1...ρl
)l converges in M .

We will denote by πρ1ρ2... the limit of this sequence.
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(iii) Γρ(πρ1ρ2...) = πρρ1ρ2... for arbitrary ρ, ρ1, ρ2, . . .

(iv) Γρl
(πρ1...ρl

) = πρlρ1...ρl−1
.

(v) Consider the collection {1, . . . , r}N of all sequences in {1, . . . , r}, we
will provide this set with the product topology. We claim that the
map

Φ : {1, . . . , r}N → M, (ρl)l 7→ πρ1ρ2...

is continuous. Thus, since {1, . . . , r}N is compact, it follows that
the image F of Φ is a compact subset of M .

Remark: One has to distinguish carefully between the πρ1...ρl
(finitely many

indices) and the πρ1... (infinitely many indices). We note that πρ1...ρl
coin-

cides with πρ1...ρlρ1...ρlρ1...ρl... (the ρ1 . . . ρl are repeated infinitely often).
Proof: (i) This is a special case of a general result for contractions. Suppose
that T is a contraction with Lipschitz constant λ < 1 and fixed point x0 and
that d(Tx, x) ≤ η. Then

d(T kx, x) ≤ d(T kx, T k−1x) + d(T k−1x, T k−2x) + · · ·+ d(Tx, x)
≤ (λk−1 + · · ·+ λ + 1)d(Tx, x)
≤ (1 + λ + λ2 + · · · )η
= η/(1− λ).

The T kx converge to x0 so that, by continuity, d(x0, x) ≤ η/(1− λ).
This has to applied here with T = Γρ1 ◦ · · · ◦ Γρl

.
(ii) Let (ρ)l be a sequence in {1, . . . , r}, we will show that (πρ1...ρl

)l is a
Cauchy sequence. To this end, let ε > 0 be given. We choose l0 ∈ N such
that Ll0 times the diameter of M is smaller than ε. This implies that the
diameter of the range R of Γρ1 ◦ · · · ◦ Γρl0

is bounded by ε. It remains to
note that πρ1...ρl

and πρ1...ρl′ lie in R for l, l′ ≥ l0 so that

d(πρ1...ρl
, πρ1...ρl′ ) ≤ ε.

The completeness of M implies that (πρ1...ρl
)l converges.

(iii) Let ε > 0 be given. We choose l0 such that the diameter of the range
R of Γρ1 ◦ · · · ◦ Γρl0

is bounded by ε. Then πρ1ρ2... lies in R. Further,
the diameter of Γρ(R) is at most Lε, and both Γρ(πρ1ρ2...) and πρρ1ρ2... are
contained in this set. It follows that

d
(
Γρ(πρ1ρ2...), πρρ1ρ2...

)
≤ Lε,

and the result follows since ε was arbitrary.
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(iv) By definition we know that

Γρ1 ◦ · · · ◦ Γρl
πρ1...ρl

= πρ1...ρl
.

If we apply Γρl
to this identity it follows that Γρl

(πρ1...ρl
) is a fixed point of

Γρlρ1···ρl−1
. Since this fixed point is uniquely determined we may conclude

that Γρl
(πρ1...ρl

) = πρlρ1...ρl−1
.

(v) Let ρ1, ρ2, . . . and ε > 0 be given. If l0 is such that the diameter of the
range of Γρ1 ◦ · · · ◦ Γρl0

is at most ε, then d(πρ1ρ2..., πρ′1ρ′2...) ≤ ε provided
that the first l0 terms of (ρ1, ρ2, . . .) and (ρ′1, ρ

′
2, . . .) coincide. Since

{(ρ′1, ρ′2, . . .) | ρ′i = ρi for i = 1, . . . , l0}

is a neighbourhood of ρ1, ρ2, . . . with respect to the product topology this
proves the continuity of Φ. 2

Denote by F the range of the mapping Φ from part (v) of the preceding
lemma. This set will play an important role in the sequel. The examples
which will be discussed in the next subsection indicate that F often has a
fractal structure1.

Lemma 2.2.
(i) F is the smallest compact nonempty subset of M which is invariant

with respect to all Γρ.
(ii) Let Ml be the union of all Γρ1 ◦ · · · ◦ Γρl

(M), where ρ1, . . . , ρl run
through {1, . . . , r}. Then F =

⋂
l Ml.

(iii) For every x ∈ M and arbitrary ρ1, ρ2, . . . the Γρl
◦ · · · ◦ Γρ1(x) tend

with l →∞ to F : for every ε > 0 there is an l0 such that

d
(
Γρl

◦ · · · ◦ Γρ1(x), F
)
≤ ε

for l ≥ l0.

Remark: Given a sequence ρ1, ρ2, . . . we will have to deal with products of
the form Γρ1 ◦· · ·◦Γρl

and also of the form Γρl
◦· · ·◦Γρ1 for increassing l. The

first variant has been used in lemma 2.1, there the sequence (πρ1···ρl
)l=1,2,...

was of importance, where πρ1···ρl
is the equilibrium of Γρ1 ◦ · · · ◦ Γρl

.
If, however, one is interested in the orbit of the starting point x0 one has

to investigate the
(
Γρl

◦ · · · ◦ Γρ1

)
(x0).

1We note that already in [1] fractal phenomena in connection with Parrondo’s games
have been described. In particular this paper contains an analysis of the one-dimensional
situation. There is only a slight overlap with the present investigations.
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Proof: (i) By the preceding lemma F is compact and invariant with respect
to all Γρ. Conversely, if F ′ ⊂ M is a nonempty closed subset which is left
invariant by all Γρ it has contain all πρ1...ρl

: one only has to note that

πρ1...ρl
= lim

k

(
Γρ1 ◦ · · · ◦ Γρl

)k(x)

for arbitrary x. But then also the πρ1ρ2··· which lie in the closure of the set
of πρ1...ρl

are in F ′. This proves that F ⊂ F ′.

(ii) The set F ′ :=
⋂

l Ml is closed and invariant with respect to the Γρ so
that F ⊂ F ′. On the other hand, if the diameter of Γρ1 ◦ · · · ◦ Γρl

(M) is
bounded by ε, then all elements of this set are ε-close to πρ1···ρl

∈ F . It
follows that – for arbitrary ε – all x ∈ F ′ are ε-close to some point in F ,
and this yields F ′ ⊂ F .

(iii) This assertion follows immediately from the preceding proof. 2

Examples/Remarks

1. First we consider the case r = 1. There is only one contraction Γ1 = Γ
and only one ϕ1 = ϕ and thus

Rmax
x0

(m) = ϕ(x0) + ϕ
(
Γ(x0)

)
+ ϕ

(
Γ2(x0)

)
+ · · ·+ ϕ

(
Γm−1(x0)

)
.

The Γk(x0) tend geometrically fast to the fixed point x′ of Γ. Therefore,
since ϕ is Lipschitz, the summands tend fast to ϕ(x′): one has∣∣∣ϕ(x′)− ϕ

(
Γk(x0)

)∣∣∣ ≤ CL′Lk,

where C is a constant. It follows that
∣∣Rmax

x0
(m)−mϕ(x′)

∣∣ ≤ mCL′/(1−L),
and in particular one has

lim
m

Rmax
x0

(m)
m

= ϕ(x′).

Note that F in this case is the singleton {x′}.
2. Suppose that L = 0, i.e., all Γρ are constant maps. Let x′ρ be the fixed
point of Γρ. It is clear that F = {x′1, . . . , x′r} and that

R(x0; ρ1, . . . , ρm) := ϕρ1(x0) + ϕρ2(x
′
ρ1

) + · · ·+ ϕρm(x′ρm−1
)

in this case. It is remarkable that already in this special situation it is not
obvious how to choose ρ1, . . . , ρm such that the reward is maximal.
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The easiest way is to solve this problem is by a backwards analysis.
Denote, for ρ = 1, . . . , r and k ≥ 0 by Gk

ρ the maximal possible gain
when one starts at x′ρ and k rounds are to be played. Then G0

ρ = 0,
and

Gk+1
ρ = max

ν

(
ϕν(x′ρ) + Gk

ν

)
.

It remains to note that Rmax
x0

= maxρ

(
ϕρ(x0) + Gm−1

ρ

)
.

Even in that special situation one can observe a phenomenon which could
be thought of as a variant of Parrondo’s paradox (which is, as has to be
admitted, far from being spectacular). Call a pair (Γρ, ϕρ) fair if ϕρ is
zero at the fixed point of Γρ. This notation is justified by the observations
in connection with the preceding example 1. It is now easy to find Γ’s
and ϕ’s such that (Γ1, ϕ1) and (Γ2, ϕ2) are fair but Rmax

x0
(m)/m tends to a

positive (or negative) number. One simply chooses the Γρ to be constant
with (different) fixed points x1, x2 and defines ϕ1 (resp. ϕ2) to be zero at
x1 (resp. at x2)

3. Let α, β ∈ ] 0, 1 [ be fixed. We consider M = [ 0, 1 ] with the usual metric
and the two contractions Γ1 : x 7→ βx, Γ2 : x 7→ (1 − β) + βx on M . The
maps ϕ1, ϕ2 are defined by ϕ1(x) := x− α and ϕ2(x) := 0.

The set F will depend on β. For β ∈ [ 0.5, 1 [ one has F = [ 0, 1 ], but
for β ∈ ] 0, 0.5 [ the set F is fractal-like. (E.g., for β = 1/3 one obtains the
usual Cantor set.)

Consider the starting point x0 = 0. What is, for a given m, the optimal
choice of the ρ1, . . . , ρm? For the first step it is surely better to deal with
ρ1 = 2 than with ρ1 = 1 since in the second case the gain is negative and
one would stay at 0. Surely it would be better to choose ρ = 2 for some
rounds: at least so often that xk = (Γ2)k(0) > α. If then ρ = 1 is chosen,
one obtains xk − α. It is not clear, however, whether it would not be wiser
to stay at ρ = 2 for some further steps: the gain would still be be zero, but
one would arrive at points where the gain with the choice ρ = 1 is much
better than α− xk.

4. The present investigations have been motivated by collective Parrondo
games. As explained in the introduction they are defined by a family of r
stochastic (s×s)-matrices P1, . . . ,Pr and vectors x1, . . . ,xr ∈ Rs. The met-
ric space M is the collection of all probability measures on S = {0, . . . , s−1},
and the maps Γρ and ϕρ are defined by v 7→ vPρ and v 7→ 〈v,xρ〉.

We will restrict ourselves here to the case s = 3. Then M consists of
the (p0, p1, p2) such that p0, p1, p3 ≥ 0 and p0 + p1 + p2 = 1. This collection
will be represented by the points of an equilateral triangle with barycentric
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coordinates: (1, 0, 0), (0, 1, 0) and 0, 0, 1 are mapped to the bottom left,
the bottom right and the top corner, respectively, and the the map, which
assigns a probability to a point is affine2.

Depending on the situation the subset F can look rather differently. Here
are three examples:

a) First we consider Parrondo’s original example. The matrices are

P1 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 , P2 =

 0 0.1 0.9
0.25 0 0.75
0.75 0.25 0

 .

In barycentric coordinates the associated fractal looks like this3:

fig. 1: The fractal associated with Parrondo’s original example

(We note that a picture of this fractal also can be found in [9]. Also there
barycentric coordinates are used.)

b) For the next example the stochastic matrices have been produced by a
random generator:

P1 =

 0, 000250 0, 499957 0, 499793
0, 499785 0, 000353 0, 499862
0, 000576 0, 999030 0, 000394

 , P2 =

 0, 762578 0, 004199 0, 233224
0, 333454 0, 333209 0, 333338
0, 227731 0, 037911 0, 734358

 .

Here the fractal F has the following form.

2For example, the equidistribution is mapped to the midpoint of the triangle, and
probabilites where p2 is “large” will be found “close” to the top corner.

3Note that for the description of F it is not necessary to know the gain vectors.
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fig. 2: A “sparse” fractal

c) Also in our third example P1 and P2 are random stochastic matrices:

P1 =

 0, 000050 0, 000333 0, 999616
0, 000252 0, 499960 0, 499789
0, 999414 0, 000574 0, 000012

 , P2 =

 0, 000364 0, 999632 0, 000005
0, 000934 0, 000029 0, 999037
0, 499681 0, 500060 0, 000259

 .

They generate the following F :

fig. 3: A more complicated fractal

The examples indicate that it is hard to predict from the Pρ how F
might look. As a vague rule one only can assert that “interesting” F are
unlikely to occur when the Pρ are strongly mixing, i.e., when the Lipschitz
constant of the associated maps Γρ is small. The second example shows that
the reverse needs not be true, there the ergodicity constant is close to one,
but they give rise to a rather small F .
5. Let ε > 0 and let x0 be such that there exists a y0 ∈ F with d(x0, y0) < ε.
Then, for any ρ1, . . . , ρl, the distance between the points Γρl

◦ · · · ◦ Γρ1(x0)
and Γρl

◦ · · · ◦ Γρ1(y0) is at most ε · Ll. Therefore∣∣ϕρ

(
Γρl

◦ · · · ◦ Γρ1(x0)
)
− ϕρ

(
Γρl

◦ · · · ◦ Γρ1(y0)
)∣∣ ≤ ε · Ll · L′,
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and it follows that

|R(x0; ρ1, . . . , ρm)−R(y0; ρ1, . . . , ρm)| ≤ ε
L′

1− L
.

This is true for arbitrary ρ1, . . . , ρm so that

∣∣Rmax
x0

(m)−Rmax
y0

(m)
∣∣ ≤ ε

L′

1− L
.

If one combines this observation with lemma 2.2(ii) one may conclude
that for every x0 ∈ M there is a y0 ∈ F such that

lim
m→∞

Rmax
x0

(m)
m

−
Rmax

y0
(m)

m
= 0.

Thus, if one wants to determine the long-term behaviour of the sequences
(Rmax

x0
(m))m it will suffices to investigate the x0 ∈ F .

Graphs

In order to visualize our problem of describing Rmax
x0

(m) it will be helpful
to use the language of graph theory . Think of M as the collection of vertices
of a graph which will in general be infinite. For x ∈ M there are r directed
edges, namely to the points Γ1(x), . . . ,Γr(x). To each of these edges we
associate the weight ϕρ(x). In this translation one has to solve the following
problem:

Given m ∈ N and x0 ∈ M , find a walk of length m which starts
at x0 such that the total weight is as large as possible.

In the next section we will solve this problem in the case of finite graphs
completely, the same ideas will be used later to treat the general case by
suitable approximations.

It has been noted above that it often suffices to consider the x0 ∈ F .
Since F is invariant with respect to all Γρ this set can be thought of as a
subgraph. As a graph F is “nearly connected”:

Lemma 2.3. For all x0, y0 ∈ F and every ε > 0 there is a walk which starts
at x0 and ends ε-close to y0: there are ρ1, . . . , ρd such that

d
(
Γρd

◦ · · · ◦ Γρ1(x0), y0

)
≤ ε.

It follows that F , considered as a graph, is connected if F is finite.
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Proof: Choose πρ1...ρl
such that d(y0, πρ1...ρl

) ≤ ε/2 and an l′ such that Lll′

times the diameter of M is bounded by ε/2. Then the diameter δ of the
range of

(
Γρ1 ◦ · · · ◦ Γρl

)l′ satisfies δ ≤ ε/2, and this range contains πρ1...ρl
.

Thus

d

((
Γρ1 ◦ · · · ◦ Γρl

)l′(x0), y0

)
≤ ε.

2

3. Optimal paths on finite directed weighted graphs

Let G = (V,E) be a finite directed weighted graph: V is the (finite)
set of vertices, E ⊂ V × V is the set of edges, and the weight of an e ∈ E
is denoted by we. We assume that G is connected, in view of lemma 2.3
this will be no restriction in the present context. Since we will be interested
in maximal total gains only it will be no restriction to assume that there
is always at most one directed edge connecting two given vertices: if there
should be more cancel all but one with maximal weight. Such graphs can
be sketched as follows:

x y z

w
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Let x0 be a fixed vertex, we consider walks of length m which start at
x0. (A walk W of length n is a sequence y0, y1, . . . , yn of vertices such that
each two consecutive members of this sequence define a directed edge.) The
gain GW of such a walk W is the sum of the weights of the edges which are
passed, and we are interested in the maximal possible gain. This number
will be denoted by Rmax

x0
(m).4

The aim of this section is to describe how the sequence
(
Rmax

x0
(m)

)
m=1,...

behaves for large m, this will prepare the investigations of the general case.

4It is justified to use the same notation as in the case of the M, Γρ, ϕρ since for finite
M we arrive at this graph problem.
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We have not found results concerning this problem in the standard text
books of graph theory. The reason might be that in the theory of weighted
graphs it is more interesting to find walks of minimal (or maximal) total
gain which connect two vertices than to consider walks of a given length.

We begin our discussion with some further notation. A cycle (of length n)
C is a walk y0, . . . , yn where y0 = yn and where the vertices y1, . . . , yn are
pairwise different. If C is such a cycle, the cycle gain GC is defined as the
sum over the weights of the edges contained in C, i.e.

GC := w{y0,y1} + · · ·+ w{yn−1,yn}.

GC , devided by the length n of C, is the stepsize gain associated with C.
This number will be called γC .

There are only finitely many cycles in G, and therefore the maximum γ
over the γC exists. γ is the maximal stepsize gain, this number will play an
important role in the sequel. Since every closed walk can be built up from
cycles the number γ is also the maximal stepsize gain for the much larger
family of closed walks.

We will write C for the collection of all cycles and C′ for the subcollection
of C consisting of all C with γC = γ.

It can happen that C = C′, but usually C′ is much smaller than C. In
most cases C′ will even contain only one element. (For example, in the
graph of the above picture one has γ = 2 and C′ consists only of the
self-loop at x.)

The main result of this section states that the sequence Rmax
x0

(·) behaves
rather regularly:

Proposition 3.1. There are l0,m0 ∈ N such that

Rmax
x0

(m + l0) = Rmax
x0

(m) + γ · l0

for m ≥ m0. In particular
(
Rmax

x0
(m)

)
m

is “finally periodic” if γ = 0.

Proof: Let l0 be the smallest common divisor of the lengths of the cycles in
C′. We will show that the assertion holds with this l0 and sufficiently large
m. We may restrict our attention to the case γ = 0 since the transformation
we 7→ we−γ leads immediately to this situation. This will be assumed from
now on.

First we show that Rmax
x0

(m) is “not too small”. Choose any C0 ∈ C′ and
define – for given “large” m – a walk W in the following way: move directly
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to C0 and then keep walking around C0 until m steps are completed. The
gain associated with W is the gain of a walk of at most N = card V steps
(from x0 to C0 plus – maybe – some steps in C0 if the final round is not
completed) plus several complete rounds in C0 which by our assumption
have gain zero. (Recall that “card” stands for “cardinality”: N is just
the number of points in V .) Thus GW and consequently also Rmax

x0
(m) is

bounded from below by the constant K1 := N mine∈E we.
Next we prove that walks with maximal gain cannot waste too much

time in the cycles C ∈ C′′ := C \ C′.
Define a strictly positive number δ by

δ := − max
C∈C′′

γC ;

then, by definition, GC ≤ −nδ for all cycles of length n in C′′.
We consider any walk W of length m which starts at x0. Write W as

x0x1 · · ·xm, where xi, xi+1 are adjacent vertices. Suppose that – for certain
k < l – one has xk = xl such that the xk, xk+1, . . . , xl−1 are pairwise different.
Then GW is the sum of the gain of

W ′ := x0x1 · · ·xkxl+1 · · ·xm

plus the gain of the cycle-walk xkxk+1 · · ·xl−1. The latter number is zero (if
the cycle is in C′) or bounded from above by −δ(l−k) otherwise. If we apply
this observation to the “reduced” walk W ′ and continue until we obtain a
walk without cycles we arrive at the following fact:

Let nW be the number of steps of the walk which are used for
complete cycle-rounds with cycles from C′′. Then

GW ≤ −nW δ + N max
e

we.

One only has to note that the remaining walk (when there is
no further reduction by omitting cycles possible) has at most N
steps so that its weight is bounded by N maxe we.

So far we have shown that

N min
e∈E

we ≤ −nW δ + N max
e∈E

we

whenever W is a walk of length m such that GW = Rmax
x0

(m), and this
means that for such walks nW is bounded by the constant

K := (N max
e∈E

we −N min
e∈E

we)/δ
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which does not depend on m.
Let W be the collection of walks which contain no cycles in C′ and

for which the number of steps which are used for complete cycle-rounds
in cycles from C′′ is bounded by K. We know already that each W with
GW = Rmax

x0
(m) is built up from a W̃ ∈ W to which there are “attached”

various cycles in C′.
Let us have a closer look at the W̃ ∈ W. For every such W̃ its length lW̃

is bounded by N + K, in particular the set W must be finite. If a W̃ ∈ W
touches cycles C ∈ C′ of length n1, . . . , nk then one can use W̃ to construct
walks of length lW̃ (the length of W̃ ) plus a multiple of n1 plus a multiple
of n2 . . . plus a multiple of nk: simply add to W the appropriate number of
rounds in the C′-cycles. These new walks all will have gain GW̃ .

This has the following consequence: if NW̃ denotes the collection of all
integers m such that there is a walk W (starting at x0) of length m with
GW = Rmax

x0
(m) for which the procedure described above (cancel all cycle

walks in C′) leads to W̃ , then

NW̃ + n1N + · · ·+ nkN ⊂ NW̃

holds.
From this property one may derive with the help of elementary number

theory that NW̃ has a rather regular structure: there are an lW̃ and an mW̃
such that for m ≥ mW̃ one has m ∈ NW̃ iff m+ lW̃ ∈ NW̃ . The “period” lW̃
is just the greatest common divisor of the n1, . . . , nk. Since l0 is a multiple
of lW̃ it follows that m ∈ NW̃ iff m + l0 for sufficiently large m.

It is now easy to complete the proof. From the definition of W it follows
that

Rmax
x0

(m) = max
W̃

{GW̃ | m ∈ NW̃ },

and the observation from the last paragraph implies that for the calculation
of Rmax

x0
(m) one determines the maximum over precisely the same set as for

the calculation of Rmax
x0

(m + l0). Therefore Rmax
x0

(m) = Rmax
x0

(m + l0) as
claimed. 2

Corollary 3.2. In particular one has

lim
m→∞

Rmax
x0

(m)
m

= γ.

Thus, for large m, the best possible gain can be approximated by mγ, and
therefore γ is something like “the value of the game”.
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Remark: We have shown that the sequence
(
Rmax

x0
(m)

)
is finally l0-periodic

if we define l0 as the smallest common multiple of the lengths of the cycles
in C′. However, in general this l0 will not be optimal, there might be smaller
l such that the sequence is finally l-periodic as well. As simple examples
show the best possible l might also depend on the starting position x0.

4. The general case

In this section the ideas which have been applied successfully in the finite
case will be used to deal with arbitrary M . Compactness and the contraction
properties of the Γρ will play a crucial role.

Let ρ1, . . . , ρl ∈ {1, . . . , r} be arbitrarily given. It follows from lemma
2.1(iv) that

πρ1···ρl
, πρlρ1···ρl−1

, πρl−1ρlρ1···ρl−1
, . . . , πρ1···ρl

is a closed walk in the graph associated with our problem: first one has to
apply Γρl

, then Γρl−1
, . . . , and finally Γρ1 . Denote by γρ1···ρl

the associated
stepsize gain, i.e.,

γρ1···ρl
=

1
l

(
ϕρl

(πρ1···ρl
) + ϕρl−1

(πρlρ1···ρl−1
) + · · ·+ ϕρ1(πρ2···ρlρ1)

)
.

These numbers are bounded by maxρ,x |ϕρ(x)|, and consequently

γ := sup {γρ1···ρl
| l = 1, 2, . . . , ρ1, . . . , ρl ∈ {1, . . . , r}}

is a finite number5.

Here is the main result of this section:

Proposition 4.1. If one plays in an optimal way, then the stepsize gain is
approximately γ. More precisely: As in the case of finite M one has

lim
m→∞

Rmax
x0

(m)
m

= γ.

Remark: It is not true that the sequence (Rmax
x0

(m)) is necessarily finally
periodic. However, in many cases one can prove that it is “approximately
finally periodic”: For every ε > 0 there exist integers m0, l0 such that
Rmax

x0
(m + l0) is ε-close to Rmax

x0
(m) for m ≥ m0.

5We note that in the case of finite M one obtains the γ defined in section 3.
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The proof of the proposition will be given later. It will be appropriate
to introduce a more refined notation first: For x0 ∈ M and ρ1, . . . , ρk ∈
{1, . . . , r} we will write xρ1···ρk

0 for
(
Γρk

◦ · · · ◦Γρ1

)
(x0). With this definition

the gain R(x0; ρ1, . . . , ρm) associated with the choice ρ1, . . . , ρm is

ϕρ1(x0) + ϕρ2

(
xρ1

0

)
+ · · ·+ ϕρm

(
x

ρ1···ρm−1

0

)
.

Also one has

Lemma 4.2. Let x0, y0 ∈ M and ρ1, . . . , ρm be given.
(i) For arbitrary k ≤ m the number R(x0; ρ1, . . . , ρm) is the sum of

R(x0; ρ1, . . . , ρk) and R(xρ1···ρk
0 ; ρk+1, . . . , ρm).

(ii) Denote as in section 2 by L and L′ the Lipschitz constants associated
with the Γρ and the ϕρ, respectively. Then

|R(x0; ρ1, . . . , ρm)−R(y0; ρ1, . . . , ρm)| ≤ d(x0, y0)
L′

1− L
.

(iii) Let ε > 0 and suppose that, for certain k, l with 1 ≤ k < l ≤ m one
has

d
(
xρ1···ρk

0 , xρ1···ρl
0

)
≤ ε.

Then the following inequality holds:

R(x0; ρ1, . . . , ρm) ≤ (l−k)γ+R(x0; ρ1, . . . , ρk, ρl+1, . . . , ρm)+
2εL′

(1− L)2
.

Proof: (i) is an immediate consequence of the definition, and the idea to
prove (ii) has already been sketched above in remark 5 of section 2 .
(iii) The assumption may be rephrased by saying that

d
(
Γρl

◦ · · · ◦ Γρk+1

(
xρ1...ρk

)
, xρ1...ρk

)
≤ ε

so that, by lemma 2.1(i), we know that

d
(
xρ1...ρk

0 , πρl...ρk+1

)
≤ ε

1− L
.

If follows from (ii) that∣∣R(xρ1...ρk
0 ; ρk+1, . . . , ρl)−R(πρl...ρk+1

; ρk+1, . . . , ρl)
∣∣ ≤ εL′

(1− L)2
.

But R(πρl...ρk+1
; ρk+1, . . . , ρl) = (l − k)γρl···ρk+1

, and this number can be
estimated by (l − k)γ.
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Note also that (by (ii)) d
(
xρ1···ρk

0 , xρ1···ρl
0

)
≤ ε implies that∣∣R(xρ1···ρk

0 ; ρl+1, . . . , ρm)−R(xρ1···ρl
0 ; ρl+1, . . . , ρm)

∣∣ ≤ εL′

1− L

and that R(xρ1···ρk
0 ; ρl+1, . . . , ρm) = R(x0; ρ1, . . . , ρk, ρl+1, . . . , ρm)

With the help of (i) this leads to

R(x0; ρ1, . . . , ρm) = R(x0; ρ1, . . . , ρk) +
+R(xρ1···ρk

0 ; ρk+1, . . . , ρl) + R(xρ1···ρl
0 ; ρl+1, . . . , ρm)

≤ (l − k)γ + R(x0; ρ1, . . . , ρk, ρl+1, . . . , ρm) +
εL′

1− L
+

εL′

(1− L)2

≤ (l − k)γ + R(x0; ρ1, . . . , ρk, ρl+1, . . . , ρm) +
2εL′

(1− L)2

This completes the proof of the lemma. 2

Remark: The proof shows that the inequality in (iii) is even true if the con-
stant γ is replaced by the maximum over the γρ1···ρl−k

, where the ρ1, . . . , ρl−k

run through {1, . . . , r}.

We now are prepared for the proof of proposition 4.1. First we show that

lim sup
m→∞

Rmax
x0

(m)
m

≤ γ.

To this end, fix x0 and let ε > 0 be given. Since M is compact, there
is an integer n0 with the following property: whenever one considers a fi-
nite number of points x1, . . . , xn0 ∈ M there are i, j with i 6= j such that
d(xi, xj) ≤ ε. Let arbitrary ρ1, . . . , ρm be given, where m > n0. As usual we
put xρ1

0 := Γρ1(x0), xρ1ρ2
0 := Γρ2(x

ρ1
0 ), . . . By the preceding remark we may

choose k < l such that d(xρ1...ρk
0 , xρ1...ρl

0 ) ≤ ε, we also can arrange it that the
length of the sequence x0, x

ρ1
0 . . . , xρ1...ρk

0 x
ρ1...ρl+1

0 , . . . , xρ1...ρm
0 is bounded by

n0.
Now the lemma comes into play, it implies that

R(x0; ρ1, . . . , ρm) ≤ (l − k)γ + R(x0; ρ1, . . . , ρk, ρl+1 · · · ρm) + 2ε
L′

(1− L)2

≤ (l − k)γ + n0 max
ρ

||ϕρ||+ 2ε
L′

(1− L)2
.

Thus

R(x0; ρ1, . . . , ρm)
m

≤ γ +
m− (l − k)

m
γ +

n0

m

(
max

ρ
||ϕρ||+ 2ε

L′

(1− L)2
)
,
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where m− (l − k) ≤ n0. The number n0 can be chosen independent of the
particular ρ1, . . . , ρm so that also

Rmax
x0

(m)
m

≤ γ +
m− (l − k)

m
γ +

n0

m

(
max

ρ
||ϕρ||+ 2ε

L′

(1− L)2
)

must hold. It follows immediately that

lim sup
Rmax

x0
(m)

m
≤ γ.

It remains to show that lim inf R(x0; ρ1, . . . , ρm)/m ≥ γ also holds. Let
x0 and ε > 0 be given. Choose a cycle ρ′1, . . . , ρ

′
l such that the stepsize gain

γρ′1...ρ′l
satisfies γρ′1...ρ′l

≥ γ − ε.
We will find a walk which provides nearly the optimal stepsize gain by

moving first from x0 “close to” πρ′l...ρ
′
1

by repeatedly applying the maps
Γρ′l

, . . . ,Γρ′1
,Γρ′l

, . . . ,Γρ′1
, . . . (cf. lemma 2.2.(iii)). In this way we obtain

suitable ρ1, . . . , ρm0 such that

d(πρ′1...ρ′l
, x

ρ1,...,ρm0
0 ) ≤ ε.

The walk we are looking for is now defined as follows: It starts with
ρ1, . . . , ρm0 and then one chooses again and again the sequence ρ′l, . . . , ρ

′
1.

Suppose that the walk has length m, we denote the ρ-values by ρ1, . . . , ρm.
The gain associated with the first m0 steps is bounded from below by
−m0 maxρ ||ϕρ||. Then follows a number of complete cycles (say k rounds)
which contribute with a gain of at least kl(γ − ε). There possibly remain
some steps (at most (l − 1)) since the last cycle is not completed, the asso-
ciated gain is at least −(l − 1) maxρ ||ϕρ||. Our argument implies that kl,
the number of steps in the complete cycle, is at least m−m0− l + 1, and in
this way we arrive at the following inequality:

R(x0; ρ1, . . . , ρm) ≥ m(γ − ε)− C,

where C can be chosen independent of m. It follows that

Rmax(m)
m

≥ R(x0; ρ1, . . . , ρm)
m

≥ γ − ε− C

m
,

and therefore
lim inf

Rmax(m)
m

≥ γ − ε

must hold. This completes the proof of the proposition.
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5. The calculation of the constant γ

We have seen that with M,Γρ, ϕρ (ρ = 1, . . . , r) there is associated a char-
acteristic constant γ which plays the role of “the value of the game”. There
seems to be no simple way to determine this number. The next proposition
shows that an approximate calculation is feasable if the fractal dimension
of the fractal F associated with the situation is “very small”6:

Proposition 5.1. Let ε > 0 be given and suppose that an integer n has the
property that for each choice of n points y1, . . . , yn ∈ F there are yi, yj with
i 6= j such that d(yi, yj) ≤ ε. Then∣∣∣∣γ − max

ρ1,...,ρn

γρ1···ρn

∣∣∣∣ ≤ 2εL′

(1− L)2
.

i.e., for an approximate calculation it is not necessary to consider all cycles
but “only” rn of them.

Remark: Denote by Nε the best possible n for a given positive ε and recall
that the fractal dimension δF of F is the limit of the numbers − log Nε/ log ε
when ε tends to zero (provided that this limit exists); cf. [2]. We thus can
restate the previous assertion by saying that the complexity to calculate γ
up to an error of order ε is at most of the order r1/εδF .
Proof: Define γn := maxρ1,...,ρn γρ1···ρn and consider a cycle defined by
ρ1, . . . , ρm of arbitrary length:

πρ1...ρm , πρmρ1...ρm−1 , πρm−1ρmρ1...ρm−2 , . . . , πρ1...ρm .

We will show that γρ1...ρm ≤ γn + 2εL′/(1 − L)2. This implies that γ ≤
γn + 2εL′/(1 − L)2, and the assertion follows since it is true by definition
that γn ≤ γ.
Let us denote the starting point πρ1...ρm of our cycle by z0, the next by z1,
etc. Then

R(z0; ρm, . . . , ρ1) = mγρ1...ρm

by definition. If we suppose that m is bigger than n it follows from our
assumption that we can find zk, zl with k < l ≤ k+n such that d(xk, xk) ≤ ε.
Now, by lemma 4.2 and the remark following the proof of it, we have

R(z0; ρm, . . . , ρ1) ≤ (l − k)γn + R(z0; ρm, . . . , ρl+1, ρk, . . . , ρ1) +
2εL′

(1− L)2
.

6For the definition of F cf. lemma 2.1.
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Similarly we treat R(z0; ρm, . . . , ρl+1, ρk, . . . , ρ1): we replace a subwalk of
length bounded by n by a walk in a cycle, and this causes an error of at
most γn times the length of the cycle plus 2εL′/(1 − L)2. This reduction
will be done again and again, after at most m steps we arrive at

mγρ1···ρm = R(z0; ρm, . . . , ρ1)

≤ mγn + m
2εL′

(1− L)2
.

It remains only to divide by m to complete the proof. 2
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