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Abstract. Let K be a compact Hausdorff space, the space CK of real-
valued continuous functions on K is provided with the suprumum norm. The
closed ball with center f and radius r will be denoted by B(f, r).

Given f, g ∈ CK it might be true or not that for every ε > 0 there exists a
δ > 0 such that B(fg, δ) ⊂ B(f, ε)B(g, ε); here fg is the pointwise product
of f and g, and B(f, ε)B(g, ε) := {f̃ g̃ | f̃ ∈ B(f, ε), g̃ ∈ B(g, ε)}. If this is
the case we say that multiplication is locally open at (f, g).

For the case K = [ 0, 1 ] a characterization of the pairs (f, g) where multipli-
cation is locally open is known. In the present paper we extend these results
to arbitrary K.
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1. Introduction

Let X,Y, Z be Banach spaces and T : X × Y → Z a bilinear mapping. For
certain rather special situations one can show that T is locally open at every pair
(x, y): for all x ∈ X, y ∈ Y and every ε > 0 one can find a positive δ such that

BZ(T (x, y), δ) ⊂ {T (x̃, ỹ) | x̃ ∈ BX(x, ε), ỹ ∈ BY (y, ε)}.

(Balls in X,Y, Z are denoted by BX , BY , BZ , respectively.) It might even happen
that, given ε, the same δ can be chosen for all x, y ; T is called uniformly open in this
case (cf. [3]). On the other hand there are simple examples where T is not locally
open at some (x, y), and by now it is not well understood how the interplay between
the structure of the spaces under consideration and properties of the mapping T
gives rise to such phenomena.

A natural candidate to be considered here is the case X = Y = Z = A, where A
is a Banach algebra and T is the multiplication in A. Even for this seemingly simple
situation surprisingly little is known. We mention here investigations of Komisarski
(zero-dimensional CK-spaces, [7]) and the author ([4], multiplication on C [ 0, 1 ]).
For further result concerning local openness of multilinear mappings see [2], [5] and
[8].
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The aim of the present paper is a characterization of local openness for the case
of general CK-spaces: multiplication will be locally open at f, g if and only if K
“splits” suitably at those regions where both f and g are close to zero.

In order to make this precise we need some notation. We fix a nonvoid compact
Hausdorff space K and two continuous functions f, g : K → R. The map φf,g :
K → R2 will be defined by k 7→

(
f(k), g(k)

)
.

We will also deal with some special subsets of R2. For positive η, ε we define

Mη,1 := {(x, y) | x, y ∈ R, xy ≥ η};
Mη,2 := {(x, y) | x, y ∈ R, xy ≤ η};
Mη,ε,1 := {(x, y) | x, y ∈ R, xy ≤ η, x ≥ −ε, y ≤ ε};
Mη,ε,2 := {(x, y) | x, y ∈ R, xy ≤ η, x ≤ ε, y ≥ −ε};
M−η,1 := {(x, y) | x, y ∈ R, xy ≤ −η};
M−η,2 := {(x, y) | x, y ∈ R, xy ≥ −η};
M−η,ε,1 := {(x, y) | x, y ∈ R, xy ≥ −η, x, y ≤ ε};
M−η,ε,2 := {(x, y) | x, y ∈ R, xy ≥ −η, x, y ≥ −ε}.

These sets are sketched in the following pictures:

Figure 1: Mη,1,Mη,ε,1 and Mη,ε,2; Mη,2 =Mη,ε,1 ∪Mη,ε,2.

Figure 2: M−η,1,M−η,ε,1 and M−η,ε,2; M−η,2 =M−η,ε,1 ∪M−η,ε,2.

Since the union of the Mη,1,Mη,ε,1,Mη,ε,2 (resp. of the M−η,1,M−η,ε,1,M−η,ε,2)
is all of R2 the union of the preimages φ−1f,g(Mη,1), φ−1f,g(Mη,ε,1), φ−1f,g(Mη,ε,2) (resp.

the union of the φ−1f,g(M−η,1), φ−1f,g(M−η,ε,1), φ−1f,g(M−η,ε,2)) will exhaust K.

In particular it is true that φ−1f,g(Mη,2) (resp. φ−1f,g(M−η,2)) is the union of

φ−1f,g(Mη,ε,1) and φ−1f,g(Mη,ε,2) (resp. of φ−1f,g(M−η,ε,1) and φ−1f,g(M−η,ε,2)). Our
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characterization states that multiplication is locally open at (f, g) if and only if this
union can be replaced by the union of suitable disjoint closed sets:

1.1 Theorem: Let K be a nonvoid compact Hausdorff space. For f, g ∈ CK, the
space of real-valued continuous function on K, provided with the supremum norm,
the following are equivalent:

(i) Multiplication is locally open at (f, g).

(ii) The following two conditions are satisfied:

(C1) For every ε0 > 0 there is an η > 0 with the following property: φ−1f,g(Mη,2) can
be written as the disjoint union of two closed subsets K1,K2 such that φf,g(K1) ⊂
Mη,ε0,1 and φf,g(K2) ⊂Mη,ε0,2.

(C2) For every ε0 > 0 there is an η > 0 with the following property: φ−1f,g(M−η,2) can
be written as the disjoint union of two closed subsets K1,K2 such that φf,g(K1) ⊂
M−η,ε0,1 and φf,g(K2) ⊂M−η,ε0,2.

The proof will be given in section 3, some necessary preparations are provided
in section 2. In section 4, we discuss some consequences, and finally, in section 5,
we collect some invitations for further research.

2. Some preparations

Positive and negative constant differences will suffice

Fix a positive δ and let α, β, γ be real numbers such that the polynomial P : λ 7→
α+ βλ+ γλ2 satisfies P (0) = −δ and P (1) = δ. Then P has in fact only one free
parameter: if γ is selected arbitrarily then P (λ) = −δ+ (2δ− γ)λ+ γλ2 =: Pγ(λ).
Figure 3 shows sketches of some Pγ where γ varies from negative values (light gray)
to positive values (black):

Figure 3

As a consequence of the intermediate value theorem we know that for every
a ∈ [−δ, δ ] there will exist a λ ∈ [ 0, 1 ] such that Pγ(λ) = a. The numbers λ and
a are sketched in figure 4 :
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Figure 4

One sees that, for certain γ, there might be two solutions λ of Pγ(λ) = δ or
Pγ(λ) = −δ. We claim that nevertheless one can choose λ as a continuous function
of a and γ :

2.1 Lemma:There is a continuous function Λ : [−δ, δ ]×R→ [ 0, 1 ] such that for
all a ∈ [−δ, δ ] and all γ ∈ R one has Pγ

(
Λ(a, γ)

)
= a.

Proof: Our definition will be as follows. We put

Λ(a, 0) :=
a

2δ
+

1

2

for all a, and for γ 6= 0 and a ∈ R we define

Λ(a, γ) :=
(γ − 2δ) +

√
(γ − 2δ)2 + 4γ(a+ δ)

2γ
.

It is plain that Λ satisfies Pγ
(
Λ(a, γ)

)
= a. Continuity on [−δ, δ ] × (R \ {0}) is

clear, and for the proof that Λ is continuous on the strip [−δ, δ ]× {0} one has to
use the fact that

√
1 + x ≈ 1 + x/2, where the error term of order x2. �

The following proposition, by which the investigations to come will be consi-
derably simplified, is an easy consequence of this lemma:

2.2 Proposition: For f, g ∈ CK and positive ε, δ the following two conditions are
equivalent:

(i) B(fg, δ) ⊂ B(f, ε)B(g, ε).

(ii) fg − δ and fg + δ lie in B(f, ε)B(g, ε). (For any real number α we denote by
α the constant function k 7→ α.)

Proof: We only have to show that (i) follows from (ii). So suppose that we may
choose functions d−1 , d

−
2 , d

+
1 , d

+
2 ∈ CK with norm at most ε such that

(f + d−1 )(g + d−2 ) = fg − δ, (f + d+1 )(g + d+2 ) = fg + δ .

A function d ∈ CK with −δ ≤ d ≤ δ is given, and we have to find d1, d2 ∈ CK
with ||d1||, ||d2|| ≤ ε such that (f + d1)(g + d2) = fg + d.
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This will be achieved by convex combinations of the d±1 , d
±
2 that vary conti-

nuously with k. Fix k ∈ K and consider for λ ∈ [ 0, 1 ] the convex combinations

dλ1 := λd+1 (k) + (1− λ)d−1 (k), dλ2 := λd+2 (k) + (1− λ)d−2 (k).

What is a suitable λ such that
(
f(k) + dλ1

)(
g(k) + dλ2

)
= f(k)g(k) + d(k) i.e.,

f(k)dλ2 + g(k)dλ1 + dλ1d
λ
2 = d(k) ?

We observe that λ 7→ f(k)dλ2 +g(k)dλ1 +dλ1d
λ
2 is a polynomial of degree at most

two that assumes the value −δ (resp. δ) at 0 (resp. 1). Thus it is of the form −δ+

(2δ−γ(k))λ+γ(k)λ2; note that γ(k) is composed from f(k), g(k), d±1 (k), d
(
2k), d(k)

so that γ(k) varies continuously with k.
We define λ̃ : K → [ 0, 1 ] by λ̃(k) := Λ

(
d(k), γ(k)

)
(with Λ as in lemma 2.1).

Then d1 := λ̃d−1 + (1 − λ̃)d+1 and d2 := λ̃d−2 + (1 − λ̃)d+2 will have the desired
properties: these functions are continuous, their norm is bounded by ε, they satisfy
fd2 + gd1 + d1d2 = d and consequently also (f + d1)(g + d2) = fg + d. �

The strategy of our proof

Suppose that, for some given positive ε0, δ, we want to show that fg − δ lies
in B(f, ε0)B(g, ε0). Consider the following picture where some level curves of the
function (x, y) 7→ H(x, y) := xy are depicted:

Figure 7: Some level curves of (x, y) 7→ xy =: H(x, y) (positive: black; negative: gray).

We have to find continuous d1, d2 : K → R such that for all k the point(
f(k) + d1(k), g(k) + d2(k)

)
lies on a level surface where the associated value is

precisely δ units smaller than the value of the level surface that contains φf,g(k).
For every k there are infinitely many possibilities to choose d1(k), d2(k), and the
problem is to make these choices in such a way that they give rise to continuous
functions d1, d2.

A natural first approach would be to define d1(k), d2(k) such that these numbers
do not depend on k but only on

(
f(k), g(k)

)
. (In fact this will work only for simple

situations. For the general case the idea will have to be refined.)

2.3 Definition: Let G be a subset of R2 and ε, δ positive numbers. A continuous
function ψ : G → R2 will be called an (ε,−δ) vector field if the following two
conditions are satisfied:
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(i) For all v ∈ G one has H
(
v + ψ(v)

)
= H(v)− δ.

(ii) ||ψ(v)|| ≤ ε for all v ∈ G. (In this paper we will work with the maximum norm
on R2.)

An (ε, δ) vector field is defined similarly: in condition (i) the relevant equation is
now H

(
v + ψ(v)

)
= H(v) + δ.

Suppose that G is such that for every ε > 0 there is a positive δ for which
one can find an (ε,−δ) vector field ψ. We also assume that the range of φf,g is
contained in G. Then it is obvious that fg−δ lies in B(f, ε)B(g, ε): one only has to
define d1, d2 by (d1, d2) := ψ◦φf,g; these functions will have the desired properties.

Therefore the problem arises to find G were such ψ can be constructed. As an
example consider the set G := {(x, y) | ||(x, y)|| ≥ α0}, where α0 is positive. It
is not hard to prove that for every ε > 0 there exists a positive δ such that G
admits (ε, δ) and (ε,−δ) vector fields so that multiplication is locally open at (f, g)
whenever the range of φf,g lies in G. Due to the compactness of K this observation
can be applied whenever f, g have no common zeros. (This was already observed in
Komisarski’s paper [7].)

Everything would be very simple if G = R2 were admissible. That this cannot
be true follows from the fact that there are (f, g) where multiplication is not locally
open, but a simple direct proof is also possible:

2.4 Proposition: Let ε be positive. Then there exists for no δ > 0 an (ε, δ) vector
field or an (ε,−δ) vector field.

Proof: Suppose that for some positive δ an (ε, δ) vector field ψ would exist. We have
||ψ(−2ε,−2ε)|| ≤ ε so that (−2ε,−2ε) + ψ(−2ε,−2ε) must lie in the quadrant
{(x, y) | x, y ≤ 0}. Similarly (2ε, 2ε) + ψ(2ε, 2ε) will lie in {(x, y) | x, y ≥ 0}
and consequently the curve t 7→ (t, t) + ψ(t, t) (from [−ε, ε ] to R2) will meet
{(x, y) | xy = 0}. Therefore t 7→ H

(
(t, t) +ψ(t, t)

)
vanishes at some t ∈ [−2ε, 2ε ]

in contrast to the assumption that it coincides with t 7→ H(t, t) + δ = t2 + δ, a
strictly positive function.

Similarly one shows that the existence of an (ε,−δ) vector field implies a con-
tradiction. (This time one has to work with t 7→ (t,−t) + ψ(t,−t).) �

In view of this proposition we will have to argue more subtly: our solution will
be to glue together several vector fields. The main ingredient will be the following
elementary topological lemma:

2.5 Lemma: Let L,M,N be topological Hausdorff spaces and φ : L → M a
continuous maps. There are given closed subsets L1, . . . , Ln in L such that

⋃
i Li =

L and also closed subsets M1, . . . ,Mn of M with
⋃
iMi = M . We assume that

φ(Li) ⊂Mi for i = 1, . . . , n.
Further there are given continuous maps ψi : Mi → L such that, for all i, j, the

maps ψi and ψj coincide on Mi ∩Mj .

We define Φ : L → N as follows: for l ∈ Li (any i ∈ {1, . . . , n}) we put
Φ(l) := ψi

(
φ(l)

)
. Then Φ is well-defined and continuous.
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Proof: It is clear that Φ is well-defined. The continuity follows from the fact that,
for closed A ⊂ N ,

Φ−1(A) =
⋃
i

φ−1
(
ψ−1i (A)

)
,

and this set is closed as the union of a finite number of closed sets. �

We will use this lemma in the case n = 3 with L := K, M := N := R2 and φ :=
φf,g. The M1,M2,M3 are the sets Mη,1,Mη,ε,1 and Mη,ε,2 (resp. M−η,1,M−η,ε,1
and M−η,ε,2), the sets L1, L2, L3 are φ−1f,g(Mη,1) (resp. φ−1f,g(M−η,1)) and K1,K2

from theorem 1; the ψ1, ψ2, ψ3 will be suitable vector fields, they will be defined
next.

Some suitable vector fields

A. Vector fields on Mη,1,Mη,ε,1 and Mη,ε,2

Fix ε, η, δ with 1 ≥ ε > η > δ > 0; we will assume that η ≤ ε2. The plane R2

is the union of Mη,1,Mη,ε,1 and Mη,ε,2 (cf. figure 1), and we will define (ε,−δ)
vector fields on these subsets.

A 1: The vector field on Mη,1

This vector field is sketched in the following picture:

Figure 8: The vector field on Mη,1.

Rather than to define it by a formula we prefer here and in the sequel to des-
cribe first the rule how it is constructed: in this way the underlying ideas ar more
transparent. For the case Mη,1 the rule is very simple:

For an (x, y) ∈ Mη,1 such that x, y > 0 (resp. x, y < 0) one goes in
the direction (−1,−1) (resp. (1, 1)) until one reaches for the first time
a point P where the H-value is precisely δ units smaller than H(x, y).
We define ψη,ε,δ(x, y) as the vector P − (x, y).

2.6 Lemma: ψη,ε,δ : Mη,1 → R2 is an (ε,−δ) vector field.

Proof: We will only consider the (x, y) ∈ Mη,1 with x, y > 0; the (x, y) with
x, y < 0 can be treated in a similar way.
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We start with the elementary observation that xy ≥ η implies x+y ≥ 2
√
η, and we

note that ψη,ε,δ(x, y) is the vector (−t,−t), where t is the smallest positive solution
of (x− t)(y − t) = xy − δ. This t has the form

(x+ y)−
√

(x+ y)2 − 4δ

2

where the expression (x+ y)2 − 4δ is positive by the preceding observation.
It follows that ψη,ε,δ is continuous and also that the length of ψη,ε,δ(x, y) only

depends on x+ y.

Finally we note that ρ :
[

2
√
δ,∞

[
→ R, defined by c 7→ (c−

√
c2 − 4δ)/2 has

a negative derivative so that ρ(c) ≤ ρ(2
√
δ) =

√
δ ≤ ε for all c, and it follows that

||ψη,ε,δ(x, y)|| ≤ ε for the (x, y) under consideration.
This proves the lemma. �

A 2: The vector field on Mη,ε,2

We write Mη,ε,2 as the union of three subsets. The vector field will be con-
structed on each of these separately in such in way that on the intersection of two
of them the definiton is the same. Here are the subset, they will be denoted by
I, II, III:

Figure 9: The partition of Mη,ε,2.

More precisely, we put

I := {(x, y) | (x, y) ∈Mη,ε,2, y − x ≥ 0};
II := {(x, y) | x ≤ ε, y ≥ −ε, xy ≤ δ, y − x ≤ 0};
III := {(x, y) | x ≤ ε, y ≥ −ε, δ ≤ xy ≤ η, y − x ≤ 0}.

On I our field looks as follows:
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Figure 10: The field on I.

It is defined by the following rule:

1. If x+ y ≥ 0 go in the direction (−1,−1).

Case 1: Before reaching {(x, y) | x + y = 0} one arrives at a point P
with H(P ) = H(x, y)− δ. Then ψI(x, y) := P − (x, y).

Case 2: This is not the case, i.e., one meets {(x, y) | x + y = 0} at
a point Q where H(Q) > H(x, y) − δ. Move from Q in the direction
(−1, 1) to a point P where H(P ) = H(x, y) − δ. Put ψI(x, y) :=
P − (x, y).

2. If x+ y ≤ 0 go in the direction (1, 1).

Case 1: Before reaching {(x, y) | x + y = 0} one arrives at a point P
with H(P ) = H(x, y)− δ. Then ψI(x, y) := P − (x, y).

Case 2: This is not the case, i.e., one meets {(x, y) | x + y = 0} at
a point Q where H(Q) > H(x, y) − δ. Move from Q in the direction
(−1, 1) to a point P where H(P ) = H(x, y) − δ. Put ψI(x, y) :=
P − (x, y).

The sketch of the field on II is as follows:

Figure 11: The field on II.

On this subset all vectors will point to some element in the diagonal

{(x, y) | x+ y = 0, x ≤ 0, y ≥ 0}.

Thus we have only one choice:
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For (x, y) ∈ II calculate t := H(x, y): this number will lie in
[
−ε2, δ

]
.

Put s := δ − t ∈
[

0, δ + ε2
]

and P := (−
√
s,
√
s) (so that H(P )

equals t− δ). We define ψII(x, y) := P − (x, y) which guarantees that
H
(
ψII(x, y)

)
= H(x, y)− δ as desired.

It remains to define the field on III. This has to be done in such a way that
the definition coincides

• with that of ψη,ε,δ on Mη,1 ∩ III;

• with that of ψI on I ∩ III;

• with that of ψII on II ∩ III.

Here is a sketch:

Figure 12: The field on III.

The procedure to find ψIII(x, y) is as follows:

Let (x, y) ∈ III be given and suppose first that x, y > 0. Then δ ≤
H(x, y) ≤ η. We are looking for H-values that are smaller than t :=
H(x, y) in the direction “south west”. More precisely: for t = η (i.e.,
if x, y ∈ III ∩M1,η) we go in the direction (−1,−1), for t = δ the
direction points to (0, 0), and for t ∈ ] δ, η [ the direction is interpolated
continuously.

Then we go in this direction to the first point P where H(P ) =
H(x, y)− δ. ψIII(x, y) is the vector P − (x, y). The “direction where
one will find P ” is chosen such that it satisfies the above conditions
and depends on the same time continuously on (x, y).

The ψIII(x, y) for the (x, y) with x, y < 0 are defined similarly; this
time P is found in the direction “north east”.
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We now will put the pieces together:

2.7 Lemma: (i) ψI is a (2ε,−δ) vector field on I.

(ii) ψII is a (2ε,−δ) vector field on II.

(iii) ψIII is a (2ε,−δ) vector field on III.

(iv) Define ψη,ε,δ,2 : Mη,ε,2 → R2 by ψη,ε,δ,2(x, y) := ψI(x, y) (resp. := ψII(x, y),
resp. ψIII(x, y)) if (x, y) ∈ I (resp. (x, y) ∈ II, resp. (x, y) ∈ III). Then ψη,ε,δ,2
is a well-defined (2ε, δ) vector field on Mη,ε,2. It coincides on Mη,1 ∩Mη,ε,2 with
ψη,ε,δ.

Proof: (i) As in the proof of lemma 2.6 we start by finding the associated formulas.
Let a vector (x, y) ∈ I such that x + y ≥ 0 be given. For x + y ≥ 2

√
δ we get as

above the expression ψI(x, y) = (−t,−t), where t =
(
(x+y)−

√
(x+ y)2 − 4δ

)
/2.

If x + y ∈
[

0, 2
√
δ
[

the definition is slightly more complicated. The vector

Q can be written explicitly as (−c, c), where c = (y − x)/2 ≥ 0. The distance
||Q− (x, y)|| can easily be estimated:

||Q− (x, y)|| = ||
(
−(x+ y)/2,−(x+ y)/2

)
|| = |(x+ y)/2| ≤

√
δ ≤ ε.

It remains to move from Q to P , i.e., a positive t has to be found such that
(−α − t)(α + t) = −α2 − δ′, where δ′ := δ + H(Q) ∈ [ 0, δ ]. It follows that
t = −c+

√
c2 + δ′, and since c 7→ ρ̃(c) := −c+

√
c2 + δ′ has a negative derivative

it follows that t ≤ ρ̃(0) =
√
δ′ ≤

√
δ ≤ ε. We conclude that

||ψI(x, y)|| = ||P − (x, y)|| ≤ ||P −Q||+ ||Q− (x, y)|| ≤ 2ε.

Since δ′ → 0 for x+ y → 2
√
δ the function ψI is in fact continuous. For (x, y) ∈ I

with x + y ≤ 0 we proceed similarly. On the diagonal {(x, y) | x + y = 0} the
ψI -value is the same as before (ψI(−x, x) points in the direction (−1, 1)), and thus
we have shown that ψI is a (2ε,−δ) vector field.

(ii) and (iii) It is proved similarly as in the case of ψI that both fields are continuous
by giving the explicit expressions. (Of course the “change of the direction” in the
definition of ψIII must be prescribed by a continuous function.) For (x, y) ∈ II
one has ||(x, y)|| ≤ ε, and the norm of P is at most

√
δ ≤ ε; it follows that ψII is

a (2ε,−δ) vector field.
For ψIII both (x, y) and P are in [ 0, ε ]× [ 0, ε ] or in [−ε, 0 ]× [−ε, 0 ] so that

||ψIII(x, y)|| ≤ ε.

(iv) It is an immediate consequence of the definition that the functions ψI , ψII , ψIII
coincide on the intersections of their domains (so that ψη,ε,δ,2 is well defined and
continuous) and that ψη,ε,δ,2 = ψη,ε,δ on Mη,1 ∩Mη,ε,2. �

A 3: The vector field on Mη,ε,1

This is much simpler: we simply “rotate” the peceding definitions by 180 degrees.
More precisely, ψη,ε,δ,1 := Mη,ε,1 → R2 is defined by

ψη,ε,δ,1 := R ◦ ψη,ε,δ,2 ◦R,
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where R stands for the rotation (x, y) 7→ (−x,−y). This is a (2ε,−δ) vector field.

B. Vector fields on M−η,1,M−η,ε,1 and M−η,ε,2

This will simply be done by a suitable rotation of the fields on Mη,1,Mη,ε,1 and
Mη,ε,2 (by 90 degrees, counter-clockwise direction). We will denote these fields that
are (2ε, δ) vector fields by ψ−η,ε,δ, ψ−η,ε,δ,1 and ψ−η,ε,δ,2.

3. Proof of the main theorem

We are now ready for the proof of theorem 1.

Proof of (i) ⇒ (ii)

Suppose first that multiplication is locally open at (f, g) and that ε0 > 0. We
have to find an η > 0 such that (ii)(C1) and (ii)(C2) are satisfied.

By assumption there exists a δ such that fg−δ and fg+δ are in B(f, ε0)B(g, ε0).
Let us first concentrate on fg− δ. We may choose d1, d2 ∈ CK with ||d1||, ||d2|| ≤
ε0 such that (f + d1)(g + d2) = fg − δ.

For the following investigations it will be useful to introduce names for the
quadrants in R2: we will denote by Q++ (resp. Q+− resp. Q−+ resp. Q−−) the
quadrant {(x, y) | x ≥ 0, y ≥ 0} (resp. {(x, y) | x ≥ 0, y ≤ 0} resp. {(x, y) | x ≤
0, y ≥ 0} resp. {(x, y) | x ≤ 0, y ≤ 0}).

We choose any η such that 0 < η < δ. Let (x, y) ∈Mη,2 and (x′, y′) be a point
such that H(x′, y′) = H(x, y) − δ. Then (x′, y′) must lie in

(
Q+− ∪ Q−+

)
\ {0}

since in the complement of this set there are no (x′, y′) with this property.
Another observation will be important: if (x, y) is in Mη,2 \Mη,ε0,1 (resp. in

Mη,2 \Mη,ε0,2) and (x′, y′) is such that H(x′, y′) = H(x, y)− δ and
||(x, y)− (x′, y′)|| ≤ ε0 then (x′, y′) necessarily lies in Q−+ (resp. in Q+−).

We now will show that (ii)(C1) holds with this η. We put

K1 := {k | k ∈ K, φf,g(k) ∈Mη,2,
(
f(k) + d1(k), g(k) + d2(k)

)
∈ Q+−} ;

K2 := {k | k ∈ K, φf,g(k) ∈Mη,2,
(
f(k) + d1(k), g(k) + d2(k)

)
∈ Q−+} .

It is clear from the preceding remarks that φ−1f,g(Mη,2) is the disjoint union of K1

and K2, and by the continuity of the maps under consideration these sets are closed.

Now let a k ∈ K1 be given. If φf,g(k) /∈ Mη,ε0,1 would hold, then – by the
preceding observation – we would have

(
f(k) + d1(k), g(k) + d2(k)

)
∈ Q−+, a

contradiction. This shows that φf,g(K1) ⊂ Mη,ε0,1, and similarly one proves that
φf,g(K2) ⊂Mη,ε0,2.

In the same way one verifies that fg + δ ∈ B(f, ε0)B(g, ε0) implies (ii)C2.

Proof of (ii) ⇒ (i)

Let ε0 > 0 be given. By proposition 2.2 it will suffice to find a positive δ such
that fg ± δ lie in B(f, ε0)B(g, ε0).
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By assumption there exists η > 0 such that (ii)(C1) and (ii)(C2) hold. A moment’s
reflection shows that one may replace η by a smaller number: if 0 < η′ < η, then
Mη′,2 ⊂ Mη,2 so that φ−1f,g(Mη′,1) is the disjoint union of K1 ∩ φ−1f,g(Mη′,1) and

K2 ∩ φ−1f,g(Mη′,1).

Therefore we may, wlog, assume that η ≤ ε20/4. We choose any δ such that
0 < δ < η.

Let us prove by using (C1) that fg − δ lies in B(f, ε0)B(g, ε0). This condition
implies that K can be written as K = K ′∪K1∪K2 with closed subsets K ′,K1,K2

such that

• K ′ = φ−1f,g(Mη,1);

• K1 and K2 are disjoint;

• φf,g(K1) ⊂Mη,ε0,1 and φf,g(K2) ⊂Mη,ε0,2.

We have to find continuous d1, d2 : K → R with ||d1||, ||d2|| ≤ ε0 such that
(f + d1)(g+ d2) = fg− δ holds. At this point the vector fields defined in section 2
come into play (they are defined with ε := ε0/2).

Definition of d1, d2 on K ′ : Here we put
(
d1(k), d2(k)

)
:= ψη,ε,δ ◦ φf,g(k).

Definition of d1, d2 on K1 : For these k we define
(
d1(k), d2(k)

)
:= ψη,ε,δ,1◦φf,g(k).

Definition of d1, d2 on K2 : In this case we put
(
d1(k), d2(k)

)
:= ψη,ε,δ,2 ◦ φf,g(k).

Our vector fields have been constructed such that this definition gives rise to well-
defined maps. From lemma 2.5 it follows that they are continuous; we emphasize
that here one makes crucial use of the fact that K1 ∩K2 = ∅ 1.

Similarly it can be shown that (C2) yields fg + δ ∈ B(f, ε0)B(g, ε0). �

The difference between this construction and the more direct approach sketched
before definition 2.3 is the following: there the vector

(
d1(k), d2(k)

)
was a function

of
(
f(k), g(k)

)
whereas now there might be cases where

(
d1(k), d2(k)

)
depends

really on k: if
(
f(k), g(k)

)
=
(
f(k′), g(k′)

)
then

(
d1(k), d2(k)

)
might be different

from
(
d1(k′), d2(k′)

)
if, e.g., k ∈ K1 and k′ ∈ K2.

4. Consequences

The special case K = [ 0, 1 ]

First we will prove that for the case K = [ 0, 1 ] our characterization coincides
with that of [4]. In this paper the relevant definition is the following. Given conti-
nuous f, g : [ 0, 1 ]→ R we define γ : [ 0, 1 ]→ R2 by t 7→

(
f(t), g(t)

)
, and we say

that there is a positive saddle point crossing (resp. a negative saddle point crossing)
if, for some positive ε > 0 one finds t1 < t2 with ||γ(t1)||, ||γ(t2)|| ≥ ε, γ(t1) ∈ Q++

1A k in this intersection would destroy the hope to obtain a well-defined map. One would have
φf,g(k) ∈Mε,η,1 ∩Mε,η,2, but ψη,δ,ε,1 and ψη,δ,ε,2 do not coincide there.
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and γ(t2) ∈ Q−− or vice versa, and γ(t) ∈ Q++ ∪ Q−− for all t ∈ [ t1, t2 ] (resp.
γ(t1) ∈ Q+− and γ(t2) ∈ Q−+ or vice versa, and γ(t) ∈ Q+− ∪ Q−+ for all
t ∈ [ t1, t2 ]).

4.1 Proposition: (ii)(C1) and (ii)(C2) hold for all positive ε0 if and only if there
are no positive and no negative saddle point crossings.

Proof: (Under the assumption that our arguments were and are correct there is
no need for a proof. It is nevertheless included in order to illustrate the difference
between both approaches.)

Suppose first that there is a positive saddle point crossing. Choose ε, t1, t2 as
in the definition and put ε0 := ε/2. We claim that (ii)(C1) cannot hold. Suppose
that there were a positive η such that one could find K1,K2 as in this condition.
γ(t1) must lie in K2 and γ(t1) in K1 (or vice versa). Also all γ(t) for t ∈ [ t1, t2 ]
would belong to K1 ∪K2 so that [ t1, t2 ] could be written as the disjoint union of
two closed nonvoid subsets, a contradiction.

Similarly the existence of a negative saddle point crossing would imply that
(ii)(C2) cannot be satified.

Suppose now that, for some ε0 > 0, there is no positive η such that condition
(ii)(C2) holds. We will prove that there is a positive saddle point crossing. (Similarly
the negation of (ii)(C1) would give rise to a negative saddle point crossing.)

Claim: For every η > 0 there are t1,η, t2,η ∈ [ 0, 1 ] such that for all t between t1,η
and t2,η one has γ(t) ∈M−2η,2, but γ(t1,η) /∈M−2η,ε0,1 and γ(t2,η) /∈M−2η,ε0,2.
(Thus, if η = 0 were admissible, there would be a positive saddle point crossing
between t1 and t2.)

Proof of this claim. Consider the compact set ∆ := {t | t ∈ [ 0, 1 ] , γ(t) ∈M−η,2}.
∆ is contained in the open set O := {t | t ∈ [ 0, 1 ] , H

(
γ(t)

)
> −2η}, and we may

choose pairwise disjoint intervals Ii = [ si, ti ] for i = 1, . . . , n with ∆ ⊂
⋃
i Ii ⊂ O.

What happens for the t in some of the Ii ? We claim that there must be at least
one i where Gi := {γ(t) | t ∈ Ii} is not completely contained in M−2η,ε0,1 or in
M−2η,ε0,2. If always Gi ⊂M−2η,ε0,1 or Gi ⊂M−2η,ε0,2 would hold we could put

K ′1 :=
⋃
{Ii | Gi ⊂M−2η,ε0,1}, K ′2 :=

⋃
{Ii | Gi ⊂M−2η,ε0,2},

and K1 := K ′1∩γ−1(M−η,2), K2 := K ′2∩γ−1(M−η,2) would be a disjoint partition
of γ−1(M−η,2) as in (ii)(C2) in contradiction to our hypothesis.

Choose any Ii where Gi is neither a subset of M−2η,ε0,1 or of M−2η,ε0,2. This
implies that we may can select t1,η, t2,η with the claimed properties; t1,η will be a
t with t ∈M−2η,2 \M−2η,ε0,1, and t2,η will be a t with t ∈M−2η,2 \M−2η,ε0,2.

We are now ready to prove that there is a positive saddle point crossing. We
choose t1,η, t2,η for η = 1, 1/2, 1/3, . . . and select an accumulation point t1 (resp.
t2) of these t1,η (resp. of these t2,η). We then know that the γ(t) for t between t1
and t2 stay in Q++ ∪ Q−−, that the norm of γ(t1), γ(t2) is at least ε0 and that
one of these vectors lies in Q++ and the other in Q−−. �

The case f = ±g
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It is easy to characterize those f where multiplication is locally open at (f, f):

4.1 Proposition: For f ∈ CK the following are equivalent:

(i) Multiplication is locally open at (f, f).

(ii ) Multiplication is locally open at (f,−f).

(iii) For every ε0 > 0 there are disjoint closed subsets K1,K2 ⊂ K such that
K1 ∪K2 = K and f(k1) ≥ −ε0, f(k2) ≤ ε0 for k1 ∈ K1, k2 ∈ K2.

Proof: We will show that (i) and (iii) are equivalent, the proof of the equivalence
of (ii) and (iii) is similar.

(i)⇒(iii): Supppose that (i) holds and that ε0 is a positive number. By theo-
rem 1.1 (ii) there exists η > 0 such that φ−1f,f (M−η,2) can be written as K1∪K2 with
disjoint closed K1,K2 such that φf,f (K1) ⊂ M−η.ε0,2 and φf,f (K2) ⊂ M−η.ε0,1.
We note that φ−1f,f (M−η,2) = K, i.e., K splits as K1 ∪K2, and f(k) ≥ −ε0 (resp.
f(k) ≤ ε0) for k ∈ K1 (resp. k ∈ K2).

(iii)⇒(i): The preceding part of the proof used the fact that (iii) is a reformulation
of (ii)(C2) of theorem 1.1. But (ii)(C1) is trivially true here: for ε0 we put η := ε2,
and then φ−1f,f (Mη,2) can be written as the union of K1 := φ−1f,f (Mη,2) and K2 := ∅,
with φf,f (K1) ⊂Mη,ε0,1 and φf,f (K2) ⊂Mη,ε0,2. �

4.2 Corollary: Let K be a connected compact Hausdorff space. Then the following
assertions are equivalent:

(i) Multiplication is locally open at (f, f).

(ii) Multiplication is locally open at (f,−f).

(iii) f(k) ≥ 0 for all k or f(k) ≤ 0 for all k.

Proof: We show that (i) and (iii) are equivalent, the equivalence of (ii) and (iii) is
proved similarly.
(iii)⇒(i) Let us assume that, e.g., f ≥ 0. Then we can choose in proposition 4.1(iii)
K2 := K and K1 := ∅ for arbitrary ε0. (Here it is not essential that K is connected.)

(i)⇒(iii) Suppose that (iii) does not hold, i.e., that there are k′1, k
′
2 ∈ K with

f(k′2) < 0 < f(k′1). Choose a positive ε0 with f(k′2) < −ε0 < 0 < ε0 < f(k′1). We
claim that for no positive η the condition (ii)(C2) is satisfied. If there were K1,K2

as in (C2) the space K would split as K = K1 ∪K2 with disjoint closed K1,K2.
Both sets are nonempty since k′1 ∈ K1 and k′2 ∈ K2, and this contradicts the fact
that K is connected. �

The case K = [−1, 1 ]
2

Next we show that for K = Q := [−1, 1 ]
2 an interesting phenomenon can be

observed. There – in contrast to the case of many other known bilinear mappings
– the collection of “good” pairs (where multiplication is locally open) is not dense.
It will be convenient to start with some preparations.

Fix a positive ε such that ε ≤ 1/3 and define A1, A2 ⊂ Q as follows:

A1 := {(x, y) | x ≥ −ε, y ≤ ε}; A2 := {(x, y) | x ≤ ε, y ≥ −ε} .

R, S, T, U denote the points (−1,−1), (−ε,−ε), (ε, ε), (1, 1), respectively.
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Figure 13: The sets A1, A2 and the points R,S, T, U .

4.3 Lemma: Suppose that K1,K2 are compact subsets of Q with K1∩K2 = ∅ and
K1 ⊂ (A1)0, K2 ⊂ (A2)0. (M0 stands for the interior of a subset of a topological
space.) Then there is a path φ from R to U in Q \ (K1 ∪ K2): the function
φ : [ 0, 1 ]→ Q is continuous, it omits K1∪K2, and φ(0) = R and φ(1) = U hold.

Proof: (This assertion is “obvious”, it seems to be hard, however, to give a short
and elegant argument.)

Since K1 and K2 are disjoint they have a positive distance 4τ , and since they lie
in the interior of A1 and A2, respectively, we may assume that K1 +B(0, 2τ) ⊂ A1

and K2 + B(0, 2τ) ⊂ A2. (Recall that we work with the maximum norm in R2

so that our “balls” are in fact squares.) We will “blow up” K1 and K2 slightly to
simplify the situation.

First step: Fix an n ∈ N so large that 1/n ≤ τ . Let K ′1 be the collection of all
little squares [ i/n, (i+ 1)/n ]× [ j/n, (j + 1)/n ] with i, j ∈ {−n, . . . , n− 1} that
intersect K1. Similarly K ′2 is defined.

Second step: We enlarge K ′1 and K ′2 further: K ′′1 := K ′1 + B(0, τ) and K ′′2 :=
K ′2 + B(0, τ). Then K ′′1 and K ′′2 are disjoint compact sets that are unions of tiny
squares such that the sides are parallel to the sides of Q with K1 ⊂ K ′′1 ⊂ A1 and
K2 ⊂ K ′′2 ⊂ A2.

We now construct a path that omits K ′′1 ∪K ′′2 (and therefore K1∪K2). To this
end we consider the directed line L from R to U . Until S and after T it will not
meet K ′′1 ∪K ′′2 . If it omits this set also between S and T we are done. Otherwise
we modify this path as follows:

• Suppose that L meets K ′′1 at a certain component C1 of K ′′1 . Then surround
C1 in the clockwise direction without touching K ′′1 ∪K ′′2 until you arrive at L
again. Continue your path on L towards R until R or until you arrive at the
next obstacle.

This will be possible since K ′′1 ⊂ A1.

• Proceed in a similar way if L meets a component C2 of K ′′2 . This time,
however, C2 will have to be surrounded in the counter-clockwise direction.

Since there are at most finitely many components of K ′′1 ∪K ′′2 one will arrive sooner
or later at U .

(A more rigorous proof could start with a result from function theory: if a com-
pact subset L of C lies in an open set O ⊂ C, then there is a cycle γ in O \ L
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made up from line segments such that the winding number of x with respect to γ
is one for every x ∈ L ; see. e.g., proposition 1.1 in chapter VIII of [6]. This should
be applied here with L = Ki and O = {x | d(x,Ki) < τ} for i = 1, 2.) �

4.4 Proposition: Let f0, g0 : Q→ R be defined by f0(x, y) := x and g0(x, y) := y.
Then, whenever f, g ∈ CQ are such that ||f − f0||, ||g − g0|| ≤ 1/9, multiplication
is not locally open at (f, g).

Proof: We fix any f, g ∈ CQ with ||f−f0||, ||g−g0|| ≤ 1/9, and we put Φ := φf,g.
The map φf0,g0 is the identity on Q so that ||Φ(q)− q|| ≤ 1/9 for all q.

Now suppose that multiplication were locally open at (f, g). Choose η > 0,
K1,K2 for ε0 := 1/9 according to (C1) of theorem 1.1: {q | Φ(q ∈ Mη,2)} is
the disjoint union of K1 and K2, and Φ(q) ∈ Mη,ε0,1 (resp. Φ(q) ∈ Mη,ε0,2) for
q ∈ K1 (resp. q ∈ K2). With ε := 3ε0 we consider the sets A1, A2 introduced
before lemma 4.3.

We claim that K1 lies in the interior of A1. In fact, we know for q ∈ K1

that f(q) ≥ −ε0 and g(q) ≤ ε0, and from ||Φ(q) − q|| ≤ ε0 we conclude that
f(q) ≥ −2ε0 and g(q) ≤ 2ε0. Similarly one proves that K2 ⊂ (A2)0.

By the preceding lemma we find a continuous φ : [ 0, 1 ] → Q with φ(0) = R,
φ(1) = U and φ(t) /∈ K1 ∪K2 for all t. This means that no Φ ◦ φ(t) lies in Mη,2 :
recall that Φ−1(Mη,2) = K1 ∪K2. Therefore all Φ ◦ φ(t) belong to Mη,1.

This leads to a contradiction. Mη,1 is the disjoint union of B1 := {(x, y) |
(x, y) ∈Mη,1, x, y ≤ 0} and B2 := {(x, y) | (x, y) ∈Mη,1, x, y ≥ 0}. Consequently
[ 0, 1 ] would be the disjoint union of Φ−1(B1) and Φ−1(B2) where both of these
closed sets are nonempty: R ∈ Φ−1(B1) and R ∈ Φ−1(B1). This is not possible by
the connectedness of [ 0, 1 ]. �

Quantitative results

It is also sometimes simple to derive quantitative results. Suppose that multi-
plication is locally open at (f, g) for some f, g ∈ CK; are there, for given ε > 0,
estimates for the δ > 0 such that B(fg, δ) ⊂ B(f, ε)B(g, ε) ? As a typical result
we show:

4.5 Lemma: Let ε, δ0 > 0 be given and suppose that there is a connected subset
C of K with the following properties:

(i) f(k)g(k) ≥ −δ0 for k ∈ C.

(ii) There are k1, k2 ∈ C such that f(k1), g(k1) > ε and f(k2), g(k2) < −ε.

Then, if for some positive δ one has B(fg, δ) ⊂ B(f, ε)B(g, ε), it follows that
δ ≤ δ0.

Proof: Write fg + δ as (f + d1)(g + d2), where d1, d2 ∈ CK are such that
||d1||, ||d2|| ≤ ε. Then (f + d1)(k1) > 0 and (f + d1)(k2) < 0 so that, since
C is connected, there must exist a k0 with (f + d1)(k0) = 0. This implies that
0 =

(
f + d1

)
(k0)

(
g + d2

)
(k0) = f(k0)g(k0) + δ ≥ −δ0 + δ, and it follows that

δ ≤ δ0. �

Complex-valued functions
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It was sketched in [5] that multiplication is locally open at every pair (f, g) in
CC [ 0, 1 ], the space of complex continuous functions on [ 0, 1 ]. For the case of
arbitrary K the situation is by far more complicated, we will investigate it in a
separate paper. Here we only note that there are examples where – in contrast to
the case [ 0, 1 ] – multiplication needs not to be locally open at every pair f, g :

4.6 Proposition: Let D = {z | |z| ≤ 1} be the complex unit disk. The functions
f, g : D → C are defined by f : z 7→ z and g : z 7→ z. Then the pointwise
multiplication on CCD is not locally open at (f, g).

Proof: Put ε := 1/3. We claim that B(f, ε)B(g, ε) does not contain any of the
functions fg + δ with δ > 0 so that fg is not in the interior of B(f, ε)B(g, ε).

Let contiuous d1, d2 : D → C with ||d1||, ||d2|| ≤ ε and a positive δ be given.
We have to show that (f + d1)(g+ d2) is different from fg+ δ. The function −d1
is a continuous map from D to D so that there exists by the Brouwer fixed point
theorem a z0 ∈ D with −d1(z0) = z0. This implies that (f + d1)(z0) = 0, and
consequently (f +d1)(g+d2) must differ from the strictly positive function fg+ δ.

We note that with a similar argument one can show that multiplication is not
locally open at (f, g) if we define f : z 7→ zn and g 7→ zn for an arbitrary n ∈ N. �

5. Invitations for further research

We have given, for the case of real CK spaces, a characterization of those tuples
where multiplication is locally open. The following two problems should be studied
next:

• Find a characterization for complex CK spaces.

• In [5] a characterization of those n-tuples (f1, . . . , fn) with f1, . . . , fn ∈
C [ 0, 1 ] was given where multiplication is locally open. It would be interesting
to generalize this theorem to the case of arbitrary real or complex CK-spaces.

Such results would surely be important steps towards an understanding of the ob-
structions that are responsible for the failure of local openness of multiplication at
certain tuples in arbitrary Banach algebras.
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