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Let us start this article with the desription of a magic trick. The magician
presents some cards. They are shuffled with the help of the audience and seven
of them are selected. These are cards with values 2, 3, 4, 5, 6, 7 and an ace that
counts 1. The magician puts them in the selected order face-down as a circle
on the table, and a spectator is invited to perform a walk on this circle. First
she chooses one of the cards and turns it face up:

Figure 1: A “walk” on a circle of seven cards.

She walks as many steps as the number on the card shows (3 steps in our
example) clockwise in the circle. The card where she arrives is switched and the
procedure is repeated: see the figure for some steps of the walk.

Finally she has visited the cards 3 → 2 → 6 → 4 → 5 → 1 and from there
the next step would lead to the first card.

But what about the remaining card that is still face down? The magician
switches it and it turns out that it is the only card that lies face up in another
deck that was on the table from the beginning. How could this be after these
extensive shuffles and random choices?

The motivation of the present article was to understand the mathematical
background of this magic trick. Why seven cards? Why this special order? . . .

In the first section we introduce “sequences with nontrivial sums” in Zn, a
definition that will be crucial for our investigations. The next section contains
the result that such sequences always exist if n is odd. Then we resume the
discussion of the magic trick described above, and the article closes with some
remarks.

We note that in [3] – [11] one finds other articles of the author where facts
from various areas of mathematics are used to present magic tricks. [1] is a
collection with rather elementary contributions written for a general public,
and [2] contains 15 chapters written for mathematicians; short versions of some
of the articles [3] – [11] are also included ln this book.
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Sequences with nontrivial sums

Let n be an integer, n > 2. Suppose that we have a sequence of distinct
nonzero elements (a1, . . . , an−1) in the ring Zn, i.e., a permutation of 1, . . . , n−1.
We say that (a1, . . . , an−1) has nontrivial sums if the following holds: Whenever

one chooses at most n−2 consecutive terms, ak, ak+1, . . . , ak′ , then
∑k′

i=k ai 6= 0.
In view of the origin of the motivation to study such sequences we will be
interested only in the case when

∑n−1
i=1 ai = 0. (Cf. section 3). This happens iff

n is odd, and in the sequel we will assume that n = 2m + 1.
For example, in Z5, the sequence (1, 2, 4, 3)5 has nontrivial sums, but (1, 2, 3, 4)5

fails to have this property since 2 + 3 = 0. (The subindex 5 indicates that the
sequence is in Z5. In this way one could also write (1, 2,−1,−2)5 for the first
example, a notation that would be ambiguous without the subindex.)

Let us collect some easy first results:

1 Lemma: Let n be an odd number and suppose that (a1, . . . , an−1) is a se-
quence of distinct elements in {1, 2, . . . , n− 1}. If (a1, . . . , an−1) has nontrivial
sums then so do also

– the reversed sequence (an−1, an−2, . . . , a1),
– the multiples (a · a1, a · a2, . . . , a · an−1) for invertible a
– and the translations (ak, ak+1, . . . , an−1, a1, . . . , ak−1) for all k.

Proof: The first two assertions are obviously true. For the third we use the

fact that
∑

i ai = 0. It follows that
∑k′

i=k ai = −
∑

i/∈{k,...,k′} ai, and this easily
implies that all translations have nontrivial sums. �

We will prove in the next section that a sequence with nontrivial sums exists
for every odd n. The proof will be elementary but somehow involved. Next,
we indicate how this fact (applied for rather small n) can be used to perform a
magic trick . And in a final section one finds some concluding remarks.

In the theory of combinatorial designs one considers similar questions (see
[13] and the references cited there). There the Alspach conjecture plays an
important role: Let A be a subset of any Zn \ {0} with k elements such that∑

a∈A a 6= 0. Then one can arrange the elements of A as a1, . . . , ak such that∑i=s′

i=s ai 6= 0 for all s, s′ with 1 ≤ s ≤ s′ ≤ k. The Alspach conjecture is still
open.

Many partial results are known. In particular it is true for even n that

A = {1, . . . , n− 1} can be reordered as (a1, . . . , an−1) such that all
∑i=s′

i=s ai are
different from zero. (See [12], theorem 1.)

The proof: Let n be even. We claim that (1,−2, 3,−4, . . . , 2,−1)n is a
permutation of the set Zn \ {0} with the desired properties. It is visualized in
figure 1 for the case n = 10 by the red zig-zag line,
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Figure 2: A visualization of the a′s for n = 10.

Put Sk := a1 + · · ·+ ak for k = 1, . . . , n− 1. In our example n = 10 one obtains

k 1 2 3 4 5 6 7 8 9
Sk 1 -1 2 -2 3 -3 4 -4 5

And in general, if n = 2m, one has

{Sk | k = 1, . . . , n− 1} = {±1,±2, . . . ,±(m− 1),m}

as an easy consequence of the fact that ak = k for odd k and ak = −k for even
k. It follows that the Sk are pairwise different and this proves the claim.

The case A = {1, . . . , n− 1} of the Alspach conjecture is in a sense comple-
mentary to the problem investigated here since we study odd n whereas in the
theory of combinatorial designs only the even n are of interest.

Sequences with nontrivial sums always exist if n is odd

2 Proposition: Every odd n admits a sequence with nontrivial sums.

Proof: Let n = 2m + 1 be given. We define a permutation of {1, 2, . . . , n − 1}
as follows: a1 := 1, ai := (−1)i 2(i − 1) for i = 1, . . . ,m, am+1 := −1 and
am+1+i := −am+1−i. Note that the ai really exhaust {1, . . . , n − 1}: The fact
that

{1, . . . , n− 1} = {1,−1} ∪ {2i | i = 1, . . . ,m− 1} ∪ {−2i | i = 1, . . . ,m− 1}

holds is a consequence of the invertibility of 2 in Zn.

As an example consider the case n = 11. Here the ai are defined by

(a1, . . . , a10) = (1, 2,−4, 6,−8,−1, 8,−6, 4,−2)11 = (1, 2, 7, 6, 3, 10, 8, 5, 4, 9)11.

It will be helpful to visualize this sequence (see figure 2). The permutation is
defined by the red zig zag line that oscillates between {2i | i = 1, . . . ,m} and
{−2i | i = 1, . . . ,m}:

Figure 3: A visualization of the a′s for n = 11.
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It remains to show that we have defined a sequence with nontrivial sums, i.e.,
that Sk,k′ := ak+· · ·+ak′ 6= 0 holds for 1 ≤ k ≤ k′ ≤ n−1, if (k, k′) 6= (1, n−1).

A special case will play a crucial role. As a preparation consider the Sk,k′ for
2 ≤ k ≤ k′ ≤ 5 when n = 11 (see figure 2):

S2,2 = 2;S2,3 = −2;S2,4 = 4;S2,5 = −4;S3,3 = −4;

S3,4 = 2;S3,5 = −6;S4,4 = 6;S4,5 = −2;S5,5 = −8.

They all are not in {−1, 0, 1}, and this is always the case:

Claim: Sk,k′ ∈ A := {2i | i = 1, . . . ,m} ∪ {−2i | i = 1, . . . ,m} for 2 ≤ k ≤ k′ ≤
m. In particular, Sk,k′ /∈ {−1, 0, 1}.
Proof of the claim: Let k ∈ {2, . . . ,m} and k′ = k + t with k + t ≤ m be given.
Then

Sk,k+t = ak + · · ·+ ak+t

= 2(−1)k[(k − 1)− k + (k + 1)− (k + 2) + · · · ± (k + t− 1)].

If t = 2s+1 is odd, the resulting number is 2(−1)k[−1−0+1−2+3−· · ·±(t−1)];
here −1−0+1−2+3−· · ·±(t−1) equals −s−1 so that Sk,k+t = 2(−1)k(−s−1),
and in the case of even t = 2s one obtains 2(−1)k[k−1+1+· · ·+1] = 2(−1)k(k+
s−1). Since −s−1 and k+s−1 lie in {−(m−1), . . . ,−2,−1, 1, 2, . . . , (m−1)}
the claim follows.
End of the proof of the claim.

In this way we have in particular settled

Case 1: Sk,k′ 6= 0 for 2 ≤ k ≤ k′ ≤ m.
The remaining cases follow easily from the claim:

Case 2: S1,k′ 6= 0 for 2 ≤ k′ ≤ m.
This follows from S1,k′ = 1 + S2,k′ . By the claim S2,k′ ∈ A, and −1 /∈ A.

Case 3: S1,m+1 6= 0.
S1,m+1 = S2,m since am+1 = −a1.

Case 4: S1,m+1+k 6= 0.

In this sum there occur summands a,−a. It is equal to S2,m−k−1.

Similarly all other situations are treated. Note, e.g., that Sm+1+k,m+1+k′ =
−Sm+1−k′,m+1−k for 1 ≤ k ≤ k′ ≤ m − 1 since am+1+i = −am+1−i for i =
1, . . . ,m− 1. �

A magic trick associated with sequences with nontrivial sums

Recall that in the trick presented at the beginning the spectator has visited
the cards 3→ 2→ 6→ 4→ 5→ 1 and from there the next step would lead to
the first card.

Note that these numbers have a surprising property: The spectator started
at the 3, but a start at another number would have produced (a translation of)
the same walk, e.g. 4→ 5→ 1→ 3→ 2→ 6→ 4 when starting at 4.
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Only one card was not turned face up: It is the 7, and a “walk” starting
there would be rather boring: 7→ 7→ 7 · · · .

Phrased in mathematical terms the situation is as follows. We have the
permutation (b0, . . . , b6) = (7, 2, 4, 6, 1, 3, 5) of Z7 and these numbers give rise
to walks: Always step from i to i+bi. Then there will be two types of walks: One
that never leaves {7}(= {0}) and another that visits all points in {1, 2, 3, 4, 5, 6},
regardless where the walk starts.

The natural generalization to arbitrary n reads as follows:

3 Definition: Let n be odd and (b0, . . . , bn−1) a permutation of Zn. We say
that (b0, . . . , bn−1) has the long walk property (lwp for short), if the following
holds: If one always steps from i to i + bi then there are two types of walks:
one that never leaves {i0} (where bi0 = 0) and another that visits all points in
{i | i 6= i0} whenever one starts the walk in this subset.

Just before the preceding definition we introduced (0, 2, 4, 6, 1, 3, 5)7, a se-
quence with lwp. And here is an example in Z11: (0, 1, 2, 9, 5, 3, 4, 7, 10, 8, 6)11.
As a counterexample consider (0, 4, 3, 2, 1)5 in Z5: all walks end in {0}.

In the next proposition we show that lwp sequences and sequences with
nontrivial sums are closely related:

4 Proposition: Let n be odd.

(i) With (b0, . . . , bn−1) also the translations (bk, bk+1, . . . , bn−1, b0, . . . , bk−1) are
lwp sequences for all k.

(ii) Every sequence (a1, . . . , an−1) with nontrivial sums generates an lwp se-
quence.

(iii) Every lwp sequence (b0, b1, . . . , bn−1) generates a sequence with nontrivial
sums.

Proof: (i) This fact is obvious.

(ii) Let (a1, . . . , an−1) have nontrivial sums. We define the bi as follows. b0 :=
a1, ba1

:= a2, then ba1+a2
:= a3, and generally ba1+···+ar

:= ar+1 for r =
0, . . . , n − 2. Since the a′s have nontrivial sums the n − 1 points 0, a1, a1 +
a2, . . . , a1 + · · ·+an−2 where we have defined the bi are distinct so that we have
fixed the bi for n− 2 elements in Zn. Consequently precisely one i0 is missing,
we put bi0 := 0.

It is routine to show that (b0, . . . , bn−1) has lwp: for example a walk that
starts at an i 6= i0 will be back at i after n− 1 steps since

∑
i ai = 0, and that

there are no shorter walks is due to the fact that the a′s have nontrivial sums.

As an example consider (2, 5, 3, 4, 1, 7, 8, 6)9 in Z9. This sequence generates
the lwp sequence (2, 4, 5, 6, 8, 1, 7, 3, 0)9.

(iii) Now we start with an lwp-sequence (b0, . . . , bn−1) in Zn. Choose any i1
such that bi1 6= 0; we know that the walk that starts at i1 meets n− 1 points.

Put ik+1 := ik +bik for k := 1, . . . , n−2 (these are the points that are visited
by the walk) and ak := bik for k = 1, . . . , n− 1.

The (a1, . . . , an−1) have the following properties:
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• They are different from zero. (Because the walk starting in i1 stays in the
set {i | bi 6= 0}.)

• They are distinct. (Because the walk visits all elements of the subset
{i | bi 6= 0} only once.)

• They have nontrivial sums. (Because all walks starting in {i | bi 6= 0} are
closed with length n− 1.)

As an illustration consider (b0, . . . , b8) = (0, 2, 3, 5, 7, 1, 4, 6, 8)9 and i1 := 1.
Then (a1, . . . , a8) = (2, 5, 8, 6, 7, 3, 1, 4)9. �

Note: Lwp sequences fail to have the same permanence properties as sequences
with nontrivial sums: (0, 1, 2, 3, 4)5 has lwp, but the sequence 3 · (0, 1, 2, 3, 4)5 =
(0, 3, 1, 4, 2)5 and also the reversed sequence (4, 3, 2, 1, 0)5 have not.

After these preparations we can desribe a mathematical magic trick that
generalizes the one from the beginning. We first present the raw version of the
trick we have in mind, later we will propose several refinements.

Step 1: Choose any odd integer n, any sequence (a1, . . . , an−1)n with nontrivial
sums and generate an lwp sequence (b0, b1, . . . , bn−1)n. Here we will illustrate
the trick with n = 7, (a1, . . . , a6)7 = (2, 6, 4, 5, 1, 3)7 and the lwp sequence
(b0, . . . , b6)7 = (0, 2, 4, 6, 1, 3, 5)7

Step 2: Prepare cards that, when held face down, show on their back the num-
bers b0, b1, . . . , bn−1 (in that order from top to botton). With blanko cards
marked with these numbers this is possible for every n, but with playing cards
n should be at most 13: Then one could define the values of Ace, Jack, Queen,
King as 1, 11, 12, 13(= 0), respectively.

Prepare also something that could be used later to prove that you knew in
advance that the number n(= 0) would play a particular role: E.g., if you work
with n = 7 and if you have represented the 7 by the seven of diamonds then
write “seven of diamonds” on a sheet of paper and put it in an envelope that is
placed on the table. Or prepare a seven of diamonds in another deck of cards
as the only card that is face up among other cards that lie all face down.

Step 3: Place the (b0, . . . , bn−1)-deck face down on the table. The audience
might suspect that the cards are prepared. (In fact they are!) In order to
convince them that this is not the case you allow several cuts or even operations
that look more complicated but also amount only in cutting the deck (like false
cuts or Charlier shuffle; in the internet these terms are explained). After this
the order of the deck might have changed to a translation of the original order.

Step 4: Deal the cards one by one clockwise as a circle of n cards. A spectator
might point to any of these cards. It is switched face up.
Case 1: It is the card that represents n(= 0). You exclaim: “Believe it or not!
I knew in advance that you would choose precisely this card!” Then prove this
by showing your prediction in the envelope or the card that is the only switched
one in the other deck.
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Case 2: Another card is chosen. This gives rise to a walk as described at the
beginning of this section: Walk clockwise as many steps as the number on the
switched card shows. Switch this card. Continue walking. Finally there will be
n− 1 cards that lie face up. And you ask: “Which one might be that card that
resisted to be be laid face up?” You switch it, and everyone can see that it is
announced in the prepared envelope (or that it coincides with the only card in
the other deck that shows face up).

Refinements: It has to be amphasized that this is only a raw version. Your
creativity is asked in order to convince the audience that here something that
is really magic happens. The distinguished card survived the switching process,
even after after the order of the cards was disturbed. Etc.

Here are some concrete proposals for refinements.

1. Let us illustrate what we mean with the simple sequence (1, 2, 3, 4, 5, 6, 7).
If you double it, you obtain (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7), and this sequence
is 7-periodic in the following sense: For every element in this sequence there is
the same element if you walk seven steps to the right. This is meant cyclically :
If 7 steps to the right are not possible, you start again from the beginning.

And 7-periodic sequences have the following properties.

• Every translation by k elements, e.g. (4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 1, 2, 3) in the
case k = 3, is again 7-periodic.

• If you remove cards from the left and from the right, in total 7 cards, then
the remaining sequence is a translation of the original one with 7 elements.

An example: Remove 4 from the left and 3 from the right, there remain
5, 6, 7, 1, 2, 3, 4, a translation of (1, 2, 3, 4, 5, 6, 7).

These facts are obviously true, and it should be clear that one could replace
7 by any n and the simple order of the cards by any other.

And here is the important consequence for mathematical magic: Suppose
that you want to start your magic trick with a pack of n cards in a certain order
(a0, a1, . . . , an−1) and that any translation of this order would also work well.

Then you could start your trick with 2n cards in the order

a0, a1, . . . , an−1, a0, a1, . . . , an−1,

this deck can be cut several times by the spectators, one of them can remove
n cards from top and bottom, and further cuts might follow. You can be sure
that your original order survived, maybe it will be a translation of it. The trick
can begin!

As an example suppose that we want to work with 7 cards and the lwp-
sequence (4, 6, 1, 3, 5, 7, 2)7. Then prepare a deck like the first one in figure
4.
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Figure 4: A “walk” on a circle of seven cards.

The audience, however, sees the cards as in the second figure in figure 4; now
the 4 of diamonds is the card on the left hand side. (It is possible to turn the
deck face up, to fan it out and to show it shortly. But then you should take care
that nobody can see that there are two identical cards that show the seven of
spades: One of them will later be the distinguishd card, and the seven of spades
is also the switched card in the extra deck.)

Now seven cards can be removed from left and/or right, some cuts are al-
lowed, and then the presentation can begin.

2. In Zn one has k = k + n for every k. Thus, if you represent numbers by
cards, it is not necessary always to use k when this number is relevant at this
position. E.g., if you work with n = 7, you can replace every now and then an
Ace (resp. a 2 resp. a 3) by an 8 (resp. a 9 resp. a 10).

3. You can “personalize” the trick. In our example where the seven of spades is
the remainig card you could write something on it: “Happy birthday, dear X.”
if your presentation is at the occasion of X’s birthday, etc. Needless to say that
this must not be visible when you fan out the cards.

Important note: The order of the cards is crucial. If you work with the lwp
sequence (2, 4, 5, 6, 8, 1, 7, 3, 0)9 and the deck is shown face down, then it is
absolutely necessary that the next card after the 2 is the 4. If they would lie the
other way round the trick would not work. Also it is important that everything
happens clockwise: the way to deal the cards to obtain a circle and the walks of
the spectators. (In fact, both actions could be changed to “counterclockwise”,
but “clockwise” and “counterclockwise” must not be mixed.)

Concluding remarks

1. Some time ago a member of my magic circle presented a trick with seven cards
that he found in the book “Fast von selbst” by Werner Miller (see [14]). The
trick works since (0, 2, 4, 6, 1, 3, 5) has lwp, and it was natural to ask whether
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there are other lwp sequences and whether one could present a similar trick
with another number of cards. As already mentioned it were these questions
that motivated the present investigations.

2. Why did we restrict ourselves to odd n? The answer: We had in mind to
apply our results to a magic trick. This makes it necessary to generate from
(a1, . . . , an−1) an lwp sequence (b0, . . . , bn−1), and this only works if

∑n−1
i=1 i = 0,

i.e., if n is odd.

3. If one tries to find (a1, . . . , an−1) in Zn with nontrivial sums one could
proceed as follows:
– Start with any a1 6= 0.
– If you have already constructed a1, . . . , ak find the next one, ak+1, as follows:
In order to have the nontrivial sum condition satisfied one has to guarantee
that ak+1 is different from all a1, . . . , ak, and aj + · · · + ak + ak+1 6= 0 for all
j = 1, . . . , k. To state it otherwise: ak+1 must not be in

Ta1,...,ak
:= {a1, . . . , ak} ∪ {−(aj + · · ·+ ak) | j = 1, . . . , k}.

This will be easy for small k, but nearly always it happens that the “taboo
set” Ta1,...,ak

is all of {1, . . . , n − 1} for some k < n − 2: Note that it contains
at least (a1, . . . , ak) and possibly k further elements so that it tends to be “too
big” when k > n/2. Then this approach leads to a dead end.

The main idea in the proof of proposition 2 is to choose the ai such that
Ta1,...,ak

grows slowly when k approaches n/2, and it helps when these numbers
contain as may pairs as possible of the form a,−a. In fact it were extensive
computer experiments that led to the construction in the proof of the proposi-
tion.

4. Computer experiments show that there are sequences with nontrivial sums
that are not of the form of the example in proposition 2 or derived from this
example by inversion, translation or multiplication with an invertible element.
In fact, for n ≤ 7 all examples have this form, but already for n = 9 there are
further sequences with nontrivial sums. (E.g. (1, 3, 7, 5, 8, 6, 2, 4)9; this sequence
is not constructed from (1, 2,−4, 6,−1,−6, 4,−2)9 since there are no ai such that
ai+1 = −ai−1.)

Nevertheless, the proportion of sequences with nontrivial sums among the
permutations of 1, 2, , . . . , n−1 is more and more tiny with increasing n: ≈ 2/100
for n = 7; ≈ 2/1000 for n = 9; ≈ 2/10000 for n = 11, . . .

5. It would be interesting to find other recipes for finding sequences with non-
trivial sums than that of the proof of proposition 2.

6. If one weakens the requirement that the (a1, . . . , an−1) exhaust {1, . . . , n−1}
then it is rather easy to find examples with

∑k′

i=k ai 6= 0 for (k, k′) 6= (1, n −
1) and

∑n−1
i=1 ai = 0, also for even n. One simply can take (1, 1, . . . , 1, 1, 2)n

(with the lwp sequence (0, 1, . . . , 1, 2)n), but also more complicated examples can
easily be found, for example (4, 3, 2, 5, 4)6 (with 0, 4, 2, 4, 5, 3 as the associated
lwp sequence). Such sequences can also be used for our magic trick.
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