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Let (M1, d1), (M2, d2) be metric spaces. A map f : M1 → M2
is said to be locally open at an x1 ∈ M1, if for every ε > 0
one finds a δ > 0 such that B

(
f(x1), δ

)
⊂ f

(
B(x1, ε)

)
; here 

B(x, r) stands for the closed ball with center x and radius r.
We are particularly interested in the following special case: 
X, Y, Z are normed spaces, the spaces L(X, Y ), L(Y, Z), 
L(X, Z) of linear continuous operators are provided with 
the operator norm, and the map under consideration is the 
bilinear map (S, T ) �→ S ◦ T (from L(Y, Z) × (L(X, Y ) to 
L(X, Z)). For which pairs (S0, T0) ∈ L(Y, Z) × (L(X, Y ) is it 
locally open?
The main result of the paper gives a complete characterization 
of pairs (S, T ) at which this map is locally open in the case of 
finite-dimensional spaces X, Y, Z.

© 2016 Elsevier Inc. All rights reserved.

1. The problem

Let A be a normed algebra and (x0, y0) ∈ A. We say that multiplication is locally 
open at (x0, y0) if for every ε > 0 one can find a δ > 0 such that

{x0 · y0 + w | ||w|| ≤ δ} ⊂ {(x0 + x) · (y0 + y) | ||x||, ||y|| ≤ ε}.
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The case of commutative A has been investigated in several papers (see [1–7]). Here 
we aim at characterizing the pairs (x0, y0) where multiplication is locally open in the 
noncommutative normed algebra Mn of real or complex n × n-matrices for arbitrary 
n ∈ N.

In the framework of singularity theory the problem whether certain nonlinear maps are 
locally open at a given point has been studied for many decades. However, the interest in 
the special case of “natural” bilinear maps that occur in functional analysis is relatively 
new.

Whereas the “commutative” case (like pointwise multiplication in spaces of measur-
ables or continuous functions) leads to problems in measure theory and topology the 
noncommutative matrix multiplication corresponds to a nonlinear map from 2n2- to 
n2-dimensional space, and there seem to be no general results that could be used here 
unless this mapping has full rank. We will show that rather elementary linear algebra 
leads to a complete characterization.

Another viewpoint is also possible. Let X, Y, Z be normed linear spaces and denote 
by L(X, Y ), L(Y, Z) and L(X, Z) the spaces of continuous linear operators from X to Y
etc. (These spaces are provided with the operator norm.) One can consider the bilinear 
map Φ : L(Y, Z) ×L(X, Y ) → L(X, Z), (S, T ) �→ S ◦T , and one may ask: at which pairs 
(S0, T0) is Φ, the operator “multiplication”, locally open? The preceding case of normed 
algebras covers the situation X = Y = Z, but what can be said in general? We provide 
a complete characterization for the case of finite dimensional X, Y, Z in section 2, and 
section 3 is concerned with the special case of multiplication in Mn.

2. Where is (S, T ) �→ S ◦ T locally open?

First we collect some facts that concern arbitrary normed spaces X, Y, Z over the 
scalar field K ∈ {R, C} . (We will drop the symbol “◦” for the composition of maps.)

Lemma 2.1. Let S0 ∈ L(Y, Z) and T0 ∈ L(X, Y ) be given.

(i) Suppose that T0 has the following property: for every ε > 0 there exists Tε ∈ L(X, Y )
with ||Tε|| ≤ ε such that S0Tε = 0, and T0 + Tε admits a left inverse (i.e., a 
T̃ ∈ L(Y, X) with T̃ (T0+Tε) = IdX). Then multiplication is locally open at (S0, T0).

(ii) If S0 is such that for every ε > 0 there exists Sε ∈ L(Y, Z) with ||Sε|| ≤ ε such 
that SεT0 = 0 and S0 + Sε admits a right inverse (i.e., an S̃ ∈ L(Z, Y ) with 
(S0 + Sε)S̃ = IdZ), then multiplication is locally open at (S0, T0).

(iii) If T0 admits a left inverse or S0 admits a right inverse, then multiplication is locally 
open at (S0, T0).

(iv) Suppose that for every ε > 0 there exists Tε with ||Tε|| ≤ ε (resp. Sε with ||Sε|| ≤ ε) 
such that T0 + Tε has a left inverse (resp. S0 + Sε has a right inverse). Then 
multiplication is locally open at (0, T0) (resp. at (S0, 0)).
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Proof. (i) For a given ε > 0 put T := Tε and δ := ε/(||T̃ || + 1), where T̃ is a left inverse 
of T0 + Tε. For R ∈ L(X, Z) with ||R|| ≤ δ define S := RT̃ . Then ||S|| ≤ ε and

(S0 + S)(T0 + T ) = S0T0 + RT̃ (T0 + Tε) = S0T0 + R.

The proof of (ii) is similar, and (iii) and (iv) follow immediately from (i) and (ii). �
Now we will restrict ourselves to the case of finite dimensional spaces. We will consider 

normed spaces X, Y and Z that are n-, k- and m-dimensional, respectively, and T0 :
X → Y as well as S0 : Y → Z are fixed linear maps. When is (S, T ) → ST locally open 
at (S0, T0) ? Our strategy will be as follows:

We will find conditions that will allow us to apply Lemma 2.1(i) and (ii) for the proof 
of local openness. And if both conditions are violated we will prove that multiplication
is not locally open.

We begin our investigations with some preparations. Denote by s and t the ranks of 
S0 and T0, respectively; we put t2 = dim(rangeT0 ∩ kerS0), and t1 := t − t2.

Lemma 2.2. Let U be a subspace of Y .

(i) There exists T ∈ L(X, Y ) with rangeT ⊂ U such that T0 + αT is one-to-one for 
every α 	= 0 iff n − t + tU ≤ dimU ; here tU := dim(U ∩ rangeT0).

(ii) There is an S ∈ L(Y, Z) with S|U = 0 such that S0 + αS is onto for every α 	= 0 iff 
sU := dim(U ∩ kerS0) ≤ k −m.

Proof. (i) Suppose that such a T exists. kerT0 is (n − t)-dimensional so that we may 
choose a basis x1, . . . , xn−t of kerT0. Let yn−t+1, . . . , yn−t+tU be a basis of U ∩ rangeT0, 
and xn−t+1, . . . , xn−t+tU are vectors such that T0(xi) = yi for i = n −t +1, . . . , n −t +tU . It 
is easy to see that x1, . . . , xn−t+tU are linearly independent so that we may select further 
t − tU vectors xn−t+tU+1, . . . , xn to arrive at a basis of X.

T0+T is one-to-one so that the (T0+T )(x1), . . . , (T0+T )(xn) are linearly independent. 
The range of T lies in U , and U contains the n − t + tU linearly independent vectors 
T (x1), . . . , T (xn−t), yn−t+1 + T (xn−t+1), . . . , yn−t+tU + T (xn−t+tU ). Thus n − t + tU ≤
dimU .

Now suppose that n − t + tU ≤ dimU . This inequality implies that we may choose an 
(n − t)-dimensional subspace W of U such that W ∩ rangeT0 = {0}. Let I : ker T0 → W

be a linear bijection and V ⊂ X a complementary subspace of kerT0.
We define T ∈ L(X, Y ) by D(x + v) := I(x) for arbitrary x ∈ kerT0 and v ∈ V . We 

claim that T0 + αT is one-to-one for every scalar α 	= 0. In fact, if 0 = (T0 + αT )(x +
v) = T0(v) + αI(x) (where x ∈ ker T0 and v ∈ V ), then T0(v) = I(x) = 0 (since 
W ∩ rangeT0 = {0}) so that v ∈ V ∩ kerT0 = {0} and x = 0. Thus x + v = 0.
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(ii) Whereas an approach similar to the ideas in the proof of (i) is possible we prefer 
to use a duality technique that will also be important later. As usual we denote by X ′

the dual of a Banach space X, and for T ∈ L(X, Y ) the dual map T ′ ∈ L(Y ′, X ′) is 
defined by f �→ f ◦ T . For a subspace U ⊂ X the annihilator {f ∈ X ′ | f |U = 0} is 
denoted by U⊥.

The existence of an S ∈ L(X, Y ) with S|U = 0 such that S0 + αS is onto for α 	= 0
is equivalent with the existence of an S′ ∈ L(Y ′, X ′) with rangeS′ ⊂ U⊥ such that 
S′

0 + αS′ is one-to-one for these α. Part (i) of the lemma provides a criterion, we only 
have to check the new meaning of the numbers that are used there.

• The number t is the rank of S′
0, it has to be replaced by s.

• The dimension of U⊥ is k − dimU .
• We have (rangeS′

0)⊥ = kerS0, and (kerS0)⊥ ∩ U⊥ = (kerS0 + U)⊥. And since 
dim(V1 +V2) = dimV1 +dimV2−dim(V1∩V2) for subspaces V1, V2 we conclude that

dim(U⊥ ∩ rangeS′
0) = k − [(k − s) + dimU − sU ] = s− dimU + sU .

• The number n in (i) has to be replaced by m.

In this way our characterization of (i) translates to m −s +(s −dimU +sU ) ≤ k−dimU , 
or sU ≤ k −m. �
Corollary 2.3.

(i) There exists T ∈ L(X, Y ) with S0T = 0 such that T0 + αT is one-to-one for every 
α 	= 0 iff n − t1 ≤ k − s.

(ii) There exists S ∈ L(Y, Z) such that ST0 = 0 and S0 +αS is onto for every α 	= 0 iff 
t2 ≤ k −m.

Proof. One only has to apply the preceding lemma with U = kerS0 (for the proof of (i)) 
and U = rangeT0 (for the proof of (ii)). �

So far we have avoided to use matrix representations of the maps under consideration. 
However, in the proof of our main theorem it will be necessary to switch between the 
original space and the dual space, and our argument will be much clearer if we only have 
to pass from columns to rows of a matrix.

In the next lemma we describe the “best possible” matrix representation of S0 and 
T0 for our purposes. One should note that the transition to a matrix representation of 
a given linear map might change the operator norm of this map. But this will cause no 
difficulties here since the problem we are interested in only depends on the topologies of 
the operator spaces under consideration.
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Lemma 2.4. We adopt the preceding notation and we suppose that s ≥ t. Then there are 
bases in X, Y, Z, respectively, such that S0 and T0 have matrix representations of the 
following form:

S0 =
(

Es Zs,k−s

Zm−s,s Zm−s,k−s

)
, T0 =

⎛
⎜⎜⎜⎝

Et1 Zt1,t2 Zt1,n−t

Zs−t1,t1 Zs−t1,t2 Zs−t1,n−t

Zt2,t1 Et2 Zt2,n−t

Zk−t2−s,t1 Zk−t2−s,t2 Zk−t2−s,n−t

⎞
⎟⎟⎟⎠ .

Here Za,b denotes the a × b zero matrix and Ea stands for the a-dimensional identity 
matrix. Obviously, S0T0 then has the form

S0T0 =

⎛
⎜⎝ Et1 Zt1,n−t1

Zs−t1,t1 Zs−t1,n−t1

Zm−s,t1 Zm−s,n−t1

⎞
⎟⎠ .

Proof. Write Y as the direct sum of four subspaces Y1, Y2, Y3, Y4, where

• Y1 is the t2-dimensional subspace range T0 ∩ kerS0;
• Y2 ⊂ kerS0 is such that ker S0 is the direct sum of Y1 and Y2 (this subspace is 

(k − s − t2)-dimensional);
• Y3 is chosen such that rangeT0 is the direct sum of Y1 and Y3 (this is a t1-dimensional 

subspace);
• finally, Y4 is a complement of Y1 +Y2 +Y3 in Y (an (s − t1)-dimensional space). Here 

we make use of the fact that s ≥ t.

Next we choose:

• y1, . . . , yt1 , a basis of Y3;
• yt1+1, . . . , ys, a basis of Y4;
• ys+1, . . . , ys+t2 , a basis of Y1;
• ys+t2+1, . . . , yk, a basis of Y2.

The first x1, . . . , xt are determined such that T0x1 = y1, . . . , T0xt1 = yt1 and T0xt1+1 =
ys+1, . . . , T0xt1+t2 = ys+t2 . Then the x1, . . . , xt are linearly independent, and we choose 
vectors xt+1, . . . , xn ∈ kerT0 such that x1, . . . , xn are a basis of X.

It remains to choose a basis z1, . . . , zm in Z. The first z1, . . . , zs are defined by zi :=
S0yi, and the remaining ones are arbitrary. (Note that S0 is one-to-one on Y3 + Y4.)

Then the matrix representations are as desired. �
Up to now we have provided no example where multiplication is not locally open. 

For trivial reasons this happens at all pairs (S0, T0) if m, n > k: surely one can find 
R ∈ L(X, Z) with arbitrarily small ||R|| such that S0T0 +R has rank bigger than k, but 
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the rank of a map (S0 + S)(T0 + T ) is always bounded by k. We will now present a less 
trivial example where local openness also fails. A generalization of the proof of this fact 
will be the essential ingredient in the verification of our main result in Theorem 2.5.

Example. We will consider the case n = k = m = 4, and S0, T0 are defined by the 
following matrices:

S0 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , T0 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , S0T0 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ .

Here s = t = 2 and t1 = t2 = 1. We claim that multiplication is not locally open at 
(S0, T0). To this end we have to provide a positive ε0 such that for arbitrarily small δ it 
is not possible to write all S0T0 + R with ||R|| ≤ δ in the form (S0 + S)(T0 + T ), where 
||S||, ||T || ≤ ε0.

We choose ε0 > 0 such that the following two conditions are satisfied:

• For each T with ||T || ≤ ε0 the second column of T0 + T is not the zero column.
• For each S with ||S|| ≤ ε0 the first two rows of S0 + S are linearly independent.

Surely such ε0 exist. (In order to avoid to work with the operator norm of matrices we 
are not going to define ε0 explicitly.) Now let δ > 0 be arbitrary. We claim that the 
definition

R =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 δ 0
0 0 0 δ

⎞
⎟⎟⎟⎠ , i.e., S0T0 + R =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 δ 0
0 0 0 δ

⎞
⎟⎟⎟⎠ ,

leads to an R with the desired properties.

Suppose that there were S, T with ||S||, ||T || ≤ ε0 and (S0 + S)(T0 + T ) = S0T0 + R: 
we will show that this leads to a contradiction.

The second column of S0T0 +R is zero, but the second column of T0 +T is nontrivial 
by our choice of ε0. Hence S0 + S has a nontrivial kernel and therefore it cannot have 
full rank. We may choose scalars a1, a2, a3, a4 with (a1, a2, a3, a4) 	= (0, 0, 0, 0) such that 
(a1, a2, a3, a4)(S0 +S) = (0, 0, 0, 0). (I.e., 

∑
i airi = 0, where r1, r2, r3, r4 denote the rows 

of S0 + S.)
It is not possible that a3 = a4 = 0 since r1, r2 are linearly independent due to the 

choice of ε0 so that (a3, a4) 	= (0, 0).
From (a1, a2, a3, a4)(S0 + S) = (0, 0, 0, 0) it follows that
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(0, 0, 0, 0) = (a1, a2, a3, a4)(S0 + S)(T0 + T ) = (a1, a2, a3, a4)(S0T0 + R).

Or, to state it differently, 
∑

i air
′
i = (0, 0, 0, 0), with r′i = the i’th row of S0T0 + R. 

But this is surely not the case since the last two entries of 
∑

i air
′
i are a3δ, a4δ, and 

(a3, a4) 	= (0, 0).
Here is our main result:

Theorem 2.5. Let X, Y, Z be real or complex normed spaces with dimensions n, k and m, 
respectively. S0 ∈ L(Y, Z) and T0 ∈ L(X, Y ) are linear operators, we denote by s resp. t
the rank of S0 resp. the rank of T0. The number t is written as t = t1 + t2, where t2 is 
the dimension of rangeT0 ∩ kerS0.

The following conditions are equivalent:

(i) Multiplication is locally open at (S0, T0).
(ii) t2 ≤ k −m, or n − t1 ≤ k − s .
(iii) There exists T ∈ L(X, Y ) with S0T = 0 such that T0 + αT is one-to-one for every 

α 	= 0, or there exists S ∈ L(Y, Z) such that ST0 = 0 and S0 +αS is onto for every 
α 	= 0.

Proof. The equivalence of (ii) and (iii) was shown in Corollary 2.3, and (iii) ⇒ (i) is a 
consequence of Lemma 2.1(i) and (ii). One only has to note that a linear map between 
finite dimensional spaces has a left inverse (resp. a right inverse) iff it is one-to-one (resp. 
onto). So it remains to prove that (i) implies (ii).

Assume that t2 > k − m and n − t1 > k − s: we will show that multiplication is 
not locally open at (S0, T0). We will adopt the strategy that worked successful in the 
preceding example.

Let us first assume that s ≥ t. We will work with the matrix representations of S0
and T0 from Lemma 2.4. Our ε0 is chosen such that:

• If S is an m × k-matrix such that ||S|| ≤ ε0, then the first s rows of S0 + S are 
linearly independent.

• If T is a k × n-matrix with ||T || ≤ ε0, then the columns of T0 + T at positions 
t1 + 1, . . . , t are linearly independent.

Let δ > 0 be arbitrary. We will define R such that ||R|| ≤ δ, but S0T0 + R cannot be 
written as (S0 +S)(T0 +T ) with ||S||, ||T || ≤ ε0. The idea will be to have nonzero entries 
of R only in the bottom right block of S0T0.

Let us first analyze how many rows are there below the Es-block in S0. The kernel of 
S0 is (k − s)-dimensional, and there is at least a t2-dimensional subspace in this kernel. 
Thus k − s ≥ t2, or s ≤ k − t2. But k − t2 < m, and consequently we find at least 
p := k − t2 + 1 − s rows below Es. The inequality n − t1 > k − s yields n − t ≥ p, and 
this enables us to find a p × (n − t)-matrix R̃ with linearly independent rows.
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We now define R : all entries are zero, unless the entries in the rows at positions 
s + 1, . . . , s + p between the columns t + 1, . . . , n where we insert the entries of R̂ := τR̃; 
here τ is chosen so small that ||R|| ≤ δ.

We now proceed as in the preceding example. Suppose that one could write S0T0 +R

as (S0 + S)(T0 + T ) with ||S||, ||T || ≤ ε0. The linearly independent columns of T0 + T

at positions t1 + 1, . . . , t are mapped to zero by S0 + S since the corresponding columns 
of S0T0 + R are zero. Hence the kernel of S0 + S is at least t2-dimensional so that the 
rank of this matrix is at most k− t2. We conclude as above that each k− t2 + 1 rows of 
S0 +S must be linearly dependent so that we may choose a nontrivial linear combination ∑k−t2+1

i=1 airi = 0. (By r1, . . . , rm we denote the rows of S0 + S.) But r1, . . . , rs are 
linearly independent by our choice of ε0 so that there must be nonzero numbers among 
the as+1, . . . , as+p. With r′i = the rows of S0T0 + R we conclude (with an argument as 
in the special four-dimensional case that was discussed just before the theorem) that ∑k−t2+1

i=1 air
′
i = 0. But this is not possible since it would imply that a nontrivial linear 

combination of the rows of R̂ is zero.
It remains to deal with the case s < t. As in the proof of Lemma 2.2(ii) we will 

reduce it to the case s > t by using duality. Suppose that we assume (i). If multiplication 
is locally open at (S0, T0), then it is locally open also at (T ′

0, S
′
0) since T �→ T ′ is an 

isometrical isomorphism that reverses the order of multiplication. But the rank of T ′
0 is 

larger than the rank of S′
0 so that – by the first part of the proof – we know that one of 

the inequalities

t′2 ≤ k′ −m′, n′ − t′1 ≤ k′ − s′

holds. Here the numbers with the prime stand for the corresponding parameters for the 
new situation:

• k′ = k, m′ = n, n′ = m, t′ = s, s′ = t.
• t′2 = dim(rangeS′

0 ∩ ker T ′
0) = s − t1 (cf. the proof of Lemma 2.2(ii)).

• t′1 = t′ − t′2 = s − (s − t1) = t1.

Thus t′2 ≤ k′ − m′ in fact means s − t1 ≤ k − n, and n′ − t′1 ≤ k′ − s′ is the same as 
m − t1 ≤ k − t, or t2 ≤ k −m. �
3. Multiplication in the Banach algebra Mn

We now consider the special case k = n = m:

Theorem 3.1. Let S0, T0 ∈ Mn be given. s and t stand for the rank of S0 and T0, 
respectively. t2 is the dimension of rangeT0 ∩ kerS0, and t1 := t − t2.

(i) Suppose that s ≥ t. Then multiplication in Mn is locally open at (S0, T0) iff t2 = 0
iff there exist S ∈ Mn with ST0 = 0 such that S0 +αS is invertible for every α 	= 0.
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(ii) In the case s ≤ t multiplication in Mn is locally open at (S0, T0) iff s ≤ t1 iff there 
exist T ∈ Mn with S0T = 0 such that T0 + αT is invertible for every α 	= 0.

Proof. (i) If s ≥ t and k = n = m the condition s ≤ t1 implies t2 = 0. Thus the assertion 
follows from Theorem 2.5 and Corollary 2.3.

(ii) Here one only has to note that in the case s ≤ t the condition t2 = 0 yields s ≤ t1
so that Theorem 2.5 and Corollary 2.3 yield the result. �
Remark. If (under the assumption k = n = m) s = t holds the conditions t2 = 0 and 
s ≤ t1 are equivalent, and if they are satisfied one has both invertible S0 + αS and 
invertible T0 + αT .

We supplement our theorem with some further results concerning local openness of 
multiplication in Mn:

Proposition 3.2. Let S0, T0 ∈ Mn be given.

(i) If multiplication is locally open at (S0, T0) it does not follow that it is locally open 
at (T0, S0).

(ii) If multiplication is locally open at (S0, T0) then it is also locally open at (T�
0 , S�

0 ); 
here S� stands for the transpose of a matrix S.

(iii) Suppose that Kn is provided with the usual scalar product and that S∗ denotes the 
adjoint of a matrix S. Then multiplication is locally open at (S0, T0) iff it is locally 
open at (T ∗

0 , S
∗
0). In particular multiplication is locally open at (S0, T0) if it is locally 

open at (T0, S0) for self-adjoint S0, T0.
(iv) The pairs where multiplication is locally open are dense in Mn ×Mn.

Proof. (i) As a simple example where this can happen consider

S0 =
(

0 0
1 0

)
, T0 =

(
1 0
0 0

)
.

We have kerS0 = rangeS0 = kerT0 = {0} ×K and rangeT0 = K × {0}. Thus s = t = 1, 
and Theorem 3.1 implies the assertion.

(ii) and (iii) follow from the observation that S �→ S� (resp. S �→ S∗) are isometrical 
isomorphisms that reverse the order of multiplication.

(iv) is a consequence of the fact than invertible matrices are dense in Mn. �
Up to now we have no satisfactory characterization of local openness for the case of 

more general Banach algebras or multiplication in operator spaces. (Cf. the last section 
of [4] for the discussion of an example.) The formulation and the proof of our main 
theorem was strongly dependent on the fact that we are dealing with finite-dimensional
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spaces: finiteness of the rank; a one-to-one operator has a right inverse; dim(rangeS) +
dim(kerS) = k for operators on a k-dimensional space; the space has the same dimension 
as its dual etc.

Parts of our results have a counterpart for continuous linear operators on a separable 
Hilbert space, but we are still far from an understanding how an interplay of properties 
of the ranges, the kernels and the spectra gives rise to local openness.
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