A note on the preceding paper by Piotrowski and Sladkowski and the response of Astumian

Ehrhard Behrends
Fachbereich Mathematik und Informatik
Freie Universität Berlin
Arnimallee 2-6, D 14195 Berlin, Germany
behrends@math.fu-berlin.de

Received (November 3, 2004)
Revised (November 9, 2004)
Accepted (November 9, 2004)

We point out that the analysis of Piotrowski and Sladkowski of the paradox described by Astumian has a flaw since they consider a different game.

Keywords: Random games; paradox.

It is due to Parrondo that certain paradoxical phenomena in connection with stochastic games have attracted the attention of many scientists in different fields during the last years. (For a description of Parrondo's paradox see [4].)

In [1] Astumian has provided another paradox: he describes two losing games a stochastic mixture of which gives rise to a winning game. Piotrowski and Sladkowski state in [5] that his analysis is wrong and that a paradoxical behaviour cannot be observed in this situation. As an answer Astumian claims in [2] that this criticism is not justified. Let me explain why Astumian is right.

The aim of study here are Markov chains on the state space $\{1,2,3,4,5\}$. As usual we will describe such chains by stochastic matrices $P=\left(p_{i j}\right)_{i, j=1, \ldots, 5}$. In the present situation the states 1 and 5 are absorbing. A walk starts at state 3, and if it is absorbed at 5 (resp. at 1) the game is won (resp. lost).
Astumian's game 1 (AG1) is given by the following matrix:

$$
P_{1}=\frac{1}{36}\left(\begin{array}{ccccc}
36 & 0 & 0 & 0 & 0 \\
4 & 24 & 8 & 0 & 0 \\
0 & 5 & 29 & 2 & 0 \\
0 & 0 & 4 & 24 & 8 \\
0 & 0 & 0 & 0 & 36
\end{array}\right)
$$

With the help of elementary linear algebra one can determine the winning and losing probabilities ${ }^{1}$. The idea is simple. First note that in order to calculate these probabilities the steps $i \rightarrow i$ for the transient i can be neglected provided the transition probabilities $i \rightarrow j$ (for $j \neq i$) are adjusted properly: one has to replace $p_{i i}$ by 0 and $p_{i j}$ by $p_{i j} /\left(1-p_{i i}\right)$ for $i=2,3,4$ and $j \neq i$. Call the new matrix the reduced matrix P^{\prime}. In the case of AG1 one gets

$$
P_{1}^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
0 & 5 / 7 & 0 & 2 / 7 & 0 \\
0 & 0 & 1 / 3 & 0 & 2 / 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Denote, for $i=1,2,3,4,5$, by w_{i} the probability that the walk will be absorbed in state 5 if it starts in i (so that w_{3} is the probability to win the game). Then, as a consequence of the Markov property, one has $w_{i}=\sum_{j} p_{i j} w_{j}$ for every i. Together with $w_{1}=0$ and $w_{5}=1$ this allows the calculation of the w_{i} in closed form. If one works with the reduced matrix P^{\prime} one obtains

$$
w_{3}=\frac{p_{34}^{\prime} p_{45}^{\prime}}{1-p_{23}^{\prime} p_{32}^{\prime}-p_{34}^{\prime} p_{43}^{\prime}}
$$

For the game AG1 this number equals $w_{3}^{(1)}:=4 / 9$, i.e., AG1 is a losing game.
Similarly one can analyze Astumian's game 2 (AG2):

$$
P_{2}=\frac{1}{36}\left(\begin{array}{ccccc}
36 & 0 & 0 & 0 & 0 \\
5 & 29 & 2 & 0 & 0 \\
0 & 4 & 24 & 8 & 0 \\
0 & 0 & 5 & 29 & 2 \\
0 & 0 & 0 & 0 & 36
\end{array}\right), \quad P_{2}^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
5 / 7 & 0 & 2 / 7 & 0 & 0 \\
0 & 1 / 3 & 0 & 2 / 3 & 0 \\
0 & 0 & 5 / 7 & 0 & 2 / 7 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

and for the corresponding winning probability $w_{3}^{(2)}$ one obtains again 4/9: also AG2 is a losing game.

Now comes the crucial step. Astumian considers a third game which is derived from AG1 and AG2 by switching between these two games randomly (with equal probability). The correct analysis is as follows:

- The new game is governed by the stochastic matrix $P_{3}:=\left(P_{1}+P_{2}\right) / 2$.
- For the calcualtion of the winning probability it suffices to consider the reduced matrix P_{3}^{\prime}.
- The winning probabilities can simply be derived from the entries of the matrix P_{3}^{\prime}.

[^0]This is done in [2]: Astumian correctly calculates

$$
P_{3}=\frac{1}{72}\left(\begin{array}{ccccc}
72 & 0 & 0 & 0 & 0 \\
9 & 53 & 10 & 0 & 0 \\
0 & 9 & 53 & 10 & 0 \\
0 & 0 & 9 & 53 & 10 \\
0 & 0 & 0 & 0 & 72
\end{array}\right)
$$

and from the correct P_{3}^{\prime} one gets $w_{3}^{(3)}=100 / 181$. This means that random mixing has given rise to a winning game.

In [5] instead the authors work with

$$
\left(P_{1}^{\prime}+P_{2}^{\prime}\right) / 2=\frac{1}{21}\left(\begin{array}{ccccc}
21 & 0 & 0 & 0 & 0 \\
11 & 0 & 10 & 0 & 0 \\
0 & 11 & 0 & 10 & 0 \\
0 & 0 & 11 & 0 & 10 \\
0 & 0 & 0 & 0 & 21
\end{array}\right)
$$

and from this matrix one really obtains the (false) winning probability 100/221: also the mixture seems to be a losing game.

Summing up, the error in [5] is that it is tacitly assumed there that

$$
\left(\frac{1}{2}\left(P_{1}+P_{2}\right)\right)^{\prime}=\frac{1}{2}\left(P_{1}^{\prime}+P_{2}^{\prime}\right)
$$

But this is in general - and in particular in the case under consideration - not true. This fact is paradoxical, but traps of that kind are rather common in probability.

References

[1] R.D. Astumian. Making molecules into motors; Scientific American 7, (2001), 206213.
[2] R. D. Astumian; Gamblers paradox and noise driven flux reversal in kinetic cycles: Response to the preceding paper by Piotrowski and Sladkowski; Fluctuation and Noise Letters (2004).
[3] E. Behrends; Introduction to Markov Chains (with Special Emphasis on Rapid Mixing). Vieweg Verlagsgesellschaft, Braunschweig/Wiesbaden, 2000.
[4] G. P. Harmer and D. Abbott; Parrondo's paradox; Statistical Science 14 (1999), 206-213.
[5] E. W. Piotrowski and J. Sladkowski; On the applicability of Astumian's model in describing Parrondo effects; Fluctuation and Noise Letters (2004).

[^0]: ${ }^{1}$ Much more can be said: see Chapter 5 in [3].

